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Abstract

The advent of modern technology, permitting the measurement of thousands of char-
acteristics simultaneously, has given rise to floods of data characterized by many
large or even huge datasets. This new paradigm presents extraordinary challenges to
data analysis and the question arises: how can conventional data analysis methods,
devised for moderate or small datasets, cope with the complexities of modern data?
The case of high dimensional data is particularly revealing of some of the drawbacks.
We look at the case where the number of characteristics measured in an object is
at least the number of observed objects and conclude that this configuration leads
to geometrical and mathematical oddities and is an insurmountable barrier for the
direct application of traditional methodologies. If scientists are going to ignore fun-
damental mathematical results arrived at in this paper and blindly use software to
analyze data, the results of their analyses may not be trustful, and the findings of
their experiments may never be validated. That is why new methods together with
the wise use of traditional approaches are essential to progress safely through the
present reality.

keywords: Curse of dimensionality; High dimensional data; Mahalanobis distance.

1 Introduction

When n “objects” (patients, subjects, cells, samples, etc) are measured on p distinct, pos-
sibly correlated, characteristics (or variables) we say we have a multivariate p-dimensional
dataset. Examples can be found in all areas of science as well as in many current human
activities. Statistical methods to deal with this kind of datasets were developed along the
twentieth century under the assumption that the number of variables is much smaller than
the number of observations (see e.g., Johnson & Wichern, 2007). However, the automatic
acquisition of data due to the extraordinary development of new technologies observed
in the last decades, has changed this paradigm. Nowadays it is quite common to have
datasets with a number of variables much larger than the number of observations. A
variety of examples of such high dimensional datasets can be found in, for instance, the
genomics, chemometrics, astronomy, climate or finance literature. How are we dealing with
this new scenario? At least two references (Clarke et al., 2008; Johnstone & Titterington,
2009) acknowledge the difficulties encountered and basically recognize our ignorance about
the basic properties of high dimensional data spaces. Despite this ignorance a continuous
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stream of new methods prepared to deal with this kind of data has flooded the scientific
literature. For example, chapter 18 of Hastie, Tibshirani & Friedman (2009) is dedicated
to high dimensional problems (p much larger than n) and describes many of the methods
proposed up to 2008.

In this paper we present some new mathematical results about the geometry of datasets
in high dimension which reveal interesting fatal features that have been ignored so far.
The consequences of these findings are determinant for the correct approach to analyze
data. As a matter of fact it will become clear that it is nonsense to freely use many of the
traditional data analysis methods directly to study high dimensional data, in particular if
p ≥ n. The paper is organized as follows. In the next section we establish the background,
describe the problem and present the main findings. The consequences of the results and
possible solutions are discussed in the concluding section.

2 Geometric aspects of multivariate data

2.1 When p is small

In this case n is usually much larger than p (p ≪ n). If, for instance, p = 2 the data can
be represented by n points in a bivariate scatter plot, where the two axis represent the two
variables. The main features of the data (relationship/correlation between the variables,
grouping of objects, outliers, and others) can be visualized on this scatter plot. When
p = 3 things are not so easy. We may produce a 3-d scatter plot, but this scatter plot is
ultimately represented in a two dimensional space (computer screen/sheet of paper) and
what we really observe is a projection of the 3-d point cloud onto a 2-d subspace. This
can be informally described as a picture of the point cloud taken from a given position and
angle. To understand a 3-d dataset we must take many pictures from varying positions and
angles, which means that visualization of the data is, no doubt, more difficult when p = 3
than when p = 2. What about when p > 3? Conceptually we could always apply a similar
procedure, that is, project the p-dimensional data points onto 2-d subspaces. It is easy
to understand that, as the number of dimensions increases, we would need an increasingly
larger number of pictures to get just a glimpse of the data. This is yet a manifestation of
the “curse of dimensionality” Bellman (1957).

At this point we must recognize the need and importance of multivariate statistical meth-
ods. These methods are designed to analyze datasets with n observations on p variables
organized in a data matrix, X = {xij}i=1,...,n;j=1,...,p, with n rows and p columns, where xij

denotes the value of the jth variable for the ith object. We restrict our attention to numer-
ical variables and we assume throughout that the n points are in “general position”, which
means that there are no redundancies in the data, like, for instance, two exact replicas of
an observation (a precise definition is given in Appendix A).

Multivariate statistical methods (considered in a broad sense, i.e., including machine learn-
ing and related topics) can extract and quantify relevant features of the data, and also
produce, in many cases, two dimensional graphical representations to complement the
analysis. Most of those methods use matrix algebra techniques. For instance, principal
components (Hotelling, 1933), which are successive uncorrelated directions with maximal
variance. Principal components are defined by the eigenvectors of the covariance matrix, S,
or of the correlation matrix, R, whereas the variances along the principal components can
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be obtained by computing the corresponding eigenvalues. A very important tool in multi-
variate analysis, which is related to a number of methods, including principal components,
is the Mahalanobis distance (Mahalanobis, 1936).

