
Factorization Machines

Steffen Rendle

Department of Reasoning for Intelligence

The Institute of Scientific and Industrial Research

Osaka University, Japan

rendle@ar.sanken.osaka-u.ac.jp

Abstract—In this paper, we introduce Factorization Machines
(FM) which are a new model class that combines the advantages
of Support Vector Machines (SVM) with factorization models.
Like SVMs, FMs are a general predictor working with any
real valued feature vector. In contrast to SVMs, FMs model all
interactions between variables using factorized parameters. Thus
they are able to estimate interactions even in problems with huge
sparsity (like recommender systems) where SVMs fail. We show
that the model equation of FMs can be calculated in linear time
and thus FMs can be optimized directly. So unlike nonlinear
SVMs, a transformation in the dual form is not necessary and
the model parameters can be estimated directly without the need
of any support vector in the solution. We show the relationship
to SVMs and the advantages of FMs for parameter estimation
in sparse settings.

On the other hand there are many different factorization mod-
els like matrix factorization, parallel factor analysis or specialized
models like SVD++, PITF or FPMC. The drawback of these
models is that they are not applicable for general prediction tasks
but work only with special input data. Furthermore their model
equations and optimization algorithms are derived individually
for each task. We show that FMs can mimic these models just
by specifying the input data (i.e. the feature vectors). This makes
FMs easily applicable even for users without expert knowledge
in factorization models.

Index Terms—factorization machine; sparse data; tensor fac-
torization; support vector machine

I. INTRODUCTION

Support Vector Machines are one of the most popular

predictors in machine learning and data mining. Nevertheless

in settings like collaborative filtering, SVMs play no important

role and the best models are either direct applications of

standard matrix/ tensor factorization models like PARAFAC

[1] or specialized models using factorized parameters [2], [3],

[4]. In this paper, we show that the only reason why standard

SVM predictors are not successful in these tasks is that they

cannot learn reliable parameters (‘hyperplanes’) in complex

(non-linear) kernel spaces under very sparse data. On the other

hand, the drawback of tensor factorization models and even

more for specialized factorization models is that (1) they are

not applicable to standard prediction data (e.g. a real valued

feature vector in R
n.) and (2) that specialized models are

usually derived individually for a specific task requiring effort

in modelling and design of a learning algorithm.

In this paper, we introduce a new predictor, the Factor-

ization Machine (FM), that is a general predictor like SVMs

but is also able to estimate reliable parameters under very

high sparsity. The factorization machine models all nested

variable interactions (comparable to a polynomial kernel in

SVM), but uses a factorized parametrization instead of a

dense parametrization like in SVMs. We show that the model

equation of FMs can be computed in linear time and that it

depends only on a linear number of parameters. This allows

direct optimization and storage of model parameters without

the need of storing any training data (e.g. support vectors) for

prediction. In contrast to this, non-linear SVMs are usually

optimized in the dual form and computing a prediction (the

model equation) depends on parts of the training data (the

support vectors). We also show that FMs subsume many of

the most successful approaches for the task of collaborative

filtering including biased MF, SVD++ [2], PITF [3] and FPMC

[4].

In total, the advantages of our proposed FM are:

1) FMs allow parameter estimation under very sparse data

where SVMs fail.

2) FMs have linear complexity, can be optimized in the

primal and do not rely on support vectors like SVMs.

We show that FMs scale to large datasets like Netflix

with 100 millions of training instances.

3) FMs are a general predictor that can work with any real

valued feature vector. In contrast to this, other state-of-

the-art factorization models work only on very restricted

input data. We will show that just by defining the feature

vectors of the input data, FMs can mimic state-of-the-art

models like biased MF, SVD++, PITF or FPMC.

II. PREDICTION UNDER SPARSITY

The most common prediction task is to estimate a function

y : Rn → T from a real valued feature vector x ∈ R
n to a

target domain T (e.g. T = R for regression or T = {+,−}
for classification). In supervised settings, it is assumed that

there is a training dataset D = {(x(1), y(1)), (x(2), y(2)), . . .}
of examples for the target function y given. We also investigate

the ranking task where the function y with target T = R can

be used to score feature vectors x and sort them according to

their score. Scoring functions can be learned with pairwise

training data [5], where a feature tuple (x(A),x(B)) ∈ D

means that x(A) should be ranked higher than x
(B). As the

pairwise ranking relation is antisymmetric, it is sufficient to

use only positive training instances.

