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Click-through rate prediction is critical in Internet advertising and affects web publisher’s profits and advertiser’s payment. +e
traditional method of obtaining features using feature extraction did not consider the sparseness of advertising data and the highly
nonlinear association between features. To reduce the sparseness of data and to mine the hidden features in advertising data,
a method that learns the sparse features is proposed. Our method exploits dimension reduction based on decomposition, takes
advantage of the attention mechanism in neural network modelling, and improves FM to make feature interactions contribute
differently to the prediction. We utilize stack autoencoder to explore high-order feature interactions and use improved FM for
low-order feature interactions to portray the nonlinear associated relationship of features.+e experiment shows that our method
improves the effect of CTR prediction and produces economic benefits in Internet advertising.

1. Introduction

Click-through rate (CTR) prediction is critical to many web
applications including web search, recommender systems
[1, 2], sponsored search, and display advertising. Search
advertising, known as sponsored search, refers to adver-
tisers identifying relevant keywords based on their product
or service for advertising. When the user retrieves the
keyword purchased by the advertiser, the corresponding
advertisement is triggered and displayed. In the cost-per-
click model, the advertiser pays the web publisher only
when a user clicks their advertisements and visits the
advertiser’s site. +e CTR prediction is defined to estimate
the ratio of clicks to impressions of advertisements that will
be displayed [3].

With the rapid development of the mobile Internet
and its wide range of applications, advertising has become
one of the most successful business models in the world.
Internet text advertising is regarded as a more effective
advertising communication method due to its strong tar-
geted communication and convenience of user clicking
and has become an important income resource for many

Internet companies. Some electronic commerce companies
and search engine companies are seeking targeted adver-
tising to increase their revenue.

In general, the display of online advertising can be seen
as a three-party game between media, advertisers, and users.
How to advertise to specific user groups is a key issue in the
field of online advertising. Inappropriate advertising can
lead to a decline in user experience. Advertising cannot
achieve the desired effect, and the media can also be affected.
Internet text advertising is usually in the form of text, and
the advertisers get the opportunity to buy media ads through
cost-per-click (CPC) [4]. In the CPC model, the click-
through rate (CTR) is an important indicator to measure
the effectiveness of advertising display and is a key factor in
the three-party game. +erefore, the CTR estimation of
advertising is a hot research direction in the field of com-
puting advertising. In this paper, the click-through rate
prediction of Internet text advertising shows the probability
of predicting a user’s click on a text under the current
context environment. Due to the three-party information of
advertising properties, user properties, and context envi-
ronment, the CTR prediction is very complicated.
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At present, the prediction of click-through rate for
online advertising has attracted widespread attention from
researchers in industry and academia. Researchers have
proposed many models that are usually based on machine
learning methods. We can divide them into three categories:
linear, nonlinear, and fusion models. Typically, a predictive
task is formulated as estimating a function that maps pre-
dictor variables to some target. To build predictive models
with these predictor variables, a common solution is to
convert them to a set of binary features (a.k.a. feature vector)
via one-hot encoding [5]. McMahan et al. [6] used the lo-
gistic regression [7] model to solve the CTR problems of
Google Advertising. +ey adopted user information, ad-
vertising data, search keywords, and other features as the
input of the model and proposed an online sparse learning
algorithm to train the model. Chapelle [8] proposed a ma-
chine-learning framework based on the logistic regression in
which advertisers, web publishers, users, and time charac-
teristics were used as input to the model to solve the ad-
vertising CTR prediction for Yahoo. Dave and Varma [9]
used the gradient boosting decision tree (GBDT) to predict
the advertising CTR. +ey extracted similar features from
advertising data and discovered implicit relationships be-
tween different features. Finally, they found out the non-
linear relationships between the predicted target and
features. He et al. [10] introduced a fusion model which
combines decision trees with logistic regression for pre-
dicting clicks on Facebook ads. +e traditional CTR pre-
diction model mainly depends on the design of features. +e
features of data are artificially selected and processed. +e
data have a complex mapping relationship, especially for
meaningful data, and it is crucial to account for the in-
teractions between features. Many successful solutions in
both industry and academia largely rely onmanually crafting
combinatorial features [11], i.e., constructing new features
by combining multiple predictor variables, also known as
cross features. However, the power of such features comes at
a high cost since it requires heavy engineering efforts and
useful domain knowledge to design effective features. Fac-
torization machines (FMs) [12] are a supervised learning
approach that embed features into a latent space and model
the interactions between features via inner product of their
embedding vectors. Models based on degree-2 polynomial
mapping and factorization machines are widely used for
CTR prediction. +e factorization-based prediction method
field-aware factorization machines [13] were developed by
Juan et al.