When comparing/analyzing data on a single variable it is often informative to compute
the distance of each observation to the center of the data (usually identified by the sample
mean) or the distance between pairs of observations, taking into consideration the intrinsic
variability of the data, usually measured by the standard deviation. Recall that for a
dataset consisting of n observations on one variable, (x1, . . . , xn), the z-scores are zi = (xi−
x̄)/s, where x̄ and s are the arithmetic mean and standard deviation of the n observations.
The z-scores have been used for instance to detect outliers, though they have a number of
important limitations (Barnett & Lewis, 1994). The mean of (z1, . . . , zn) is zero while both
its standard deviation and variance are equal to 1. Also, |zi| = {(xi− x̄)2/s2}1/2 is both the
standardized distance between xi and x̄ and the Euclidean distance between zi and z̄ ≡ 0,
whereas the Euclidean distance between zi and zj, |zi − zj |, is equal to {(xi − xj)

2/s2}1/2,
the standardized distance between xi and xj .

Consider now a multivariate n × p dataset and imagine a standardizing transformation
with similar properties as the z-scores transformation. Computing the z-scores separately
for each variable does not achieve that desideratum unless all the variables are uncor-
related (that is, in case both S and R are diagonal matrices). It turns out that the
multivariate transformation which standardizes a multivariate dataset taking into account
the correlations between all the variables is the Mahalanobis transformation, defined in
matrix notation by zi = S−1/2(xi − x̄), where xi is a vector containing the p measure-
ments of the ith object, x̄ is the mean vector, containing the p means of the individual
variables and S−1/2 is a square root of the inverse of S. This transformation has the
same form of the z-scores transformation, but uses matrices in place of single values.
It is easy to verify that the standardized data matrix, Z, formed with the zi vectors,
is such that all the variables have zero mean and unit variance, and all pairwise co-
variances are zero (in other words, the mean vector of Z is the null vector, and both
its covariance and correlation matrices are the identity matrix, I). The Euclidean dis-

tance between a standardized observation, zi, and the null vector is
(

∑p
j=1

z2ij

)1/2

, which

can be written in matrix notation as
(

zTi zi
)1/2

=
{

(xi − x̄)T S−1 (xi − x̄)
}1/2

and defines

the Mahalanobis distance between the observation xi and the mean of the n observa-
tions, dxi,x̄. The Euclidean distance between two standardized observations, zi and zj , is
{

(zi − zj)
T (zi − zj)

}1/2

=
{

(xi − xj)
T S−1 (xi − xj)

}1/2

and defines the Mahalanobis dis-

tance between xi and xj , dxi,xj
. Like the z-scores, Mahalanobis distances to the mean have

been used to detect outliers in multivariate datasets (Gnanadesikan & Kettenring, 1972).
Mahalanobis distances between two objects are useful, e.g., in clustering applications.

2.2 When p is large and n is small

Before we discuss the very complicated issue of the visualization of this kind of data, let us
consider an apparently naive question: can we use Mahalanobis distance when the number
of variables is larger than the number of observations? A first quick answer would be:
no, because when p ≥ n the covariance matrix can not be inverted (S is singular) and
therefore Mahalanobis distance is not defined. However, it is still possible to define the
Mahalanobis distance by reasoning as follows. Three points (in general position) in a 3-d
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space (p = 3, n = 3) define a plane, in other words, they lie on a certain 2-d subspace. If
we adopt a coordinate system in that subspace, Mahalanobis distances can be computed,
because the new covariance matrix will not be singular. A similar argument can be applied
to higher dimensional spaces. A dataset with n observations in p variables, with p ≥ n,
can be represented, without any loss of information, in a new set of q = n−1 variables, for
which Mahalanobis distances can be computed. Moreover, such a set of variables is easy to
find. Consider, for instance, the n−1 principal components of X corresponding to non-null
eigenvalues of S. These new variables are linear combinations of the original variables and
it is easy to move from one system to the other. The Mahalanobis distance defined in this
way coincides with the generalized Mahalanobis distance (Mardia, 1977), for which the
non-existing inverse is replaced by the Moore–Penrose generalized inverse. Therefore we
conclude that we can still standardize datasets with p ≥ n, by applying the Mahalanobis
transformation in the largest subspace for which the covariance matrix is invertible, that
is, using q = n− 1 new variables which are linear combinations of the original p variables.
But when we perform the computations just described we arrive at the following surprising
result (details and proofs are given in Appendix A).

Theorem 1 For every dataset with n points, x1, . . . , xn, and p ≥ n− 1 variables we have
that: (i) dxi,x̄ = (n − 1) n−1/2, for every i = 1, . . . , n, and (ii) dxi,xj

= {2(n− 1)}1/2 for
every i 6= j = 1, . . . , n. In other words, whatever the points x1, . . . , xn, as long as p ≥ n−1,
the standardized data always form a regular pattern in which the distance from every point
to the center is a constant and the distance between any two points is another constant,
both constants depending only on n. �

Despite Mahalanobis distance has been known and used for more than 70 years, these
apparently simple results were not found in the literature. Incidentally, we are also able to
show, following almost the same proof as in Theorem 1, that for every dataset, irrespective
of the number of observations or variables, we have that (iii) dxi,x̄ ≤ (n−1) n−1/2, for every

i = 1, . . . , n, and (iv) dxi,xj
≤ {2(n− 1)}1/2 for every i 6= j = 1, . . . , n (a proof of (iii) was

published in Trenkler & Puntanen (2005) and also in Gath & Hayes (2006). The results
given in Theorem 1 can also be connected to asymptotic results in Ahn et al. (2007).