In this paper, we deal with problems where x is highly

sparse, i.e. almost all of the elements xi of a vector x are

zero. Let m(x) be the number of non-zero elements in the

Fig. 1. Example for sparse real valued feature vectors x that are created from
the transactions of example 1. Every row represents a feature vector x(i) with
its corresponding target y(i) . The first 4 columns (blue) represent indicator
variables for the active user; the next 5 (red) indicator variables for the active
item. The next 5 columns (yellow) hold additional implicit indicators (i.e.
other movies the user has rated). One feature (green) represents the time in
months. The last 5 columns (brown) have indicators for the last movie the
user has rated before the active one. The rightmost column is the target –
here the rating.

feature vector x and mD be the average number of non-zero

elements m(x) of all vectors x ∈ D. Huge sparsity (mD ≪
n) appears in many real-world data like feature vectors of

event transactions (e.g. purchases in recommender systems)

or text analysis (e.g. bag of word approach). One reason for

huge sparsity is that the underlying problem deals with large

categorical variable domains.

Example 1 Assume we have the transaction data of a movie

review system. The system records which user u ∈ U rates

a movie (item) i ∈ I at a certain time t ∈ R with a rating

r ∈ {1, 2, 3, 4, 5}. Let the users U and items I be:

U = {Alice (A),Bob (B),Charlie (C), . . .}
I = {Titanic (TI),Notting Hill (NH), Star Wars (SW),

Star Trek (ST), . . .}

Let the observed data S be:

S = {(A,TI, 2010-1, 5), (A,NH, 2010-2, 3), (A, SW, 2010-4, 1),

(B, SW, 2009-5, 4), (B, ST, 2009-8, 5),

(C,TI, 2009-9, 1), (C, SW, 2009-12, 5)}

An example for a prediction task using this data, is to estimate

a function ŷ that predicts the rating behaviour of a user for an

item at a certain point in time.

Figure 1 shows one example of how feature vectors can

be created from S for this task.1 Here, first there are |U |
binary indicator variables (blue) that represent the active user

of a transaction – there is always exactly one active user in

each transaction (u, i, t, r) ∈ S, e.g. user Alice in the first one

(x
(1)
A = 1). The next |I| binary indicator variables (red) hold

the active item – again there is always exactly one active item

(e.g. x
(1)
TI = 1). The feature vectors in figure 1 also contain

indicator variables (yellow) for all the other movies the user

1To simplify readability, we will use categorical levels (e.g. Alice (A))
instead of numbers (e.g. 1) to identify elements in vectors wherever it makes
sense (e.g. we write xA or xAlice instead of x1).

has ever rated. For each user, the variables are normalized such

that they sum up to 1. E.g. Alice has rated Titanic, Notting Hill

and Star Wars. Additionally the example contains a variable

(green) holding the time in months starting from January,

2009. And finally the vector contains information of the last

movie (brown) the user has rated before (s)he rated the active

one – e.g. for x(2), Alice rated Titanic before she rated Notting

Hill. In section V, we show how factorization machines using

such feature vectors as input data are related to specialized

state-of-the-art factorization models.

We will use this example data throughout the paper for illus-

tration. However please note that FMs are general predictors

like SVMs and thus are applicable to any real valued feature

vectors and are not restricted to recommender systems.

III. FACTORIZATION MACHINES (FM)

In this section, we introduce factorization machines. We

discuss the model equation in detail and show shortly how

to apply FMs to several prediction tasks.

A. Factorization Machine Model

1) Model Equation: The model equation for a factorization

machine of degree d = 2 is defined as:

ŷ(x) := w0 +

n∑

i=1

wi xi +

n∑

i=1

n∑

j=i+1

〈vi,vj〉xi xj (1)

where the model parameters that have to be estimated are:

w0 ∈ R, w ∈ R
n, V ∈ R

n×k (2)

And 〈·, ·〉 is the dot product of two vectors of size k:

〈vi,vj〉 :=
k∑

f=1

vi,f · vj,f (3)

A row vi within V describes the i-th variable with k factors.

k ∈ N
+
0 is a hyperparameter that defines the dimensionality

of the factorization.

A 2-way FM (degree d = 2) captures all single and pairwise

interactions between variables:

• w0 is the global bias.