In recent years, deep learning [14, 15] has achieved very
good results in the fields of speech recognition [16], image
data processing [17], and natural language processing [18].
As a powerful approach to learning feature representation,
deep neural networks have the potential to learn sophisti-
cated feature interactions. Liu et al. [19] extended CNN for
CTR prediction, but CNN-based models are biased towards
the interactions between neighboring features. Zhang et al.
[20] studied feature representations and proposed factor-
ization machine-supported neural network (FNN). +is
model pretrained FM before applying DNN and thus limited
by the capability of FM. He and Chua [21] proposed a novel

neural factorization machine (NFM) for prediction under
sparse setting. NFM combines the linearity of FM in
modelling second-order feature interactions and the non-
linearity of neural network in modelling higher-order fea-
ture interactions. Despite great promise, we argue that FM
can be hindered by its modelling of all factorized in-
teractions with the same weight. In real-world applica-
tions, different predictor variables often have different
predictive power. Not all features contain useful informa-
tion for predicting the target. +erefore, the interaction of
features with less useful information should be assigned
a lower weight indicating that they contribute less to the
prediction. However, FM lacks the ability to distinguish the
importance of feature interactions, which will lead to sub-
optimal prediction.

Considering the high-dimensional sparsity of advertis-
ing data and the highly nonlinear association between
features [22], a hybrid model for advertising CTR estimation
based on stacked autoencoder, named Attention Stacked
Autoencoder (ASAE), is proposed. Our model takes ad-
vantage of the attention mechanism in neural network
modelling [23, 24] and improves FM to make feature in-
teractions contribute differently to the prediction. More
importantly, the importance of feature interactions is au-
tomatically learned from the data with any human domain
knowledge. We explore data dimension reduction and
identify the relationship between features. Additionally,
many experiments are conducted to show that this method
improves the accuracy of CTR estimation.

+e rest of this paper is organized as follows. Section 2
provides the factorization machines. In Section 3, the sparse
feature learning method for advertising data based on the
ASAE model is proposed. In Section 4, we design the ex-
periment and verify the prediction effect of the method by
comparison experiment. We also analyze the experimental
results in this section. Section 5 concludes the paper and lists
possible future work.

2. Factorization Machines

+e factorization machines are originally proposed for
learning feature interactions in the recommendation system.
Given a real-valued feature vector X ∈ Rn where n denotes
the number of features, FM estimates the target bymodelling
all interactions between each pair of features:

􏽢yFM(x) � w0 + 􏽘

n

i�1
wixi + 􏽘

n

i�1
􏽘

n

j�i+1
􏽢wijxixj, (1)

where w0 is the global bias, wi denotes the weight of the ith
feature, and wij denotes the weight of the cross feature xixj,
which is factorized as 􏽢wij � vT

i vj, where vi ∈ Rk denotes the
embedding vector for feature i and k denotes the size of the
embedding vector. Besides linear (order-1) interactions
among features, FM models pairwise (order-2) feature in-
teractions as inner product of respective feature latent
vectors. It can capture order-2 feature interactions much
more effectively than previous approaches especially when
the dataset is sparse. It is worth noting that FM models all
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feature interactions in the same way: first, a latent vector vi is
shared in estimating all feature interactions that the ith
feature involves; second, all feature interactions have the
same weight of 1. However, it is common that not all features
are relevant to the prediction. +ese interactions of irrele-
vant features can be considered as noise that does not
contribute to the prediction. FM models all features using
the same weights for interaction and may have a negative
impact on generalization performance.

