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Introduction 



Background 

 Display Advertising 

• An easy and effective type of advertisement for businesses 

• Creates significant revenues for big tech companies 
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Background 
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 Real Time Bidding (RTB): 

• A process that decides which ad will be shown to the user 
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Problem Definition 

 Click Through Rate (CTR) Prediction 

• Predict probability of a click 

• On a certain ad 

• By a certain user 

• In a certain context 

• Binary classification 
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Main challenges 

 Challenges: 

• Imbalanced data 

• High dimensionality and sparsity 

• Cold Start 

• Ad Cold Start 

• User Cold Start 

• Training speed 

• Testing speed 
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Contribution 

 How to estimate click probability despite the mentioned challenges? 

• Study the previous work on CTR prediction 

• Explain the effect of these challenges on their performances 

• Introduce a novel model for CTR prediction 
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Related Works 



Related Work 

 Classical approaches 

 Factorization Machines 

 Deep Methods 
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Related Work (Classical) 

 Classical approaches: 

•SVM 

 

 

•Piece-wise Linear 
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Related Work (Factorization Machines) 

 Factorization Machines 

 Giant multi-hot vector 

 Each categorical feature is called a Field → (n ≈ 20) 

 Each category of a field is called a Feature → (f > 100k) 
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Field 1 Field 2 Field 3 Field 4 

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 



Related Work (Factorization Machines) 

 Factorization Machines 
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k 

Cross features 

(interactions) 
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Related Work (Upgrades on Factorization Machines) 

 Field-Aware FM 

 

 Field-Weighted FM (FFM) 

 

 Bayesian FM 

•Sparse FM 

 Attentional FM 
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Related Work (Deep approaches) 

 Deep CTR Prediction: 
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Related Work (Deep approaches) 

 Deep FM (Wide & Deep) 

 

 ASAE (AFM + SAE) 
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Conclusion 

Model Weaknesses Strengths 

SVM (with polynomial kernel) • Too many parameters • Fast training 

Piece-wise linear model 

• Too many parameters 

• Slow training 

• Difficult to tune hyper-parameters 

• High flexibility 

• Sparse Parameters 

• Good interpretability 

Factorization Machine 
• Low complexity 

• Low interpretability 
• Works well with sparse data 

Field-Aware FM 
• Too many parameters 

• Prone to overfitting 
• Modeling differences between fields 

Field-Weighted FM • Low complexity 
• Modeling differences between fields 

• Less parameters 

Bayesian FM 
• Intractable inference 

• Wrong gaussian assumption 

• Balance of exploration and 

exploitation 

Sparse FM 
• Intractable inference 

• Approximate Laplace distribution 

• More interpretability 

• More sparsity 
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Conclusion 

Model Weaknesses Strengths 

Attentional FM 
• Possible overfitting 

• Need to regularize 

• More complexity 

• More interpretability 

Deep CTR prediction model 
• Need for Ad image 

• Possible overfitting 

• Models higher degree interactions 

• More generalization when provided 

enough data 

Deep FM 
• Too many hyper-parameters 

• Low interpretability 

• Models higher degree interactions 

• No bias in high or low degree 

interactions 

Wide and Deep 
• Needs feature engineering 

• Too many parameters 

• Fast implementation 

• More complexity 

ASAE 
• Too many parameters 

• Possible overfitting 

• More complexity 

• More parameter sharing 
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Proposed Method 



Proposed Method 

 Different embedding sizes for different fields 
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Field 1 Field 2 Field 3 Field 4 

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 
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Proposed Method 

 Compute interactions via neural networks 
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Iij 

MLPij 

fi:                 fj: 

ei:               ej: 

Interaction between two fields: 



Proposed Method 

 Combine interactions and first order features using another neural network 
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Lower order features (embeddings) Higher order features (Interactions) 

Final output (probability of click) 
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Head Net 

σ 



Proposed Method 

 Loss function: 

• Binary crossentropy 

• Weight each class by reversed ratio of their samples 
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Proposed Method 
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Experiments 



Datasets 

 Outbrain dataset 

•+87M records 

•Unbalanced (19% clicked) 

•+40 fields (+100M features) 

 Outbrain preprocessed 

•87M records 

•Unbalanced (19% clicked) 

•12 fields (~32K features) 
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Datasets 