• wi models the strength of the i-th variable.

• ŵi,j := 〈vi,vj〉 models the interaction between the i-

th and j-th variable. Instead of using an own model

parameter wi,j ∈ R for each interaction, the FM models

the interaction by factorizing it. We will see later on, that

this is the key point which allows high quality parameter

estimates of higher-order interactions (d ≥ 2) under

sparsity.

2) Expressiveness: It is well known that for any positive

definite matrix W, there exists a matrix V such that W =
V · Vt provided that k is sufficiently large. This shows that

a FM can express any interaction matrix W if k is chosen

large enough. Nevertheless in sparse settings, typically a small

k should be chosen because there is not enough data to

estimate complex interactions W. Restricting k – and thus

the expressiveness of the FM – leads to better generalization

and thus improved interaction matrices under sparsity.

3) Parameter Estimation Under Sparsity: In sparse settings,

there is usually not enough data to estimate interactions

between variables directly and independently. Factorization

machines can estimate interactions even in these settings

well because they break the independence of the interaction

parameters by factorizing them. In general this means that the

data for one interaction helps also to estimate the parameters

for related interactions. We will make the idea more clear

with an example from the data in figure 1. Assume we want

to estimate the interaction between Alice (A) and Star Trek

(ST) for predicting the target y (here the rating). Obviously,

there is no case x in the training data where both variables xA

and xST are non-zero and thus a direct estimate would lead to

no interaction (wA,ST = 0). But with the factorized interaction

parameters 〈vA,vST〉 we can estimate the interaction even in

this case. First of all, Bob and Charlie will have similar factor

vectors vB and vC because both have similar interactions with

Star Wars (vSW) for predicting ratings – i.e. 〈vB ,vSW〉 and

〈vC ,vSW〉 have to be similar. Alice (vA) will have a different

factor vector from Charlie (vC) because she has different

interactions with the factors of Titanic and Star Wars for

predicting ratings. Next, the factor vectors of Star Trek are

likely to be similar to the one of Star Wars because Bob has

similar interactions for both movies for predicting y. In total,

this means that the dot product (i.e. the interaction) of the

factor vectors of Alice and Star Trek will be similar to the one

of Alice and Star Wars – which also makes intuitively sense.

4) Computation: Next, we show how to make FMs appli-

cable from a computational point of view. The complexity

of straight forward computation of eq. (1) is in O(k n2)
because all pairwise interactions have to be computed. But

with reformulating it drops to linear runtime.

Lemma 3.1: The model equation of a factorization machine

(eq. (1)) can be computed in linear time O(k n).
Proof: Due to the factorization of the pairwise interac-

tions, there is no model parameter that directly depends on

two variables (e.g. a parameter with an index (i, j)). So the

pairwise interactions can be reformulated:

n∑

i=1

n∑

j=i+1

〈vi,vj〉xi xj

=
1

2

n∑

i=1

n∑

j=1

〈vi,vj〉xi xj −
1

2

n∑

i=1

〈vi,vi〉xi xi

=
1

2





n∑

i=1

n∑

j=1

k∑

f=1

vi,f vj,f xi xj −
n∑

i=1

k∑

f=1

vi,f vi,f xi xi





=
1

2

k∑

f=1





(
n∑

i=1

vi,f xi

)



n∑

j=1

vj,f xj



−
n∑

i=1

v2i,f x
2
i





=
1

2

k∑

f=1





(
n∑

i=1

vi,f xi

)2

−
n∑

i=1

v2i,f x
2
i





This equation has only linear complexity in both k and n –

i.e. its computation is in O(k n).

Moreover, under sparsity most of the elements in x are 0 (i.e.

m(x) is small) and thus, the sums have only to be computed

over the non-zero elements. Thus in sparse applications, the

computation of the factorization machine is in O(kmD) – e.g.

mD = 2 for typical recommender systems like MF approaches

(see section V-A).

B. Factorization Machines as Predictors

FM can be applied to a variety of prediction tasks. Among

them are:

• Regression: ŷ(x) can be used directly as the predictor

and the optimization criterion is e.g. the minimal least

square error on D.

• Binary classification: the sign of ŷ(x) is used and the

parameters are optimized for hinge loss or logit loss.