3. Click-throughRateEstimationBasedonDeep
Neural Network

One of the necessary steps in the click rate prediction system
is to mine features that are highly correlated with the es-
timated task. To reduce the high sparseness of features and
characterize the nonlinear association between features, we
propose a sparse feature learning method for advertising
data based on deep learning (DLSAE).

3.1. Data Dimensionality Reduction. Click log data contain
many types of objects, such as users, queries, and ad-
vertisements. +e relationship between these objects is
very complex. +e same objects have similarity, and there
are complex relationships between different types of
objects. For instance, given a particular user and the query
submitted by the user, it is necessary to predict whether
the user will click on the advertisement and the proba-
bility. +ere is a complex implicit relationship between
users, queries, and advertising. Based on the character-
istics of the click log data, dimension reduction is achieved
in the following two aspects: the similarity between the
internal objects and the association between different
objects.

In this paper, the k-means clustering algorithm [25]
based on distance is adopted. We cluster queries, adver-
tisements, and users separately, and the similar objects are
aggregated into the same cluster. We use advertising fre-
quency as the weight of the advertisement Ai and query Qj

and create a matrix WMa×Mq
of the ad-query (where Ma is

the number of ads and Mq indicates the number of queries),
using the k-means algorithm to cluster the ad-query matrix.
We scan the ad-query matrix to obtain the ad sets and query
sets, as A � a1, a2, . . . , am􏼈 􏼉 and Q � q1, q2, . . . , qN􏼈 􏼉. +en,
we take K samples from the advertising set randomly as
the initial point of the cluster center, record as T �

t1, t2, . . . , tk􏼈 􏼉. Next, Equation (2) is used to calculate the
distance between ad ai and each cluster center point tj. +e
number of clusters of users, ads, and queries is represented
by Ku, Ka, and Kq, respectively. Finally, the number of
users, ads, and queries in the dataset is reduced from
Mu, Ma, Mq to Ku, Ka, Kq:

Dis ai, tj􏼐 􏼑 �

��������������

􏽘 Wai
−Wqj

􏼒 􏼓
2

􏽳

, (2)

where Wai
is the weight of ai, Wqj

is the weight of tj, and
Dis(ai, tj) is the distance between ai and tj.

+ere is a ternary relationship between the user-query-
ad in the click log data. In this paper, we use the three-
dimensional tensor structure model [26, 27] to represent
the user, query, and advertisement. +en, the tensor de-
composition method is used to reduce the dimensions.
+e sum of the display number of ads in the cluster is used
as the weight of the elements in 3D space. +e three-
dimensional tensor model is constructed and repre-
sented by X ∈ RKu×Kq×Ka . In this paper, tensor X is
decomposed using the Tucker factorization. Equation (2)
is the decomposition formula.

X � [G; A, B, C] � G × uA × qB × aC

� 􏽘
P

p�1
􏽘

M

m�1
􏽘

R

r�1
gpmrup ∘ qm ∘ ar,

(3)

where G represents the core tensor of tensor X. We use A, B,
and C to represent the feature matrix of the tensor X on the
dimension Ku, Kq, Ka.