Figure 1 illustrates Theorem 1 for datasets with 3 points and a number of variables larger
or equal than 2. This is the only case we can represent directly in a 2-d plot (the plane
containing the three points), and we can see that every dataset with 3 points in p ≥ 2
variables corresponds, when standardized and apart from an arbitrary rotation, to the
“same” equilateral triangle (the general position assumption excludes cases where the 3
points lie on a straight line). Similarly, for n = 4 points in p ≥ 3 variables, every dataset
corresponds, when standardized, to the “same” regular tetrahedron (again apart from an
arbitrary rotation). For n ≥ 5 we have to imagine a regular geometric object in a p ≥
n− 1 ≥ 4 dimensional space which is the appropriate member in the sequence: equilateral
triangle, regular tetrahedron, . . . These objects are called regular simplices (triangle≡ 2-
simplex; tetrahedron≡ 3-simplex; pentachoron≡ 4-simplex; . . . ; (n− 1)-simplex; . . . ). By
the above result, we can envisage the standardized version of an n × p data matrix, with
p ≥ n− 1, as the n vertices of a regular (n− 1)-simplex, such that the length of every edge

is dxi,xj
= {2(n− 1)}1/2, and every vertex is located at a distance of dxi,x̄ = (n− 1) n−1/2

from the center of the simplex. This is a very simple regular structure with all the points
at the boundary of its convex hull (the simplex) while the interior of the convex hull is
completely empty. This last property is also shared by the original data, because they can
be seen as a non-singular linear transformation of the standardized data: xi = S1/2zi + x̄.
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Figure 1: Three datasets with 3 random points in dimension 2. (A) Original observations,
x1, x2 and x3. (B) Standardized observations, zi = S−1/2(xi − x̄), i = 1, 2, 3.

We have thus shown that the point cloud of a multivariate dataset with p ≥ n− 1 is like
an empty shell which, when standardized, looks the same whatever the data. This reality
has strong implications. If we insist on considering the multivariate relation between all
the variables, it is not possible, unless external information is provided, to: (i) separate
outliers from non outlier observations, (ii) detect any kind of deviations from symmetric
structures, (iii) distinguish between linear and non linear structures, or (iv) identify any
type of clustering.

Let us now consider projections of these data structures, that is, imagine traveling “around”
the point cloud and taking a large number of interesting pictures. The next result shows
that these pictures can show virtually anything we want to see and have therefore to be
used very carefully when extracting conclusions about the data.

Theorem 2 For every matrix with n points and p ≥ n − 1 variables, X, and every non-
singular two dimensional arrangement of n points (Y ) it is always possible to find (explic-
itly) an orthogonal projection of X which is “similar” to Y .

The result given in this theorem can be connected to some results in the mathematics liter-
ature (Baryshnikov & Vitale, 1994; Eastwood & Penrose, 2000). Remarkably, the “piling
effect”, characterized by the existence of directions such that projections of data onto
those directions take only two distinct values (Ahn & Marron, 2010), is just a special case
of Theorem 2.

Figure 2 illustrates Theorem 2 using two well known datasets: the colon cancer microar-
ray data (Alon et al., 1999) and the ORL face database (Samaria & Harter, 1994). The
implications for data analysis are the same as for Theorem 1: if there is no external informa-
tion, there is little we can conclude about the multivariate structure of an high dimensional
dataset. For instance, is a projection with an outlier evidence of the existence of an outlier?
It can not be, because we can see such a projection in every high dimensional dataset with
just the same number of points, irrespective of the presence of any outlying observation.
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Figure 2: Illustration of Theorem 2. (A) and (C) Arbitrary configurations of points in 2
dimensions. (B) An orthogonal projection of high dimensional data which is similar to the
configuration in (A), where the data comes from the ORL face database (Samaria & Harter,
1994) whith n = 400 observations (pictures) on p = 10304 variables (pixels). (D) An
orthogonal projection of high dimensional data which is similar to the configuration in (C),
where the data comes from the colon cancer microarray dataset (Alon et al., 1999) whith
n = 62 observations (arrays) on p = 2000 variables (genes); the black circles correspond
to the 22 normal tissue samples and the white circles correspond to the 40 tumor tissue
samples (the arbitrary configuration in (C) specifies separation of the two groups).

We now know that the p ≥ n − 1 data space is quite odd. It is then natural to ask
whether those singularities appear suddenly when p reaches n−1 or whether the properties
of the space change gradually as p approaches n − 1 from bellow. The upper bound
of the Mahalanobis distance, together with the fact that the expected value of d2xi,x

is
(n−1)p/n for p ≤ n−1, whatever the distribution of the data (Mardia, 1977), show that a
transition must start far before p reaches n−1 (this may also be related to Corollary 1.1 in
Donoho & Tanner, 2005, which states a rigorous result about such transitions for samples
from a multivariate normal distribution). Figure 3 illustrates this aspect. The plots show
orthogonal projections of the colon cancer microarray dataset, selected to be as similar as
possible to configuration (C) of Figure 2, but using only a subset with p < n randomly
chosen variables. Contrary to what happened in Figure 2, it is no longer possible to
replicate any configuration, however, certain aspects of the given structure remain visible,
even in the case p = 10, where the separation of the two groups is still noticeable. This
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Figure 3: Six orthogonal projections of the colon cancer microarray dataset, with p < n,
selected to be as similar as possible to the configuration (C) of Figure 2. From top to
bottom, left to right: p = 60, 50, 40, 30, 20 and 10 randomly selected variables.

example shows that it may be dangerous to interpret motifs seen in projections if the ratio
n/p is not large enough.