• Ranking: the vectors x are ordered by the score of ŷ(x)
and optimization is done over pairs of instance vectors

(x(a),x(b)) ∈ D with a pairwise classification loss (e.g.

like in [5]).

In all these cases, regularization terms like L2 are usually

added to the optimization objective to prevent overfitting.

C. Learning Factorization Machines

As we have shown, FMs have a closed model equation that

can be computed in linear time. Thus, the model parameters

(w0, w and V) of FMs can be learned efficiently by gradient

descent methods – e.g. stochastic gradient descent (SGD) –

for a variety of losses, among them are square, logit or hinge

loss. The gradient of the FM model is:

∂

∂θ
ŷ(x) =







1, if θ is w0

xi, if θ is wi

xi

∑n
j=1 vj,fxj − vi,fx

2
i , if θ is vi,f

(4)

The sum
∑n

j=1 vj,fxj is independent of i and thus can be

precomputed (e.g. when computing ŷ(x)). In general, each

gradient can be computed in constant time O(1). And all

parameter updates for a case (x, y) can be done in O(k n)
– or O(km(x)) under sparsity.

We provide a generic implementation, LIBFM2, that uses

SGD and supports both element-wise and pairwise losses.

D. d-way Factorization Machine

The 2-way FM described so far can easily be generalized

to a d-way FM:

ŷ(x) := w0 +

n∑

i=1

wi xi

+

d∑

l=2

n∑

i1=1

. . .

n∑

il=il−1+1





l∏

j=1

xij









kl∑

f=1

l∏

j=1

v
(l)
ij ,f



 (5)

2http://www.libfm.org

where the interaction parameters for the l-th interaction are

factorized by the PARAFAC model [1] with the model pa-

rameters:

V
(l) ∈ R

n×kl , kl ∈ N
+
0 (6)

The straight-forward complexity for computing eq. (5) is

O(kd n
d). But with the same arguments as in lemma 3.1, one

can show that it can be computed in linear time.

E. Summary

FMs model all possible interactions between values in the

feature vector x using factorized interactions instead of full

parametrized ones. This has two main advantages:

1) The interactions between values can be estimated even

under high sparsity. Especially, it is possible to general-

ize to unobserved interactions.

2) The number of parameters as well as the time for

prediction and learning is linear. This makes direct

optimization using SGD feasible and allows optimizing

against a variety of loss functions.

In the remainder of this paper, we will show the relationships

between factorization machines and support vector machines

as well as matrix, tensor and specialized factorization models.

IV. FMS VS. SVMS

A. SVM model

The model equation of an SVM [6] can be expressed as

the dot product between the transformed input x and model

parameters w: ŷ(x) = 〈φ(x),w〉, where φ is a mapping from

the feature space R
n into a more complex space F . The

mapping φ is related to the kernel with:

K : Rn × R
n → R, K(x, z) = 〈φ(x), φ(z)〉

In the following, we discuss the relationships of FMs and

SVMs by analyzing the primal form of the SVMs3.

1) Linear kernel: The most simple kernel is the linear ker-

nel: Kl(x, z) := 1+〈x, z〉, which corresponds to the mapping

φ(x) := (1, x1, . . . , xn). And thus the model equation of a

linear SVM can be rewritten as:

ŷ(x) = w0 +
n∑

i=1

wi xi, w0 ∈ R, w ∈ R
n (7)

It is obvious that a linear SVM (eq. (7)) is identical to a FM

of degree d = 1 (eq. (5)).

2) Polynomial kernel: The polynomial kernel allows the

SVM to model higher interactions between variables. It is

defined as K(x, z) := (〈x, z〉 + 1)d. E.g. for d = 2 this

corresponds to the following mapping:

φ(x) := (1,
√
2x1, . . . ,

√
2xn, x

2
1, . . . , x

2
n,√

2 x1 x2, . . . ,
√
2x1 xn,

√
2 x2 x3, . . . ,

√
2xn−1 xn) (8)

3In practice, SVMs are solved in the dual form and the mapping φ is not
performed explicitly. Nevertheless, the primal and dual have the same solution
(optimum), so all our arguments about the primal hold also for the dual form.

0 20 40 60 80 100 120

0
.9

0
0

.9
2

0
.9

4
0

.9
6

0
.9

8

Netflix: Rating Prediction Error

Dimensionality (k)

E
rr

o
r

(R
M

S
E

)

Factorization Machine

Support Vector Machine

Fig. 2. FMs succeed in estimating 2-way variable interactions in very sparse
problems where SVMs fail (see section III-A3 and IV-B for details.)