Figure 1 is a schematic diagram of the Tucker de-
composition. +e purpose of the Tucker decomposition is to
find an approximate tensor 􏽢X with the original tensor X and
to retain the original tensor information and structural
information to the greatest extent. +e minimization for-
mula is shown below:

min X− 􏽢X
����

����, 􏽢X � G × uA × qB × aC � [G; A, B, C]. (4)

Equation (4) is the objective optimization function.
According to Equation (3), the expression of the core tensor
can be obtained as follows:

G � X × uA
T

× qB
T

× aC
T
, (5)

and the objective function can be written in a squared form:

‖X−[G; A, B, C]‖
2

� ‖X‖
2 − 2〈X × uA

T
× qB

T
× aC

T
, G〉

+‖G‖
2
,

� ‖X‖
2 − 2〈G, G〉 +‖G‖

2
,

� ‖X‖
2 −‖G‖

2
,

� ‖X‖
2 − X × uA

T
× qB

T
× aC

T
�����

�����
2
.

(6)

+erefore, the objective function is transformed to

max X × uA
T

× qB
T

× aC
T

�����

�����
2
,

A
T
W

����
����, W � X × qB

T
× aC

T
,

B
T
W

����
����, W � X × uA

T
× aC

T
,

C
T
W

����
����, W � X × uA

T
× qB

T
.

(7)

In the process of solving the optimal solution, we need
to fix the matrix of the other dimensions W, solve for
AΤ, BΤ, CΤ, and then perform a singular value decomposi-
tion (SVD) of AΤ, BΤ, CΤ. Next, expand the tensor X into
a matrix on the user, query, and advertising dimensions,
respectively, as X1, X2, X3 and apply SVD on X1, X2, X3:
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X1 � A · G1 · V
T
1 ,

X2 � B · G2 · V
T
2 ,

X3 � C · G3 · V
T
3 ,

(8)

where G1, G2, G3 are the diagonal singular value matrices
obtained using singular value decomposition of the matrices
X1, X2, X3. g1, g2, g3 are the dimensions of the singular
value matrix A, B, C. +e dimensions g1, g2, g3 are obtained
by calculating the diagonal singular values of G1, G2, G3 in
proportion. In the process of reducing the dimensions, the
proportion of excluded singular values is set to 50% in this
paper. +erefore, the calculation of the core tensor after
dimension reduction is as follows:

G′ � X × uA
T
r1 × qB

T

r2 × aC
T
r3,

X′ � G′ × uAr1 × qB
r2 × aCr3.

(9)

+e three dimensions of the initial tensor X are
Ku, Kq, Ka, and the three dimensions of the approximate
tensor X′ after decreasing dimension are denoted by
Nu, Nq, Na. +e time complexity of the Tucker decomposi-
tion algorithm is proportional to the tensor dimension, which
is expressed as O(KuKqKa). We previously used the clus-
tering method to achieve the reduction of the original matrix,
which reduced the cost of the Tucker decomposition greatly
and improved the efficiency and precision.

3.2. Feature Composition Analysis of the Input Layer.
+ere is a high degree of nonlinear correlation between the
features in advertising data. Although the approximate tensor
of the original tensor is reduced by the Tucker decomposition,
it only reflects the information between the three charac-
teristic dimensions of user, query, and ad. Other useful in-
formation in the data is not fully utilized for click-through
rate estimates, such as the position of the advertisement on the
page, the number of ads, and the age and gender of the user.
+is paper combines the features of <user, query, ad> after
tensor reduction and other valid information in the log data as
the object of feature learning. +e composition of the input
layer features is summarized as follows:

(1) ID Feature. ID feature uniquely identifies a class of
entities in the actual click log, usually using a set of
numeric strings to represent variables. For instance,
“10110” can identify only one user group. +e ID
class used in this article has the UserID, QueryID,

AdID, position, and the number of advertisements
on the return page. UserID, QueryID, and AdID are
collections of “virtual” ID classes that are obtained
using k-means clustering and tensor dimension
reduction.

(2) Attribute Characteristics. +e ID class feature is
a symbol that cannot be obtained from the new entity
data and has weak generalization ability. Attribute
features are used to describe a set of users, ad col-
lections, etc., and have better generalization ability and
apply to multiple instances. +erefore, it is necessary
to attribute the property class as learning the input
layer feature further. Commonly used attribute class
features are user’s URL, user’s gender, user’s age, and
advertising time to trigger and query keywords.