Taking into account the results presented one should investigate many recent scientific
discoveries in various areas which relied on the analysis of high dimensional datasets. This
can be easily done by (i) generating a number of artificial datasets similar to the dataset
under study, for instance, with the same number of variables and observations, or with
equal means and variances, (ii) studying those artificial datasets in the same manner as
the original data, (iii) comparing the results. One example of the application of this
strategy is presented next, but others could be given.

2.3 Example

In this example we consider again the colon cancer microarray dataset and assess the
performance of several outlier detecting methods recently proposed and advertised as ap-
propriate for high dimensional datasets (there is an extensive literature about the out-
liers of this dataset, see Shieh & Hung, 2009, and the references therein). The meth-
ods considered are the ROBPCA of Hubert et al. (2005), three methods proposed in
Filzmoser, Maronna & Werner (2008), denominated by the authors as PCOUT, SIGN1
and SIGN2, and the method proposed in Shieh & Hung (2009), referred to as SH. More
details about this example are provided as Supplementary Material.

We first concluded that all the methods point out some observations as outliers (ROBPCA:
5 normal and 10 tumor; PCOUT: 1 normal and 6 tumor; SIGN1: 7 normal and 21 tu-
mor; SIGN2: 4 normal and 8 tumor; SH: 3 normal and 5 tumor), unfortunately they are
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unanimous only about two cases (one normal and one tumor).

In order to show that the flagged outliers may well be illusions created by the high dimen-
sionality, we simulated 500 datasets with multivariate normal distribution but similar to
the original colon cancer dataset (that is, with two groups, same number of variables and
observations, same means and covariances per group). We then applied the five outlier
detecting methods to each dataset and registered the number of outliers detected. The
median number of detections observed were the following: in the group of 22 observations,
ROBPCA: 6, PCOUT: 3, SIGN1: 8, SIGN2: 1, SH: 2, and in the group of 40 observations,
ROBPCA: 12, PCOUT: 4, SIGN1: 17, SIGN2: 2, SH: 2. These figures are far too large
than would be anticipated and are similar to the number of outliers “detected” in the real
data. We must analyze the results deeper.

All the methods are calibrated at the normal, meaning that the probability of declaring an
observation from a normal distribution as an outlier, is pre-specified at a certain level, α. In
this case α = 2.5% for all the methods and both the real and simulated data. According to
this definition, the number of outliers detected in a sample of n observations from a normal
distribution follows a binomial(n, α) distribution. Therefore, we expect that the sample
containing the number of outliers found in each of the simulated datasets to behave as a
sample with 500 observations from a binomial(40,0.025) or a binomial(22,0.025). From now
on we refer only to the part of the simulation with n = 40, as the results and conclusions
from the other part (n = 22) were similar.

The plots in the left column of Figure 4 show the observed frequency distributions of the
number of outliers detected with n = 40 and all the variables (p = 2000) included. The
’+’ symbol in the plots indicate the expected frequencies under the binomial(40,0.025)
distribution. All the observed frequencies are very different from the expected frequencies.
We may conclude that the detection methods are not working as they should, especially
the first three, ROBPCA, PCOUT and SIGN1, and are probably providing misleading
results also for the real data.

We are convinced that the responsibility for the failure of the outlier detection methods
can be ascribed, at least partially, to the high dimensionality of the data. To support this
claim we repeated the simulation with normal data for a much smaller number of variables.
The illustration described in Figure 3 shows that p = 10 may already be too large when
n = 40. Then we have selected randomly p = 5 variables from the original 2000. The plots
with the number of outliers detected are shown on the right column in Figure 4.

We conclude that, except for the PCOUT method, all the observed frequencies have moved
closer to the expected frequencies and in the case of ROBPCA and SIGN1 there is in fact
a fantastic recovery. In this low dimensional situation all the five methods but one are in
agreement and doing more or less close to what they are supposed to do.

As we wondered what could possibly justify the observed behaviour of the five methods
we looked into the algorithmic details of each method and can then add the following
explanation for the three types of behaviour observed.

Methods that work fine in low dimensions and fail in high dimensions (ROBPCA and
SIGN1): when p ≥ n both methods work internally with the data rotated to its proper
subspace (of dimension n−1) and then look for projections showing outliers. But, an easy
application of Theorem 2 to one-dimensional projections shows that (as long as p ≥ n− 1)
there is at least one projection where each and every observation sticks out from the
remaining, which are projected all to the same point. This makes the usual criterion based
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Figure 4: Results of the detection of outliers by various methods (ROBPCA, PCOUT,
SIGN1, SIGN2 and SH, see text for details) in 500 simulated multivariate normal data sets
with n = 40 observations and p = 2000 variables (left) and p = 5 variables (right). The
’+’ signs represent expected frequencies under a binomial(40,0.025) distribution.
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on robust z-scores (standardized observations using the median and the median absolute
deviation in place of the mean and the standard deviation) or the more sophisticated
Stahel–Donoho outlyingness measure (for each observation this is the maximum of all
possible robust z-scores of that observation, taken along all possible projections) completely
useless. When the number of variables is small (p ≪ n) there are no longer such “arbitrary”
projections and both methods work.