And so, the model equation for polynomial SVMs can be

rewritten as:

ŷ(x) = w0 +
√
2

n∑

i=1

wi xi +

n∑

i=1

w
(2)
i,i x

2
i

+
√
2

n∑

i=1

n∑

j=i+1

w
(2)
i,j xi xj (9)

where the model parameters are:

w0 ∈ R, w ∈ R
n, W

(2) ∈ R
n×n (symmetric matrix)

Comparing a polynomial SVM (eq. (9)) to a FM (eq. (1)),

one can see that both model all nested interactions up to

degree d = 2. The main difference between SVMs and FMs is

the parametrization: all interaction parameters wi,j of SVMs

are completely independent, e.g. wi,j and wi,l. In contrast to

this the interaction parameters of FMs are factorized and thus

〈vi,vj〉 and 〈vi,vl〉 depend on each other as they overlap and

share parameters (here vi).

B. Parameter Estimation Under Sparsity

In the following, we will show why linear and polynomial

SVMs fail for very sparse problems. We show this for the

example of collaborative filtering with user and item indicator

variables (see the first two groups (blue and red) in the example

of figure 1). Here, the feature vectors are sparse and only two

elements are non-zero (the active user u and active item i).

1) Linear SVM: For this kind of data x, the linear SVM

model (eq. (7)) is equivalent to:

ŷ(x) = w0 + wu + wi (10)

Because xj = 1 if and only if j = u or j = i. This model

corresponds to one of the most basic collaborative filtering

models where only the user and item biases are captured. As

this model is very simple, the parameters can be estimated

well even under sparsity. However, the empirical prediction

quality typically is low (see figure 2).

2) Polynomial SVM: With the polynomial kernel, the SVM

can capture higher-order interactions (here between users and

items). In our sparse case with m(x) = 2, the model equation

for SVMs is equivalent to:

ŷ(x) = w0 +
√
2(wu + wi) + w(2)

u,u + w
(2)
i,i +

√
2w

(2)
u,i

First of all, wu and w
(2)
u,u express the same – i.e. one can

drop one of them (e.g. w
(2)
u,u). Now the model equation is

the same as for the linear case but with an additional user-

item interaction w
(2)
u,i . In typical collaborative filtering (CF)

problems, for each interaction parameter w
(2)
u,i there is at most

one observation (u, i) in the training data and for cases (u′, i′)
in the test data there are usually no observations at all in

the training data. For example in figure 1 there is just one

observation for the interaction (Alice, Titanic) and non for

the interaction (Alice, Star Trek). That means the maximum

margin solution for the interaction parameters w
(2)
u,i for all test

cases (u, i) are 0 (e.g. w
(2)
A,ST = 0). And thus the polynomial

SVM can make no use of any 2-way interaction for predicting

test examples; so the polynomial SVM only relies on the user

and item biases and cannot provide better estimations than a

linear SVM.

For SVMs, estimating higher-order interactions is not only

an issue in CF but in all scenarios where the data is hugely

sparse. Because for a reliable estimate of the parameter w
(2)
i,j

of a pairwise interaction (i, j), there must be ‘enough’ cases

x ∈ D where xi 6= 0 ∧ xj 6= 0. As soon as either xi = 0 or

xj = 0, the case x cannot be used for estimating the parameter

w
(2)
i,j . To summarize, if the data is too sparse, i.e. there are too

few or even no cases for (i, j), SVMs are likely to fail.

C. Summary

1) The dense parametrization of SVMs requires direct

observations for the interactions which is often not given

in sparse settings. Parameters of FMs can be estimated

well even under sparsity (see section III-A3).

2) FMs can be directly learned in the primal. Non-linear

SVMs are usually learned in the dual.

3) The model equation of FMs is independent of the

training data. Prediction with SVMs depends on parts

of the training data (the support vectors).

V. FMS VS. OTHER FACTORIZATION MODELS

There is a variety of factorization models, ranging from

standard models for m-ary relations over categorical variables

(e.g. MF, PARAFAC) to specialized models for specific data

and tasks (e.g. SVD++, PITF, FPMC). Next, we show that

FMs can mimic many of these models just by using the right

input data (e.g. feature vector x).