(3) Statistical Characteristics. +e statistical feature uses
historical data statistics information to provide an
estimate for the forecasting model. +e statistical
characteristics of the text consist of the number of
advertising histories, the number of clicks on the
advertising history, and the click-through rate after
the advertising position normalization, denoted by
Shows, Clicks, and COEC In the experiment, the
input layer feature of the ASAE model is shown in
Figure 2.

3.3. Study on CTR Prediction via Attention Mechanism
Based on the Stacked Autoencoder

3.3.1. Attentional Factorization Machines. Since the atten-
tion mechanism has been introduced into neural network
modelling, it has been widely used in many tasks. On the
basis of FM, Figure 3 shows the neural network structure of
attentional factorization machines (AFM). +e input layer
and the embedding layer are the same as the FM; the input
features are represented with sparse features, and each
nonzero feature item is embedded in the dense vector.
Formally, let the set of nonzero features in the feature vector
x be χ and the output of the embedding layer be λ � vixi􏼈 􏼉i∈χ.
In the interaction layer, we can represent the output as a set
of vectors:

fin(λ) � vi ⊙ vj􏼐 􏼑xixj􏽮 􏽯
(i,j)∈Rx

, (10)

where ⊙ denotes the element wise product of two vector
and Rx � (i, j)􏼈 􏼉i∈χ,j∈χ,j>i. By defining the interaction layer,
we express FM under the neural network architecture. We
compress fin(λ) with a sum pooling. +en use the full
connection layer to establish it and get the prediction
score:

􏽢y � p
T

􏽘
(i,j)∈Rx

vi ⊙ vj􏼐 􏼑xixj + b,
(11)

where p ∈ Rk denotes the weights and b ∈ R denotes the
bias for the prediction layer.

+e attention mechanism has been widely used in
many tasks. +e idea is to allow different parts to con-
tribute differently when compressing them to a single
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Figure 1: Schematic diagram of the Tucker decomposition.
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representation. We use attention mechanisms for feature
interaction:

fatt fin(λ)( 􏼁 � 􏽘
(i,j)∈Rx

aij vi ⊙ vj􏼐 􏼑xixj, (12)

where aij is the attention score for feature interaction 􏽢wij,
and it can be interpreted as the importance of 􏽢wij in
predicting goals. aij can be learned by minimizing the loss
function, but the attention scores of interactions that
never occur in training data cannot be estimated. In order
to solve the generalization problem, we use the multilayer
perceptron (MLP) to further parameterize the attention
score, which we call the attention network. +e input of
the attention network is an interaction vector of two
features and can encode their interaction information in
the embedding space. In general, the attention network is
defined as

a′ij � h
TRe LU W vi ⊙ vj􏼐 􏼑xixj + b􏼐 􏼑,

aij �
exp a′ij􏼐 􏼑

􏽐(i,j)∈Rx
exp a′ij􏼐 􏼑

,

(13)

where W ∈ Rs×k, b ∈ Rs, and h ∈ Rs are the model param-
eters and s is the hidden layer size of the attention network,
which we call the attention factor. Rectifiers are used as the
activation function for attention scores and show good
performance empirically. +e output of the attention layer is
a k-dimensional vector that compresses all feature in-
teractions in the embedding space by differentiating their
importance. We give the overall formulation of attentional
factorization machines as

yAFM(x) � w0 + 􏽘

n

i�1
wixi + p

T
􏽘

n

i�1
􏽘

n

j�i+1
aij vi ⊙ vj􏼐 􏼑xixj,

(14)

where aij has been defined in Equation (13).
For the part of the attention network, which is a single-

layer MLP, we apply L2 regularization on the weight matrix
W to prevent possible overfitting. In other words, the actual
objective function we optimize is

L � 􏽘
x∈Υ

􏽢yAFM(x)− 􏽢y(x)( 􏼁
2

+ λ‖W‖
2
, (15)

where Υ denotes the set of training instances and λ controls
the regularization strength.