Methods that work fine in low and high dimensions (SIGN2 and SH): SIGN2 is similar to
SIGN1, and SH is similar to ROBPCA. However, in both cases a dimension reduction by
principal components is the first step of the procedures. This is then followed by outlier
detection in the reduced space (the number of principal components to retain is chosen by
fixing a proportion of explained variance, in the case of SIGN1, or by an automatic selection
method based on the scree plot, in the case of SH). By bringing the high dimensional
situation to the usual p ≪ n the difficulties described above are avoided, and therefore the
methods work as expected no matter the dimensionality.

Method with problems both in high and low dimensions (PCOUT): according to Filzmoser, Maronna & Werner
(2008), PCOUT was designed to work in high dimension cases. This explains why it does
not work very well in low dimensions. However, in the high dimensional situation, the
method uses robust versions of the Mahalanobis distance, which, in the light of Theorem
1 is very dangerous, and may explain the problems encountered.

This example clearly shows that knowledge of the geometric properties of high dimensional
data, in particular the results given in this paper, is of crucial importance for the correct
development of methods to deal with this type of data.

3 Conclusions

New technologies are great in providing floods of data full of information and potential
knowledge, but the extraction of such information can often prove very difficult. High
dimensional spaces are typical in revealing such difficulties that mathematicians label curse
of dimensionality. In the present work we focus on spaces where the number of variables (p)
is at least the number of observations (n), a case that occurs, in statistical practice, mostly
within the high dimensional data framework. We look at the behaviour of the Mahalanobis
distance and the idea of projection, so essentials in the analysis of multivariate data.

When p ≥ n − 1 we prove that, the Mahalanobis distance becomes degenerated and its
known distance properties are lost. Under the same restriction it is confirmed that the
idea of projection loses interest and becomes mostly useless. These conclusions imply that
many procedures for analyzing data will not work in these spaces.

Although we have seen users insisting in using artifacts to analyze this kind of data,
it seems that they are not aware of the geometric complexities of spaces under these
conditions. Disclosing what happens to the Mahalanobis distance and to the usual system
of projections we gain insight into the geometric properties of those spaces and hopefully
contribute to: (i) prevent unconscious applications of inadequate methods and (ii) help to
devise new methods where those geometric properties have to be taken into account.

Having said this, it should be understood that we are not suggesting that traditional statis-
tical methods are not worthwhile and their use should be abandoned when analyzing high
dimensional data. On the contrary, we consider that this formidable source of statistical
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knowledge should not be forgotten but used properly. To allow traditional methods to
operate one first step towards reducing the dimensionality of the data should be given. For
dimensionality reduction to be achieved one can think of a number of techniques including
a panoply of variable selection and regularization procedures.
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Appendix

Definitions and notation

Definition 1 (notation) Data matrix (n× p): X =





xT
1

· · ·
xT
n



 = (x1 · · ·xn)
T .

Definition 2 (points in general position) The p-dimensional observations in the (n×
p) data matrix X are said to be in general position if X has maximal rank, that is, if
rank(X) = min(p, n). This property holds with probability one for continuous variables.

Definition 3 (further notation) Mean of X (n× 1): x =
∑n

i=1
xi/n.

Centered data matrix (n× p): Xc = (x1 − x · · ·xn − x)T =
(

In − v1v
T
1 /n

)

X (vx denotes a
vector with all its elements equal to x).

Covariance matrix of X (p× p): S =
∑n

i=1
(xi − x)(xi − x)T/(n− 1) = XT

c Xc/(n− 1). If
X is in general position then rank(S) =rank(Xc) = min(p, n− 1).

Standardized data matrix (n × p): Z = XcS
−1/2, where S−1/2 is any square root of S−1

(which means that S−1/2S−1/2 = S−1).

Mahalanobis distance between an observation, xi, and x: dxi,x̄ =
{

(xi − x̄)TS−1(xi − x̄)
}1/2

.

Mahalanobis distance between two observations, xi and xj: dxi,xj
=

{

(xi − xj)
TS−1(xi − xj)

}1/2
.

Matrix D (n× n):

D = XcS
−1XT

c = (n− 1)Xc(X
T
c Xc)

−1XT
c = ZZT , (1)

where dij = (xi − x)TS−1(xj − x). Note that d2xi,x
= dii and d2xi,xj

= dii + djj − 2 dij.

Augmented data matrix (p× (n + 1)): Xd =
[

v1 Xc

]

, which verifies

Xd(X
T
d Xd)

−1XT
d = H =

D

n− 1
+

v1v
T
1

n
, (2)

where H is the well known “hat matrix” (Hoaglin & Welsch, 1978).
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Main results

Theorem 1 For every dataset with n points, x1, . . . , xn (in general position), and p ≥ n−1
variables we have that: (i) dxi,x̄ = (n − 1) n−1/2, for every i = 1, . . . , n, and (ii) dxi,xj

=

{2(n− 1)}1/2 for every i 6= j = 1, . . . , n.

