

بسم الله الرحمن الرحيم

User Conversion Prediction in Display Advertisements

Mohammadreza Rezaei

Supervised by Hamid R. Rabiee

Data Science & Machine Learning Lab (DML) Sharif University of Technology

Winter 2020

1.Introduction

- 2.Related Works
- **3.Proposed Method**
- **4.Experiments**
- **5.Future Work**

Introduction

Display Advertising

1

D Real Time Bidding (RTB):

•A process that decides which ad will be shown to the user

D Click Through Rate (CTR) Prediction

•Predict probability of a click:

•On a certain Ad

•By a certain User

•In a certain Page

• Sparse and High dimensional data:

Field 1					Field 2			Field 3			Field 4									
0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0

Challenges:

- Imbalanced data
- •High dimensionality
- •Sparsity
- •Cold Start
 - •Ad Cold Start
 - •User Cold Start

4

Related Works

D Classical approaches

D Factorization Machines

Deep Methods

Deep and Factorization Methods Combined

D Classical approaches:

•
$$y = g(\sum_{j=1}^m \sigma(u_j^T x) \eta(w_j^T x))$$

12/31

D Field-Aware FM

Field-Weighted FM

$$\hat{y}_{FFM}(x) = w. + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j < v_{i,F_j}, v_{j,F_i} >$$

$$\hat{y}_{FwFM}(x) = w. + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j < v_i, v_j > r_{F_i, F_j}$$

b

 η_w

b

а

η,

Bayesian FM

(Vj.)--(w; μ_0 μ_0 $f=1,\cdots,k$ •Sparse FM \hat{x}_{ij} $\mathcal{E}_{i,j} = (v_i \odot v_j) x_i x_j \quad \hat{y}_{AFM}(x) = w. + \sum_{i=1}^n w_i x_i + \mathbf{P}^T \sum_{i=1}^{n-1} \sum_{i=i+1}^n a_{i,j} \mathcal{E}_{i,j}$ $j=1,\cdots,p$ wo $i=1,\cdots,n$ μ_{w_0}, λ_{w_0} α $\alpha_0 \beta_0$ 2 4 Proposed Method Introduction Previous work Experiments Conclusion

Deep CTR Prediction:

5

Related Work (Deep + FM Approaches)

14/31

Deep FM (Wide & Deep)

SASAE (AFM + SAE)

Conclusion

Model	Weaknesses	Strengths			
SVM (with polynomial kernel)	 Too many parameters 	•Fast training			
Piece-wise linear model	Too many parametersSlow trainingDifficult to tune hyper-parameters	High flexibilitySparse ParametersGood interpretability			
Factorization Machine	Low complexityLow interpretability	•Works well with sparse data			
Field-Aware FM	•Lower complexity	Faster trainingMore shared weights			
Field-Weighted FM	 Lower complexity 	•Less parameters			

(1

2)

3

4

Conclusion

Model	Weaknesses	Strengths			
Bayesian FM	Intractable inferenceWrong normal assumption	•Balance of exploration and exploitation			
Sparse FM	 Intractable inference Approximate Laplace distribution 	More interpretabilityMore sparsity			
Attentional FM	Possible overfittingNeed to regularize	More complexityMore interpretability			
Deep CTR prediction model	Need for Ad imagePossible overfitting	 Models higher degree interactions More generalization when provided enough data 			
Deep FM (Wide & Deep)	Too many hyper-parametersLow interpretability	 Models higher degree interactions No bias in high or low degree interactions 			
1 Introduction 2 Previous work	3 Proposed Method 4 Experiments	5 Conclusion 16/31			

Proposed Method

Introduction

Different embedding sizes for different fields

19/31

D Compute interactions via two layer neural networks

Combine interactions and first order features using another layer of neural network

Dessible advantages:

- Lower complexity & Lower number of parameters
- Interpretability (Embeddings, Interactions)
- High parameter sharing (helps facing cold start)

4

Experiments

Dataset

Avazu dataset

•+80M records

•Unbalanced (17% clicked)•22 Fields (+1.7M features)

Small Avazu

- •+500k records
- •Balanced (50% clicked)
- •19 Fields (+11K features)

Cross-entropy and accuracy

Results

Effect of L2-Regularization (on embedding parameters)

D Final results:

Model	Accuracy(%)	Cross-entropy loss		
FM (k = 5)	67.6	1.64		
Proposed (Reg = 1)	68.4	0.61		

(1)

2

Future Work

D Further work:

- Compare with Factorization Machines and other key models
 Try other regularizations (Dropout / L1 / Batch Normalization)
 Deploy the model in an online setting
 Work on larger datasets
 Visualize embeddings and find out if they are informative
- •Check the most active interactions and try to interpret

2

Title	Time needed	Progress	Finishing time
Reading related papers	5 months	80%	Feb. 2020
Developing proposed model	2 months	25%	Mar. 2020
Work with real data	2 months	0%	May. 2020
Writing paper	2 months	0%	Jul. 2020
Writing thesis	3 months	35%	Aug. 2020

(1

2

Thank You!

Any Questions?

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A Training Algorithm for Optimal Margin Classifiers," p. 9, Jul. 1992.

[2] K. Gai, X. Zhu, H. Li, K. Liu, and Z. Wang, "Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction," arXiv:1704.05194 [cs, stat], Apr. 2017.

[3] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, "Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine," p. 8.

[4] S. Rendle, "Factorization Machines," in 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010, pp. 995–
 1000, doi: 10.1109/ICDM.2010.127.

[5] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, "Field-aware Factorization Machines for CTR Prediction," in Proceedings

of the 10th ACM Conference on Recommender Systems - RecSys '16, Boston, Massachusetts, USA, 2016, pp. 43–50, doi:

10.1145/2959100.2959134.

[6] J. Pan et al., "Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising," in Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW '18, Lyon, France, 2018, pp. 1349–1357, doi:

[7] Z. Pan, E. Chen, Q. Liu, T. Xu, H. Ma, and H. Lin, "Sparse Factorization Machines for Click-through Rate Prediction," in 2016 IEEE
16th International Conference on Data Mining (ICDM), Barcelona, Spain, 2016, pp. 400–409, doi: 10.1109/ICDM.2016.0051.

[8] C. Freudenthaler, L. Schmidt-Thieme, and S. Rendle, "Bayesian Factorization Machines," p. 5.

[9] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, "Attentional Factorization Machines: Learning the Weight of Feature

Interactions via Attention Networks," in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

Melbourne, Australia, 2017, pp. 3119–3125, doi: 10.24963/ijcai.2017/435.

[10] J. Chen, B. Sun, H. Li, H. Lu, and X.-S. Hua, "Deep CTR Prediction in Display Advertising," in Proceedings of the 2016 ACM on
 Multimedia Conference - MM '16, Amsterdam, The Netherlands, 2016, pp. 811–820, doi: 10.1145/2964284.2964325.

[11] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, "DeepFM: A Factorization-Machine based Neural Network for CTR Prediction," arXiv:1703.04247 [cs], Mar. 2017.