3.3.2. Stacked Autoencoder. +e autoencoder (AE) [28] is
a kind of the neural network model that automatically learns
features from data without supervision. It consists of three
network layers. +e bottom is the input layer I, the middle of
the hidden layer H, and the output layer O or reconstruction
layer. +e autoencoder architecture is shown in Figure 4. In
Figure 4, w is the connection weight of the two layers and b is
the bias. In the input layer and hidden layer, the AE model
will convert input data to each node of the hidden layer. In
the hidden layer and the reconstruction layer, the value of
the nodes in the hidden layer is reconstructed and the output
data are obtained.

+e stacked autoencoder (SAE) [29] is a kind of network
that consists of n AE stacks from the bottom to the top, as
shown in Figure 5. +e input data of the bottom AE are x.
When the training of the bottom AE is finished, the feature

User Query Ad Pos Age Gender Shows Clicks COEC

(3)(2)(1)

Figure 2: +e features of the input layer.

0 0 0 Sparse features0

(v5 v6)x1x3(v3 v6)x3x6(v3 v5)x3x5

(v1 v3)x1x3

(v1 v6)x1x6(v1 v5)x1x5(v1 v3)x1x3

Attention
neta13 a15 a16 a35 a36 a56

Interaction
layer

Dense embedding

x1 x3 x6x5 x8

v1.x1 v3.x3 v5.x5 v6.x6

Σ aij

Figure 3: +e structure of attentional factorization machines.
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of the hidden layer is obtained and can be represented by h1.
+en, h1 is regarded as the input data of the second AE layer,
which is trained and provides the features of the hidden layer
and is represented by h2. +is process is repeated until hn is
obtained.

+e related definition of the jth node in the hidden
layer of AE can be described as follows: sh is the number of
nodes in the hidden layer (H) of the AE. wh

ji is the con-
nection weight between the jth node of hidden layer (H)
and the ith node of input layer (I). bh

j is the bias of the jth
node in the hidden layer (H). nethj � bh

j + 􏽐
sx

i�1w
h
jio

x
i is the

weight sum of the input of the jth node in the hidden
layer (H). oh

j is the output value of the jth node in the
hidden layer (H). +e activation function of every neuron
node is σ(x) � 1/(1 + e−x).

+e output value of the jth node in the hidden layer (H)
can be represented by the following formula:

o
h
j � f nethj􏼐 􏼑 � σ b

h
j + 􏽘

sx

i�1
w

h
jio

x
i

⎛⎝ ⎞⎠. (16)

When the feature of the hidden layer (H) is decoded, the
feature of the reconstruction layer O is obtained. +e output
value of the jth node in the reconstruction layer O can be
represented by the following formula:

o
o
j � g netoj􏼐 􏼑 � g b

o
j + 􏽘

sh

i�1
w

o
jio

h
i

⎛⎝ ⎞⎠,

� σ b
o
j + 􏽘

sh

i�1
w

o
ji σ b

h
i + 􏽘

so

k�1
w

h
iko

x
k

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(17)

To easily calculate and deduce the formulae, we define the
residual error δl

j of the jth node in the lth layer. +e residual
error δh

j of the neuron node of the reconstruction layer can be

calculated using the following formula according to the chain
rule:

δh
j �

zJ

znethj
�

zJ

zoh
j

zoh
j

znethj
,

� 􏽘

so

i�1

zJ

znetoi

znetoi
zoh

j

⎛⎝ ⎞⎠ ·
zoh

j

znethj
,

� 􏽘

so

i�1
δo

i w
o
ji

⎛⎝ ⎞⎠
zδ nethj􏼐 􏼑

znethj
,

� 􏽘

so

i�1
δo

i w
o
ji

⎛⎝ ⎞⎠δ nethj􏼐 􏼑 1− δ nethj􏼐 􏼑􏼐 􏼑,

� 􏽘

so

i�1
δo

i w
o
ji

⎛⎝ ⎞⎠o
h
j 1− o

h
j􏼐 􏼑.