Proof: For p > n − 1, S is singular and must be replaced by a generalized inverse (S−).
This is equivalent to reducing the number of variables to n − 1 (e.g., the standardized
non-trivial principal components). Therefore we only have to prove the p = n− 1 case.

In that case, Xc has dimension n× (n−1) and rank n−1, whereas Xd has dimension n×n
and rank n, so it can be inverted, resulting in

H = Xd(X
T
d Xd)

−1XT
d = XdX

−1
d (XT

d )
−1XT

d = I =
D

n− 1
+

v1v
T
1

n
,

which is equivalent to

D = (n− 1)

(

I −
v1v

T
1

n

)

. (3)

That is, dii = (n−1) (1− 1/n) = (n−1)2/n, for all i, which proves (i). On the other hand,
from (3), for any i 6= j, dij = −(n− 1)/n, therefore

d2xi,xj
= dii + djj − 2 dij = 2

(n− 1)2

n
+ 2

n− 1

n
= 2 (n− 1),

which proves (ii).

Theorem 1 (extra results) For every dataset with n points, x1, . . . , xn, and p vari-
ables we have that: (iii) dxi,x̄ ≤ (n − 1) n−1/2, for every i = 1, . . . , n, and (iv) dxi,xj

≤

{2(n− 1)}1/2 for every i 6= j = 1, . . . , n.

Proof: (iii) Equation (2) writes hij = dij/(n − 1) + 1/n, and applying the well known
result (Hoaglin & Welsch, 1978), 0 ≤ hii ≤ 1, the conclusion that dii ≤ (n− 1)2/n follows
immediately (this is a short alternative proof of Theorem 2.1 in Gath & Hayes, 2006).

(iv) Define T = I−H and check that T is symmetric and idempotent. Consider the ith and
jth row (or column) vectors of T , ti and tj , with i 6= j. Then tTi tj = −hij and tTi ti = 1−hii

(we need the assumption that hii < 1, for all i, which is not restrictive, because the cases
where hii = 1 are considered in (ii)). Let β be the angle between ti and tj, then

cos β =
tTi tj

(tTi ti)
1/2 (

tTj tj
)1/2

= −
hij

(1− hii)
1/2 (1− hjj)

1/2
,

implying that − (1− hii)
1/2 (1− hjj)

1/2 ≤ hij ≤ (1− hii)
1/2 (1− hjj)

1/2. Considering this

result and the inequality
{

(1− hii)
1/2 − (1− hjj)

1/2
}2

≥ 0, it follows that

0 ≤ 1− hii + 1− hjj − 2 (1− hii)
1/2 (1− hjj)

1/2 ≤ 1− hii + 1− hjj + 2 hij,

which is equivalent to hii +hjj − 2 hij ≤ 2. Finally, simple manipulations of the definitions
yield

d2xi,xj
= dii + djj − 2 dij = (n− 1)(hii + hjj − 2 hij) ≤ 2(n− 1).
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Theorem 2 For every dataset with n points and p ≥ n − 1 variables, X, and every
non-singular two dimensional arrangement of n points (Y ) it is always possible to find
(explicitly) an orthogonal projection of X which is “similar” to Y . More precisely, given X
and Y , there is an orthogonal transformation, characterized by the p× 2 matrix Q, whose
columns are orthonormal vectors, such that XQ = Y ∗, where Y ∗ is an affine transformation
of Y (that is, Y ∗ = Y A + v1b

T , for some non-singular 2 × 2 matrix A and some two
dimensional vector b).

Proof: Without loss of generality we assume that Y (n × 2) is such that y = v0 and
SY = Y TY/(n− 1) = I2. As in the proof of Theorem 1 we need to consider only the case
p = n− 1, for which the covariance matrix of X , S, is invertible. Let Z = XcS

−1/2, be the
standardized data matrix, and consider the (n−1)×2 matrix U defined by U = ZTY/(n−1).
We show next that (i) the columns of U are orthonormal vectors, and (ii) Y = ZU .

(i) UTU = Y TZZTY/(n − 1)2 = Y TDY/(n − 1)2 = Y T
(

In − v1v
T
1 /n

)

Y/(n − 1) =
Y T
c Yc/(n − 1) = I2, which follows from equation (3) and by the assumption that Y is

standardized.

(ii) ZU = ZZTY/(n−1) = DY/(n−1) =
(

In − v1v
T
1 /n

)

Y = Yc = Y , for the same reasons.

The next step is to rewrite (ii) in terms of X or, equivalently, in terms of Xc, Y =
ZU = XcS

−1/2U . Replacing, in the last equality, the matrix S−1/2U by its singular value
decomposition, S−1/2U = V1LV2, where the columns of V1 (p × 2) and V2 (2 × 2) are
orthonormal and L is a 2× 2 diagonal matrix, leads to Y = XcV1LV2, which is equivalent
to Y V T

2 L−1 = XcV1. Therefore, and concluding the proof, Q = V1, A = V T
2 L−1 and

b = V T
1 x.