 Criteo dataset 

•+45M records 

•Unbalanced (26% clicked) 

•26 categorical fields (+33M features) 

•12 integer features 

 Criteo-22 

•+45M records 

•Unbalanced (26% clicked) 

•22 categorrical fields (~2.7M features) 
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 Criteo-21 

•+45M records 

•Unbalanced (26% clicked) 

•21 categorrical fields (~569K features) 

 Criteo-20 

•+45M records 

•Unbalanced (26% clicked) 

•20 categorrical fields (~283K features) 

 



Evaluation metrics 

 Precision, Recall, F1 

 Area Under ROC Curve (AUC) 
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Regularization techniques 

 Dropout 

•Embedding parameters 

•Interaction network parameters 

•Head network parameters 

 L2-Regularization 

•Embedding parameters 

•Interaction network parameters 

•Head network parameters 
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Interpretation of embedding spaces 

 Outbrain dataset 

(A close look at the embedding spaces) 

(Used T-SNE algorithm for visualization) 
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Hyper-parameter research 

 Interaction dimension 
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Hyper-parameter research 

 Head Network layers and # of neurons per layer (Width) 

 

 

 

 

 

 

 
 

             Outbrain           Criteo 
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Hyper-parameter research 

 L2-Reg on embedding parameters 
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Hyper-parameter research 

 L2-Reg on interaction network parameters 
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Hyper-parameter research 

 L2-Reg on head network parameters 
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Hyper-parameter research 

 Dropout on embedding parameters 
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Hyper-parameter research 

 Dropout on interaction network parameters 
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Hyper-parameter research 

 Dropout on head network parameters 
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Results 

 Outbrain preprocessed dataset 
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Method AUC (%) 

FM (k=9) 74.22 

DeepFM (k = 10, Deep layers = [20, 20, 20]) 72.27 

DeepFM (k = 10, Deep layers = [100, 100, 100]) 73.00 

DeepFM (k = 10, Deep layers = [400, 400, 400]) 73.44 

Proposed 74.13 



Results 

 Criteo-22 dataset 
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Method AUC (%) Precision Recall F1 

FM (k=5) 75.41 0.5655 0.3458 0.4292 

FM (k=10) 74.75 0.5489 0.3542 0.4306 

FM (k=40) 72.38 0.5012 0.3720 0.4270 

FM (k=100) 70.30 0.4692 0.3832 0.4219 

Proposed 76.08 0.4307 0.7039 0.5344 



Results 

 Criteo-21 dataset 
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Method AUC (%) Precision Recall F1 

FM (k=5) 75.83 0.5877 0.3173 0.4121 

FM (k=10) 75.49 0.5775 0.3249 0.4159 

FM (k=40) 73.68 0.5360 0.3440 0.4191 

FM (k=100) 71.71 0.5014 0.3508 0.4128 

DeepFM (k = 10, Deep layers = [20, 20, 20]) 74.85 0.3271 0.9181 0.4823 

DeepFM (k = 10, Deep layers = [100, 100, 100]) 76.01 0.3816 0.8251 0.5218 

DeepFM (k = 10, Deep layers = [400, 400, 400]) 76.24 0.4221 0.7334 0.5358 

Proposed 76.70 0.4370 0.6994 0.5379 



Results 

 Criteo-20 dataset 
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Method AUC (%) Precision Recall F1 

FM (k=5) 75.57 0.5920 0.3035 0.4012 

FM (k=10) 75.30 0.5822 0.3113 0.4056 

FM (k=40) 73.62 0.5424 0.3293 0.4098 

FM (k=100) 71.75 0.5062 0.3432 0.4090 

DeepFM (k = 10, Deep layers = [20, 20, 20]) 74.70 0.4285 0.6645 0.5210 

DeepFM (k = 10, Deep layers = [100, 100, 100]) 75.44 0.5594 0.3206 0.4076 

DeepFM (k = 10, Deep layers = [400, 400, 400]) 75.45 0.3364 0.9063 0.4907 

Proposed 76.37 0.4276 0.6861 0.5344 



Future Work 



Future Work 

 Further work: 

•Find a way for the model to explore at uncertain conditions and 

exploit at confident conditions (exploration / exploitation tradeoff) 

•Deploy and evaluate proposed method in online settings 

•Provide stable and fast implementation 
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Thank You! 

Any Questions? 
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