A. Matrix and Tensor Factorization

Matrix factorization (MF) is one of the most studied factor-

ization models (e.g. [7], [8], [2]). It factorizes a relationship

between two categorical variables (e.g. U and I). The standard

approach to deal with categorical variables is to define binary

indicator variables for each level of U and I (e.g. see fig. 1,

first (blue) and second (red) group)4:

n := |U ∪ I|, xj := δ (j = i ∨ j = u) (11)

4To shorten notation, we address elements in x (e.g. xj) and the parameters
both by numbers (e.g. j ∈ {1, . . . , n}) and categorical levels (e.g. j ∈ (U ∪
I)). That means we implicitly assume a bijective mapping from numbers to
categorical levels.

A FM using this feature vector x is identical to the matrix

factorization model [2] because xj is only non-zero for u and

i, so all other biases and interactions drop:

ŷ(x) = w0 + wu + wi + 〈vu,vi〉 (12)

With the same argument, one can see that for problems with

more than two categorical variables, FMs includes a nested

parallel factor analysis model (PARAFAC) [1] .

B. SVD++

For the task of rating prediction (i.e. regression), Koren

improves the matrix factorization model to the SVD++ model

[2]. A FM can mimic this model by using the following input

data x (like in the first three groups of figure 1):

n := |U ∪ I ∪ L|, xj :=







1, if j = i ∨ j = u
1√
|Nu|

, if j ∈ Nu

0, else

where Nu is the set of all movies the user has ever rated5. A

FM (d = 2) would behave the following using this data:

ŷ(x) =

SVD++
︷ ︸︸ ︷

w0 + wu + wi + 〈vu,vi〉+
1

√

|Nu|
∑

l∈Nu

〈vi,vl〉

+
1

√

|Nu|
∑

l∈Nu



wl + 〈vu,vl〉+
1

√

|Nu|
∑

l′∈Nu,l′>l

〈vl,v
′
l〉





where the first part is exactly the same as the SVD++ model.

But the FM contains also some additional interactions between

users and movies Nu as well as basic effects for the movies

Nu and interactions between pairs of movies in Nu.

C. PITF for Tag Recommendation

The problem of tag prediction is defined as ranking tags

for a given user and item combination. That means there are

three categorical domains involved: users U , items I and tags

T . In the ECML/PKDD Discovery Challenge about tag recom-

mendation, a model based on factorizing pairwise interactions

(PITF) has achieved the best score [3]. We will show how

a FM can mimic this model. A factorization machine with

binary indicator variables for the active user u, item i and tag

t results in the following model:

n := |U ∪ I ∪ T |, xj := δ (j = i ∨ j = u ∨ j = t) (13)

⇒ ŷ(x) = w0 + wu + wi + wt + 〈vu,vi〉+ 〈vu,vt〉+ 〈vi,vt〉

As this model is used for ranking between two tags tA, tB
within the same user/item combination (u, i) [3], both the

optimization and the prediction always work on differences

between scores for the cases (u, i, tA) and (u, i, tB). Thus

5To distinguish elements in Nu from elements in I , they are transformed
with any bijective function ω : I → L into a space L with L ∩ I = ∅.

0.0e+00 4.0e+06 8.0e+06 1.2e+07

0
.0

5
0

.1
5

0
.2

5
0

.3
5

ECML Discovery Challenge 2009, Task 2

Number of Parameters

Q
u

a
lit

y
 (

F
1

@
to

p
−

5
)

Factorization Machine

Pairwise Interaction TF (PITF)

Fig. 3. Recommendation quality of a FM compared to the winning PITF
model [3] of the ECML/PKDD Discovery Challenge 2009. The quality is
plotted against the number of model parameters.

with optimization for pairwise ranking (like in [5], [3]), the

FM model is equivalent to:

ŷ(x) := wt + 〈vu,vt〉+ 〈vi,vt〉 (14)

Now the original PITF model [3] and the FM model with

binary indicators (eq. (14)) are almost identical. The only

difference is that (i) the FM model has a bias term wt for t and

(ii) the factorization parameters for the tags (vt) between the

(u, t)- and (i, t)-interaction are shared for the FM model but

individual for the original PITF model. Besides this theoretical

analysis, figure 3 shows empirically that both models also

achieve comparable prediction quality for this task.