Remark 1 The two-dimensional projections are usually the most interesting to consider,
but the theorem could be generalized easily to projections on a subspace of arbitrary dimen-
sion, k = 1, . . . , n− 2. The case k = 1 would contain the “piling effect” as a special case,
and also the curious case of projections where all but one point (which can be any of the n
points) coincide.

Remark 2 The key to prove both theorems is the fact that H = In for p ≥ n− 1.

Remark 3 The plots in Figure 2, produced with the formulas given in this theorem, illus-
trate the kind of “similarity” between Y and Y ∗ that can be obtained when p ≥ n − 1, no
matter the data, and that can be described as perfect “similarity”. On the contrary, in the
cases considered in Figure 3 where p < n− 1, perfect “similarity” is no longer possible. To
produce plots as “similar” as possible to Y we used a least squares criterion and look for
the transformation, XQ = Ŷ ∗, minimizing ‖Y ∗ − Ŷ ∗‖, concluding that U must be replaced

by U =
(

ZTZ
)

−1
ZTY/(n− 1) (all the other formulas are unchanged).
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Supplementary material: Example materials and methods

The data used in this example, described in Alon et al. (1999), were downloaded from the
Princeton University Gene Expression Project database
http://genomics-pubs.princeton.edu/oncology/ affydata/index.html.
The data were then imported into R (R Development Core Team, 2012) where all the com-
putations were performed. The only preprocessing applied was a log2 transform of the full
data matrix (following Shieh & Hung, 2009).

The data matrix has 62 rows (samples or cases) and 2000 columns (genes). The 62 cases
are divided into two groups, the normal tissue samples (22, labeled N. . . ) and the tumor
samples (40, labeled T. . . ).

The purpose of the example is to assess the performance of some outlier detecting meth-
ods recently proposed and advertised as appropriate for high dimensional datasets. The
methods considered are the ROBPCA of Hubert et al. (2005), three methods proposed
in Filzmoser, Maronna & Werner (2008), denominated by the authors as PCOUT, SIGN1
and SIGN2, and the method proposed in Shieh & Hung (2009), referred to as SH.

In the application of these methods we have used the following implementations: function
PcaHubert, from package rrcov, with default settings, for ROBPCA; functions pcout,
sign1 and sign2 from package mvoutlier, all with their default settings; and the script
written and made available by the authors for SH (again with default settings, see Shieh & Hung,
2009).

Each method was applied to each group separately, and the outliers detected were in
number as referred to in the main text. To complement that information we provide here
the labels of those outlying observations:

ROBPCA: N8 N9 N12 N34 N36 / T2 T4 T5 T6 T9 T12 T19 T25 T34 T37;

PCOUT: N12 / T5 T30 T33 T36 T37 T39;

SIGN1: N3 N8 N9 N10 N12 N29 N34 / T2 T5 T6 T9 T10 T12 T17 T18 T19 T20 T21 T25 T26 T28 T29
T30 T31 T32 T34 T37 T38;
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SIGN2: N8 N9 N12 N34 / T2 T5 T6 T9 T12 T29 T32 T37;

SH: N8 N12 N34 / T2 T30 T33 T36 T37.

The Monte Carlo simulation described in the main text was performed with the following
scripts:

###

### This script simulates the detection of outliers using the ROBPCA method of Hubert et al (2009),

### It requires library rrcov

### t(colon.orig) contains the colon data matrix (after the log(,2) transformation

### new.y contains indication of the groups (1 for normal and 2 for tumor)

### The results are stored in the vectors out22.h and out40.h

###

require(rrcov)

### group principal components and means of the original dataset

### (to be replicated in the simulated data)

pca.cdI<-prcomp(t(colon.orig)[new.y==1,])

pca.cdII<-prcomp(t(colon.orig)[new.y==2,])

mean.1<-colMeans(t(colon.orig[,new.y==1]))

mean.2<-colMeans(t(colon.orig[,new.y==2]))

set.seed(200)

outs22.h<-rep(0,500)

outs40.h<-rep(0,500)

for (i in 1:500){

auxX1<-mvrnorm(22,mu=rep(0,21),Sigma=diag(21),empirical=T)%*%diag(pca.cdI$sdev[-22])

%*%t(pca.cdI$rot[,-22])

auxX2<-mvrnorm(40,mu=rep(0,39),Sigma=diag(39),empirical=T)%*%diag(pca.cdII$sdev[-40])

%*%t(pca.cdII$rot[,-40])

auxX1<-t(t(auxX1)+mean.1)

auxX2<-t(t(auxX2)+mean.2)

pca.auxX1<-PcaHubert(auxX1)

pca.auxX2<-PcaHubert(auxX2)

outs22.h[i]<-sum(pca.auxX1@flag==F)

outs40.h[i]<-sum(pca.auxX2@flag==F)

