

بسم الله الرحمن الرحيم

User Conversion Prediction in Display Advertisements

Mohammadreza Rezaei

Supervised by Hamid R. Rabiee

Data Science & Machine Learning Lab (DML) Sharif University of Technology

Mar 2021

1.Introduction

- **2.Related Works**
- **3.Proposed Method**
- **4.Experiments**
- 5.Future Work

Introduction

Display Advertising

- An easy and effective type of advertisement for businesses
- Creates significant revenues for big tech companies

D Real Time Bidding (RTB):

• A process that decides which ad will be shown to the user

Þ

D Click Through Rate (CTR) Prediction

- Predict probability of a click
 - On a certain ad
 - By a certain **user**
 - In a certain context
- Binary classification

Þ

Challenges:

- Imbalanced data
- High dimensionality and sparsity
- Cold Start
 - Ad Cold Start
 - User Cold Start
- Training speed
- Testing speed

2

4

• How to estimate click probability despite the mentioned challenges?

- Study the previous work on CTR prediction
- Explain the effect of these challenges on their performances
- Introduce a novel model for CTR prediction

Related Works

D Classical approaches

D Factorization Machines

Deep Methods

D Classical approaches:

D Factorization Machines

- Giant multi-hot vector
- **D** Each categorical feature is called a **Field** \rightarrow (n \approx 20)

Each category of a field is called a Feature

\rightarrow	(f :	> 1	00	k)
	\ ⁻	-		••/

		Fie	ld 1	_	-		Fie	ld 2	_	F	ield	3				Fie	ld 4			
0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0

2

4

D Field-Aware FM

$$\hat{y}_{FFM}(x) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j < v_{i,F_j}, v_{j,F_i} >$$

$$\hat{y}_{FwFM}(x) = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j < v_i, v_j > r_{F_i,F_j}$$

n

n

n

Field-Weighted FM (FFM)

D Bayesian FM

•Sparse FM

D Attentional FM $a_{i,j} = Softmax_{i,j} \{ \mathbf{h}^T ReLU(\mathbf{W}\mathcal{E}_{i,j} + \mathbf{b}) \}$

Deep CTR Prediction:

2

1

Introduction

Previous work

Related Work (Deep approaches)

Deep FM (Wide & Deep)

SAE (AFM + SAE)

Conclusion

Model	Weaknesses	Strengths
SVM (with polynomial kernel)	Too many parameters	Fast training
Piece-wise linear model	 Too many parameters Slow training Difficult to tune hyper-parameters 	 High flexibility Sparse Parameters Good interpretability
Factorization Machine	Low complexityLow interpretability	Works well with sparse data
Field-Aware FM	 Too many parameters Prone to overfitting	 Modeling differences between fields
Field-Weighted FM	Low complexity	 Modeling differences between fields Less parameters
Bayesian FM	 Intractable inference Wrong gaussian assumption 	 Balance of exploration and exploitation
Sparse FM	 Intractable inference Approximate Laplace distribution 	More interpretabilityMore sparsity
1 Introduction 2 Previous work	3 Proposed Method 4 Experiments	5 Conclusion 17/45

Conclusion

Model	Weaknesses	Strengths
Attentional FM	Possible overfittingNeed to regularize	More complexityMore interpretability
Deep CTR prediction model	Need for Ad imagePossible overfitting	 Models higher degree interactions More generalization when provided enough data
Deep FM	Too many hyper-parametersLow interpretability	 Models higher degree interactions No bias in high or low degree interactions
Wide and Deep	Needs feature engineeringToo many parameters	Fast implementationMore complexity
ASAE	Too many parametersPossible overfitting	More complexityMore parameter sharing

(1)

2)

3

4

Proposed Method

Different embedding sizes for different fields

D Compute interactions via neural networks

Combine interactions and first order features using another neural network

D Loss function:

Binary crossentropy

Weight each class by reversed ratio of their samples

 $LogLoss(y, \hat{y}) = -y \log(\hat{y}) W_{Click} - (1-y) \log(1-\hat{y}) (1-W_{Click})$

Proposed Method

	Better data modeling	Class imbalance	High dimensionality	Cold start	Training speed	Testing speed
Variant- dimensional embeddings			Reduce unnecessary parameters – Avoid overfitting	Effective embeddings can help reduce the cold start problem	Fewer parameters easier the learning process	Less computation, faster prediction
Use MLP to compute interactions	Extract more complex interactions			Take advantage of dense embedding spaces		Fast implementations for MLPs exist
Multi- dimensional interactions	Interactions can have more valuable information					
Combine interactions and embeddings	Both lower order and higher order features can help the classification			Without higher order features, lower order features can help	Gradient from different paths speed up learning process of the embeddings	
Use class weighting		Consistent decision boundary and deny majority class bias				
1 Ir	troduction 2	Previous work 3	Proposed Method	Experiments 5	Conclusion	24/45