D. Factorized Personalized Markov Chains (FPMC)

The FPMC model [4] tries to rank products in an online

shop based on the last purchases (at time t− 1) of the user u.

Again just by feature generation, a factorization machine

(d = 2) behaves similarly:

n := |U ∪ I ∪ L|, xj :=







1, if j = i ∨ j = u
1

|Bu
t−1

| , if j ∈ Bu
t−1

0, else

(15)

where Bu
t ⊆ L is the set (‘basket’) of all items a user u has

purchased at time t (for details see [4]). Then:

ŷ(x) = w0 + wu + wi + 〈vu,vi〉+
1

|Bu
t−1|

∑

l∈Bu
t−1

〈vi,vl〉

+
1

|Bu
t−1|

∑

l∈Bu
t−1



wl + 〈vu,vl〉+
1

|Bu
t−1|

∑

l′∈Bu
t−1

,l′>l

〈vl,v
′
l〉





Like for tag recommendation this model is used and opti-

mized for ranking (here ranking items i) and thus only score

differences between (u, iA, t) and (u, iB, t) are used in the

prediction and optimization criterion [4]. Thus, all additive

terms that do not depend on i vanish and the FM model

equation is equivalent to:

ŷ(x) = wi + 〈vu,vi〉+
1

|Bu
t−1|

∑

l∈Bu
t−1

〈vi,vl〉 (16)

Now one can see that the original FPMC model [4] and the

FM model are almost identical and differ only in the additional

item bias wi and the sharing of factorization parameters of

the FM model for the items in both the (u, i)- and (i, l)-
interaction.

E. Summary

1) Standard factorization models like PARAFAC or MF

are not general prediction models like factorization

machines. Instead they require that the feature vector

is partitioned in m parts and that in each part exactly

one element is 1 and the rest 0.

2) There are many proposals for specialized factorization

models designed for a single task. We have shown that

factorization machines can mimic many of the most suc-

cessful factorization models (including MF, PARAFAC,

SVD++, PITF, FPMC) just by feature extraction which

makes FM easily applicable in practice.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced factorization machines.

FMs bring together the generality of SVMs with the benefits

of factorization models. In contrast to SVMs, (1) FMs are

able to estimate parameters under huge sparsity, (2) the model

equation is linear and depends only on the model parameters

and thus (3) they can be optimized directly in the primal.

The expressiveness of FMs is comparable to the one of

polynomial SVMs. In contrast to tensor factorization models

like PARAFAC, FMs are a general predictor that can handle

any real valued vector. Moreover, simply by using the right

indicators in the input feature vector, FMs are identical or

very similar to many of the specialized state-of-the-art models

that are applicable only for a specific task, among them are

biased MF, SVD++, PITF and FPMC.

REFERENCES

[1] R. A. Harshman, “Foundations of the parafac procedure: models and con-
ditions for an ’exploratory’ multimodal factor analysis.” UCLA Working

Papers in Phonetics, pp. 1–84, 1970.
[2] Y. Koren, “Factorization meets the neighborhood: a multifaceted collabo-

rative filtering model,” in KDD ’08: Proceeding of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining. New
York, NY, USA: ACM, 2008, pp. 426–434.

[3] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factoriza-
tion for personalized tag recommendation,” in WSDM ’10: Proceedings of

the third ACM international conference on Web search and data mining.
New York, NY, USA: ACM, 2010, pp. 81–90.

[4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing per-
sonalized markov chains for next-basket recommendation,” in WWW ’10:

Proceedings of the 19th international conference on World wide web.
New York, NY, USA: ACM, 2010, pp. 811–820.

[5] T. Joachims, “Optimizing search engines using clickthrough data,” in
KDD ’02: Proceedings of the eighth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining. New York, NY, USA:
ACM, 2002, pp. 133–142.

[6] V. N. Vapnik, The nature of statistical learning theory. New York, NY,
USA: Springer-Verlag New York, Inc., 1995.

[7] N. Srebro, J. D. M. Rennie, and T. S. Jaakola, “Maximum-margin matrix
factorization,” in Advances in Neural Information Processing Systems 17.
MIT Press, 2005, pp. 1329–1336.

[8] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix fac-
torization using Markov chain Monte Carlo,” in Proceedings of the

International Conference on Machine Learning, vol. 25, 2008.