(18)

+e parameters wl
ji and bl

j can be calculated by formulae
(19) and (20):

zJ

zwl
ji

�
zJ

znetlj

znetlj
zwl

ji

� δl
j · o

l−1
i , (19)

zJ

zbl
j

� δl
j. (20)

+e parameters wl
ji and bl

j can be updated as the fol-
lowing formulae, where ε is the learning rate:

w
l
ji � w

l
ji − β

zJ

zwl
ji

� w
l
ji − β · δl

j · o
l−1
i ,

b
l
j � b

l
j − β

zJ

zbl
j

� b
l
j − β · δl

j.

(21)

+eSAE is a generativemodel that is composed of a stack
of autoencoders. +is method relies on the training algo-
rithm of the autoencoder to initialize the parameters of
a stacked autoencoder. Each new layer is stacked on top of
the current autoencoder. +e process gradually refines the
previously learned information and further discovers more
complex features. After this, a dense real-value feature vector
is generated, which is finally fed into the sigmoid function
for CTR prediction:

ySAE � σ W
h+1

· X
h

+ b
h+1

􏼐 􏼑, (22)

where W is the model weight, b is the bias, and h is the
number of hidden layer.

+is paper selects the square error as the objective
function and adopts the gradient descent [30, 31] to train the
parameters, and the objective function can be described by
the following formula:

J(X, O) �
1
2
􏽘

n

i�1
X

(i) −O
(i)

�����

�����
2
. (23)
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Figure 5: +e structure of the stacked autoencoder.
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Figure 4: +e architecture of the autoencoder.

6 Computational and Mathematical Methods in Medicine



3.3.3. ASAE Model. +e ASAE model consists of two com-
ponents, AFM component and SAE component, which
share the same input. +e graphical model of the ASAE
model is shown in Figure 6. It is able to learn feature in-
teractions of all orders in an end-to-end manner, without
any feature engineering besides raw features. xi is fed in
AFM component to model order-2 feature interactions and
distinguish their importance. xi is fed in SAE component to
model high-order feature interactions, and it can generalize
better to unseen feature combinations through low-
dimensional dense embedding learned for the sparse fea-
tures. All parameters are trained jointly for the combined
prediction model:

􏽢y � sigmoid yAFM + ySAE( 􏼁, (24)

where 􏽢y ∈ (0, 1) is the predicted CTR, yAFM is the output of
the AFM component, and ySAE is the output of the SAE
component.

4. Experiments

4.1. Datasets. We perform experiments with two publicly
accessible datasets: Frappe [32] and SIGKDD Cup2012
track2. +e Frappe dataset has been used for context-aware
recommendation. It contains 96,215 app usage logs of users
under different contexts. Each log contains 8 context vari-
ables, including app ID, user ID, city, and daytime. We
convert each log into a feature vector with one-hot encoding,
resulting in 5,479 features in total. We split dataset into the
training set and testing set using a random partition method
by the ratio of 8 to 1. +e target value of 1 indicates that the
user has used the application in context.

+e KDD2012 CUP track2 corresponding research
question is based on the actual click data information to
predict the click rate of the advertisement. +e training
dataset provided by the competition has a total of
149,639,105 records, and the size of 9.8GB. In addition to
the number of click and the number of displays, the test
dataset is consistent with the training dataset, a total of
20,257,594 records, 1.28GB in size. After data cleaning and
data preprocessing, a total of 3.5 million samples were
randomly selected from the candidate dataset for the ex-
periment. Table 1 summarizes the statistics of the final
evaluation datasets.

