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Introduction 



Background 

 Display Advertising 
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Background 
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 Real Time Bidding (RTB): 

•A process that decides which ad will be shown to the user 



Problem Definition 

 Click Through Rate (CTR) Prediction 

•Predict probability of a click: 

•On a certain Ad 

•By a certain User 

•In a certain Page 

• Sparse and High dimensional data: 
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Field 1 Field 2 Field 3 Field 4 

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 
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Problem Definition 

 Challenges: 

•Imbalanced data 

•High dimensionality 

•Sparsity 

•Cold Start 

•Ad Cold Start 

•User Cold Start 
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Related Works 



Related Work 

 Classical approaches 

 Factorization Machines 

 Deep Methods 

 Deep and Factorization Methods Combined 
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Related Work (Classical) 

 Classical approaches: 

•SVM 

 

 

•Piece-wise Linear 
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Related Work (Factorization Machines) 

 Factorization Machines 
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k 

Cross features 

(interactions) 
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Related Work (Upgrades on Factorization Machines) 

 Field-Aware FM 

 

 Field-Weighted FM 

 

 Bayesian FM 

•Sparse FM 

 Attentional FM 
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Related Work (Deep approaches) 

 Deep CTR Prediction: 
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Related Work (Deep + FM Approaches) 

 Deep FM (Wide & Deep) 

 

 ASAE (AFM + SAE) 
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Conclusion 

Model Weaknesses Strengths 

SVM (with polynomial kernel) •Too many parameters •Fast training 

Piece-wise linear model 

•Too many parameters 

•Slow training 

•Difficult to tune hyper-parameters 

•High flexibility 

•Sparse Parameters 

•Good interpretability 

Factorization Machine 
•Low complexity 

•Low interpretability 
•Works well with sparse data 

Field-Aware FM •Lower complexity 
•Faster training 

•More shared weights 

Field-Weighted FM •Lower complexity •Less parameters 
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Conclusion 

Model Weaknesses Strengths 

Bayesian FM 
•Intractable inference 

•Wrong normal assumption 

•Balance of exploration and 

exploitation 

Sparse FM 
•Intractable inference 

•Approximate Laplace distribution 

•More interpretability 

•More sparsity 

Attentional FM 
•Possible overfitting 

•Need to regularize 

•More complexity 

•More interpretability 

Deep CTR prediction model 
•Need for Ad image 

•Possible overfitting 

•Models higher degree interactions 

•More generalization when provided 

enough data 

Deep FM (Wide & Deep) 
•Too many hyper-parameters 

•Low interpretability 

•Models higher degree interactions 

•No bias in high or low degree 

interactions 
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Proposed Method 



Proposed Method 

 Different embedding sizes for different fields 

18/31 

Field 1 Field 2 Field 3 Field 4 

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 
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Proposed Method 

 Compute interactions via two layer neural networks 
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Proposed Method 

 Combine interactions and first order features using another layer of 

neural network 
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σ 

First order features (embeddings) Second order features (Interactions) 

Final output (probability of click) 
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Proposed Method 

 Possible advantages: 

• Lower complexity & Lower number of parameters 

• Interpretability (Embeddings, Interactions) 

• High parameter sharing (helps facing cold start) 
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Experiments 



Dataset 

 Avazu dataset 

•+80M records 

•Unbalanced (17% clicked) 

•22 Fields (+1.7M features) 

 Small Avazu 

•+500k records 

•Balanced (50% clicked) 

•19 Fields (+11K features) 
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Results 

 Cross-entropy and accuracy 
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Results 

 Effect of L2-Regularization (on embedding parameters) 
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Results 

 Final results: 
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Model Accuracy(%) Cross-entropy loss 

FM (k = 5) 67.6 1.64 

Proposed (Reg = 1) 68.4 0.61 
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Future Work 



Future Work 

 Further work: 

•Compare with Factorization Machines and other key models 

•Try other regularizations (Dropout / L1 / Batch Normalization) 

•Deploy the model in an online setting 

•Work on larger datasets 

•Visualize embeddings and find out if they are informative 

•Check the most active interactions and try to interpret 
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Future Work 
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Title Time needed Progress Finishing time 

Reading related papers 5 months 80% Feb. 2020 

Developing proposed model 2 months 25% Mar. 2020 

Work with real data 2 months 0% May. 2020 

Writing paper 2 months 0% Jul. 2020 

Writing thesis 3 months 35% Aug. 2020 
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Thank You! 

Any Questions? 
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