Experiments

Datasets

D Outbrain dataset

•+87M records

Unbalanced (19% clicked)+40 fields (+100M features)

Outbrain preprocessed

•87M records

- •Unbalanced (19% clicked)
- •12 fields (~32K features)

Datasets

Criteo dataset

- •+45M records
- •Unbalanced (26% clicked)
- •26 categorical fields (+33M features)
- •12 integer features
- ⊡ Criteo-22
 - •+45M records
 - •Unbalanced (26% clicked)
 - •22 categorrical fields (~2.7M features)

Criteo-21

- •+45M records
- •Unbalanced (26% clicked)
- •21 categorrical fields (~569K features)

⊡ Criteo-20

- •+45M records
- •Unbalanced (26% clicked)
- •20 categorrical fields (~283K features)

Experiments

D Precision, Recall, F1

S Area Under ROC Curve (AUC)

Previous work

4

Dropout C

•Embedding parameters

Interaction network parameters

•Head network parameters

L2-Regularization

•Embedding parameters

Interaction network parameters

•Head network parameters

Interpretation of embedding spaces

D Outbrain dataset

(A close look at the embedding spaces)

(Used T-SNE algorithm for visualization)

2

1

D Interaction dimension

Head Network layers and # of neurons per layer (Width)

Introduction

Þ

D L2-Reg on embedding parameters

L2-Reg on interaction network parameters

L2-Reg on head network parameters

D Dropout on embedding parameters

36/45

Dropout on interaction network parameters

1

Dropout on head network parameters

Outbrain preprocessed dataset

Method	AUC (%)
FM (k=9)	74.22
DeepFM (k = 10, Deep layers = [20, 20, 20])	72.27
DeepFM (k = 10, Deep layers = [100, 100, 100])	73.00
DeepFM (k = 10, Deep layers = [400, 400, 400])	73.44
Proposed	74.13

2

4

D Criteo-22 dataset

Method	AUC (%)	Precision	Recall	F1
FM (k=5)	75.41	0.5655	0.3458	0.4292
FM (k=10)	74.75	0.5489	0.3542	0.4306
FM (k=40)	72.38	0.5012	0.3720	0.4270
FM (k=100)	70.30	0.4692	0.3832	0.4219
Proposed	76.08	0.4307	0.7039	0.5344

2

4

D Criteo-21 dataset

Method	AUC (%)	Precision	Recall	F1
FM (k=5)	75.83	0.5877	0.3173	0.4121
FM (k=10)	75.49	0.5775	0.3249	0.4159
FM (k=40)	73.68	0.5360	0.3440	0.4191
FM (k=100)	71.71	0.5014	0.3508	0.4128
DeepFM (k = 10, Deep layers = [20, 20, 20])	74.85	0.3271	0.9181	0.4823
DeepFM (k = 10, Deep layers = [100, 100, 100])	76.01	0.3816	0.8251	0.5218
DeepFM (k = 10, Deep layers = [400, 400, 400])	76.24	0.4221	0.7334	0.5358
Proposed	76.70	0.4370	0.6994	0.5379
1 Introduction 2 Previous work 3 Proposed Method	4 Experimen	nts 5 Co	onclusion	41

Criteo-20 dataset

Method	AUC (%)	Precision	Recall	F1
FM (k=5)	75.57	0.5920	0.3035	0.4012
FM (k=10)	75.30	0.5822	0.3113	0.4056
FM (k=40)	73.62	0.5424	0.3293	0.4098
FM (k=100)	71.75	0.5062	0.3432	0.4090
DeepFM (k = 10, Deep layers = [20, 20, 20])	74.70	0.4285	0.6645	0.5210
DeepFM (k = 10, Deep layers = [100, 100, 100])	75.44	0.5594	0.3206	0.4076
DeepFM (k = 10, Deep layers = [400, 400, 400])	75.45	0.3364	0.9063	0.4907
Proposed	76.37	0.4276	0.6861	0.5344
1 Introduction 2 Previous work 3 Proposed Method	Exporimon		nclusion	42

Future Work

• Further work:

Find a way for the model to explore at uncertain conditions and exploit at confident conditions (exploration / exploitation tradeoff)
Deploy and evaluate proposed method in online settings
Provide stable and fast implementation

4

Thank You!

Any Questions?

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifers," in *Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT'92)*, D. Haussler, Ed. Pittsburgh, PA, USA: ACM Press, July 1992, pp. 144–152.

[2] K. Gai, X. Zhu, H. Li, K. Liu, and Z. Wang, "Learning piece-wise linear models from large scale data for ad click prediction." *CoRR*, vol. abs/1704.05194, 2017.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *roceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.

