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Introduction




Background

1) Display Advertising

AN

YAHOQO!  ewitter ¥

ADVERTISING Advertising

e Experiments e Conclusion 4/ 3 l



Background

1) Real Time Bidding (RTB):
A process that decides which ad will be shown to the user
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Problem Definition

1) Click Through Rate (CTR) Prediction
*Predict probability of a click:
*On a certain Ad
*By a certain User
In a certain Page

« Sparse and High dimensional data:

Field 1 Field 2
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Problem Definition

1) Challenges:
*Imbalanced data
*High dimensionality
*Sparsity
Cold Start
*Ad Cold Start
*User Cold Start
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Related Work

1) Classical approaches

1) Factorization Machines

13 Deep Methods

1) Deep and Factorization Methods Combined
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1) Classical approaches
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Related Work (Factorization Machines)
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Related Work (Upgrades on Factorization Machines)
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Related Work (Deep approaches)

1) Deep CTR Prediction:

Introduction

e Previous work e
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Related Work (Deep + FM Approaches)
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Conclusion

Model Weaknesses

SVM (with polynomial kernel) *Too many parameters

*Too many parameters
Piece-wise linear model *Slow training
+Difficult to tune hyper-parameters

*Low complexity

Factorization Machine -Low interpretability

Field-Aware FM sLower complexity

Field-Weighted FM sLower complexity

Strengths

*Fast training

*High flexibility
*Sparse Parameters
*Good interpretability

*Works well with sparse data

*Faster training
*More shared weights

*Less parameters
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Conclusion

Model

Bayesian FM

Sparse FM

Attentional FM

Deep CTR prediction model

Deep FM (Wide & Deep)

Weaknesses

Intractable inference
*Wrong normal assumption

Intractable inference
*Approximate Laplace distribution

*Possible overfitting
*Need to regularize

*Need for Ad image
*Possible overfitting

*Too many hyper-parameters
*Low interpretability

Strengths

*Balance of exploration and
exploitation

*More interpretability
*More sparsity

*More complexity
*More interpretability

*Models higher degree interactions
*More generalization when provided
enough data

*Models higher degree interactions
*No bias in high or low degree
interactions

Proposed Method Experiments
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Proposed Method

1) Different embedding sizes for different fields

Field 1 Field 2
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Proposed Method

1) Compute interactions via two layer neural networks
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Proposed Method !EI

) Combine interactions and first order features using another layer of
neural network

Second order features (Interactions) First order features (embeddings)

A A
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Final output (probability of click)
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Proposed Method

1) Possible advantages:
* Lower complexity & Lower number of parameters
* Interpretability (Embeddings, Interactions)

« High parameter sharing (helps facing cold start)
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Experiments




Dataset

1) Avazu dataset
*+80M records
Unbalanced (17% clicked) A/a Z U
22 Fields (+1.7M features)
1) Small Avazu
*+500k records
*Balanced (50% clicked)
*19 Fields (+11K features)
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RESIES

1) Cross-entropy and accuracy

Loss per iteration
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RESIES

1) Effect of L2-Regularization (on embedding parameters)

validation loss over amount of regularization Validation accuracy over amount of regularization
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RESIES

1) Final results:

Accuracy (%) Cross-entropy loss
FM (k = 5) 67.6 1.64
Proposed (Reg = 1) 68.4 0.61
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Future Work

B Further work:
*Compare with Factorization Machines and other key models
*Try other regularizations (Dropout / L1 / Batch Normalization)
*Deploy the model in an online setting
*Work on larger datasets
Visualize embeddings and find out if they are informative

*Check the most active interactions and try to interpret
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Future Work

Title Time needed Progress Finishing time
Reading related papers 5 months 80% Feb. 2020
Developing proposed model 2 months 25% Mar. 2020
Work with real data 2 months 0% May. 2020
Writing paper 2 months 0% Jul. 2020
Writing thesis 3 months 35% Aug. 2020
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Thank You!

Any Questions?
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