}

###

### This script simulates the detection of outliers using the methods of Filzmoser et al (2008)

### It requires library mvoutlier

### The results are stored in the vectors outs.cpII.22.f1, outs.cpII.22.f2, outs.cpII.22.f3,

### outs.cpII.40.f1, outs.cpII.40.f2, and outs.cpII.40.f3

###

set.seed(200)

outs.cpII.22.f1<-rep(0,500)

outs.cpII.22.f2<-rep(0,500)

outs.cpII.22.f3<-rep(0,500)

outs.cpII.40.f1<-rep(0,500)

outs.cpII.40.f2<-rep(0,500)

outs.cpII.40.f3<-rep(0,500)

for (i in 1:500){

auxX1<-mvrnorm(22,mu=rep(0,21),Sigma=diag(21),empirical=T)%*%diag(pca.cdI$sdev[-22])

%*%t(pca.cdI$rot[,-22])

auxX2<-mvrnorm(40,mu=rep(0,39),Sigma=diag(39),empirical=T)%*%diag(pca.cdII$sdev[-40])

%*%t(pca.cdII$rot[,-40])

auxX1<-t(t(auxX1)+mean.1)

auxX2<-t(t(auxX2)+mean.2)

outs.cpII.22.f1[i]<-sum(pcout(auxX1)$wfinal01==0)

outs.cpII.40.f1[i]<-sum(pcout(auxX2)$wfinal01==0)

outs.cpII.22.f2[i]<-sum(sign1(auxX1)$wfinal01==0)

outs.cpII.40.f2[i]<-sum(sign1(auxX2)$wfinal01==0)

outs.cpII.22.f3[i]<-sum(sign2(auxX1)$wfinal01==0)

outs.cpII.40.f3[i]<-sum(sign2(auxX2)$wfinal01==0)

}

###

### This script simulates the detection of outliers using the method of Shieh snd Hung (2009)
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### It requires the script of the authors (outlier) which in turn requires library rrcov

### The results are stored in the vectors out22.sh and out40.sh

###

set.seed(200)

outs22.sh<-rep(0,500)

outs40.sh<-rep(0,500)

grupos<-c(rep(1,22),rep(2,40))

for (i in 1:500){

auxX1<-mvrnorm(22,mu=rep(0,21),Sigma=diag(21),empirical=T)%*%diag(pca.cdI$sdev[-22])

%*%t(pca.cdI$rot[,-22])

auxX2<-mvrnorm(40,mu=rep(0,39),Sigma=diag(39),empirical=T)%*%diag(pca.cdII$sdev[-40])

%*%t(pca.cdII$rot[,-40])

auxX1<-t(t(auxX1)+mean.1)

auxX2<-t(t(auxX2)+mean.2)

auxX<-rbind(auxX1,auxX2)

res.out<-outlier(auxX,grupos)

outs22.sh[i]<-sum(grupos[res.out]==1)

outs40.sh[i]<-sum(grupos[res.out]==2)

}

The results when p = 2000 (summarized with table()) were the following:

outs40.h

5 6 7 8 9 10 11 12 13 14 15 16 17

2 4 10 18 30 44 67 97 118 76 27 6 1

outs22.h

2 3 4 5 6 7 8

2 11 75 127 213 68 4

outs.cpII.40.f1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 38 75 73 79 69 48 49 22 21 7 6 3 1 1

outs.cpII.22.f1

0 1 2 3 4 5 6 7 8 9

27 83 92 101 85 51 34 18 8 1

outs.cpII.40.f2

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

4 3 9 28 35 74 74 90 76 40 34 18 12 1 1 1

outs.cpII.22.f2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 17

1 6 17 42 58 99 94 79 50 27 14 6 4 2 1

outs.cpII.40.f3

0 1 2 3 4 5 6 7

106 131 118 66 47 18 11 3

outs.cpII.22.f3

0 1 2 3 4 5

115 142 123 76 32 12

outs40.sh

0 1 2 3 4 5 6 7

55 121 149 97 51 19 6 2

outs22.sh

0 1 2 3 4 5 6

63 133 142 94 53 13 2

For p = 5, the 5 variables were selected randomly (with a call to function sample) and the
previous code was run after changing only the lines applying the methods (for instance,
pca.auxX1< −PcaHubert(auxX1[,xvar]), where xvar contains the labels of the selected
five variables). The results were the following:

outs40.h

0 1 2 3 4 5 6 7 8

61 109 120 99 53 30 11 11 6

outs22.h
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0 1 2 3 4 5 6 7 8

34 62 120 152 77 41 10 3 1

outs.cpII.40.f1

0 1 2 3 4 5 6 7 8 9 10 11 12

1 16 33 44 55 73 79 89 46 30 22 8 4

outs.cpII.22.f1

0 1 2 3 4 5 6 7

11 52 67 116 106 91 41 16

outs.cpII.40.f2

0 1 2 3 4 5 6 7 8 9

88 151 122 69 41 19 4 3 1 2

outs.cpII.22.f2

0 1 2 3 4 5 6 7 9

145 143 109 48 29 18 6 1 1

outs.cpII.40.f3

0 1 2 3 4 5 6 7 9

62 113 124 111 49 22 12 6 1

outs.cpII.22.f3

0 1 2 3 4 5 6 7

114 134 136 70 36 6 3 1

outs40.sh

0 1 2 3 4 5 6 7

52 144 115 114 52 20 2 1

outs22.sh

0 1 2 3 4 5 6 7

46 131 135 100 61 22 4 1
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