[4] Y. Xiao, Z. Wei, and Z. Wang, "A limited memory bfgs-type method for large-scale unconstrained optimization." *Comput. Math. Appl.*, vol. 56, no. 4, pp. 1001–1009, 2008.

[5] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, "Web-scale bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine." in *ICML*, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 13–20.

[6] S. Rendle, "Factorization Machines," in *Proceedings of the 2010 IEEE International Conference on Data Mining*, ser. ICDM '10. IEEE, Dec. 2010, pp. 995–1000.

[7] Y.-C. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, "Field-aware factorization machines for ctr prediction." in *RecSys*, S. Sen, W. Geyer, J. Freyne, and P. Castells, Eds. ACM, 2016, pp. 43–50.

[8] Y. Juan, D. Lefortier, and O. Chapelle, "Field-aware factorization machines in a real-world online advertising system." *CoRR*, vol. abs/1701.04099, 2017.

[9] J. Pan, J. Xu, A. L. Ruiz, W. Zhao, S. Pan, Y. Sun, and Q. Lu, "Field-weighted factorization machines for click-through rate prediction in display advertising." *CoRR*, vol. abs/1806.03514, 2018.

[10] S.-T. L. Freudenthaler, C. and S. Rendle, "Bayesian factorization machines," in *In Proceedings of the NIPS Workshop on Sparse Representation and Lowrank Approximation*, 2011.

[11] Z. Pan, E. Chen, Q. Liu, T. Xu, H. Ma, and H. Lin, "Sparse factorization machines for click-through rate prediction." in *ICDM*, F. Bonchi, J. Domingo-Ferrer, R. Baeza-Yates, Z.-H. Zhou, and X. Wu, Eds. IEEE Computer Society, 2016, pp. 400–409.

[12] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, "Attentional factorization machines: Learning the weight of feature interactions via attention networks." *CoRR*, vol. abs/1708.04617, 2017.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks from Overftting," *J. Mach. Learn. Res.*, vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[14] A. N. Tikhonov, "On the stability of inverse problems," in *Dokl. Akad. Nauk SSSR*, vol. 39, 1943, pp. 195–198
[15] J. Chen, B. Sun, H. Li, H. Lu, and X.-S. Hua, "Deep ctr prediction in display advertising." in *ACM Multimedia*, A. Hanjalic, C. Snoek, M. Worring, D. C. A. Bulterman, B. Huet, A. Kelliher, Y. Kompatsiaris, and J. Li, Eds. ACM, 2016, pp. 811–820.

[16] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2015, cite arxiv:1512.03385Comment: Tech report.

[17] V. Nair and G. E. Hinton, "Rectifed linear units improve restricted boltzmann machines." in *ICML*, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 807–814.

[18] C. Guo and F. Berkhahn, "Entity embeddings of categorical variables." CoRR, vol. abs/1604.06737, 2016.

[19] S. loffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," 2015, cite arxiv:1502.03167.

[20] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, "Deepfm: A factorization-machine based neural network for ctr prediction." in *IJCAI*, C. Sierra, Ed. ijcai.org, 2017, pp. 1725–1731.

[21] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, and Z. Dong, "Deepfm: An end-to-end wide and deep learning framework for ctr prediction." *CoRR*, vol. abs/1804.04950, 2018.

[22] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah, "Wide and deep learning for recommender systems." in *DLRS*@*RecSys*, A. Karatzoglou, B. Hidasi, D. Tikk, O. S. Shalom, H. Roitman, B. Shapira, and L. Rokach, Eds. ACM, 2016, pp. 7–10.

[23] Q. Wang, F. Liu, S. Xing, and X. Zhao, "A new approach for advertising ctr prediction based on deep neural network via attention mechanism." *Comput. Math. Methods Medicine*, vol. 2018, pp. 8 056 541:1–8 056 541:11, 2018.

[24] D. H. Ballard, "Modular learning in neural networks." in *AAAI*, K. D. Forbus and H. E. Shrobe, Eds. Morgan Kaufmann, 1987, pp. 279–284.

[25] C. E. Shannon and W. Weaver, *The Mathematical Theory of Communication*. Urbana and Chicago: University of Illinois Press, 1949.

[26] M. Naumov, "On the dimensionality of embeddings for sparse features and data." *CoRR*, vol. abs/1901.02103, 2019. [27] A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou, "Mixed dimension embeddings with application to memoryefcient recommendation systems." *CoRR*, vol. abs/1909.11810, 2019.

[28] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, "Neural collaborative fitering," in *Proceedings of the 26th International Conference on World Wide Web*, ser. WWW '17. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, 2017, p. 173–182.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifer nonlinearities improve neural network acoustic models," in *Proc. icml*, vol. 30, no. 1. Citeseer, 2013, p. 3.

[30] L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," *Journal of Machine Learning Research*, vol. 9, pp. 2579–2605, 2008.