In the KDD2012 CUP track2 dataset, the samples of
seven different scale datasets are 150000, 200000, 300000,
500000, 600000, 750000, and 1 million. +e training data are
grouped randomly, and the final result is the average of all
the experimental results to ensure the reliability of the ex-
perimental results.

4.2. Evaluation Index. We use two evaluation metrics in our
experiments: AUC (area under ROC) and Logloss (cross
entropy). +e curve in AUC usually means the receiver
operating characteristic (ROC) [33], which is usually used to
measure performance of two-class classifier. +e CTR
prediction is a classic binary classification method based on
whether the advertising is clicked. +e value of AUC is

usually between [0.5, 1). +e larger the value of AUC be-
comes, the more accurate the advertising CTR prediction is.

4.3. Baseline Models. We compare the ASAE model with
the following methods that are designed for sparse data
prediction:

FM [34]: FM is successfully applied to the recom-
mended system and user response prediction task. FM
explores feature interaction, which is effective on sparse
data
FNN [20]: FNN is a FM-initialized feedforward neural
network. It is able to capture high-order latent patterns
of multifield categorical data.
CCPM [19]: convolutional click prediction model
(CCPM) is based on convolution neural network. It can
extract local-global key features from an input instance
with varied elements, which can be implemented for
single advertising impression and sequential advertis-
ing impression.
Deep cross [11]: it applies a multilayer residual network
on a feature embedding cascade for learning feature
interactions. +is model is a deep neural network that
automatically combines features to produce superior
models.
Wide and deep [35]: this model combines a linear
(“wide”) model and a deep model. +e deep part is
a three-layer MLP that first concatenates feature em-
bedding. +e wide part (which is a linear regression
model) is subject to design to incorporate cross features.

4.4. Analysis of Experimental Results. +is section evaluates
the ASAE model from two perspectives: (1) discussing the
impact of relevant parameters and (2) comparing the ASAE
model with five existing prediction models.

4.4.1. Impact of Parameters. Dropout [36] refers to the
probability that a neuron is kept in the network. Dropout is
a regularization technique to compromise the precision and
the complexity of the neural network. We set the dropout to
be 0.1 to 0.8. As shown in Figure 7, the optimal dropout ratio
on Frappe is 0.3. +e result shows that adding reasonable
randomness to model can strengthen model’s robustness.

+e number of network layers h in the depth learning
phase has a direct effect on the final estimate of the model.
+erefore, this paper experimented with parameters to select
the better combination of parameters. In the Frappe dataset,
as presented in Figure 8, increasing number of hidden layers
improves the performance of the models at the beginning.
However, with the increasing of the number of hidden
layers, the model performance is degraded. +is phenom-
enon is because of overfitting. We can see from Figure 8, the
highest AUC value is obtained when the number of hidden
layers is 4 in Frappe dataset.

+e number of iterations (iter) in the training phase have
a direct effect on the final estimation of the model. In the
KDD dataset, we used a set of sampled data training models
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with a data size of 500,000 samples, tested on the test set, and
we used it to select the best parameters. While fixing the
network layer number (h � 2, 3, 4, 5, 6) of the model, we can
analyze the effect of different iter on the model performance,
and the results are shown in Table 2.

In accordance with Table 2, Figure 9 reflects the AUC
change for different network hidden layers h and LR model
iterations for iter. As seen in Figure 9, when the number of
iterations is 90 to 120, the AUC values of several curves
stabilized. +erefore, in the comparison experiment, 115 is

Sparse features

Dense embedding

+ × × × AFM 

SAE

Output

Figure 6: +e architecture of ASAE.

Table 1: Statistics of the evaluation datasets.

Dataset Instance Feature User Item
Frappe 276,672 5,479 1,028 5,183
KDD 3,500,000 192,886 127,385 150,672

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout ratio

Frappe

0.84

0.85

0.86

0.87

0.88

A
U

C

0.83

0.82

ASAE

Figure 7: +e influence of the dropout ratio.

1 2 3 4 5 6
0.84

0.85

0.86

0.87

0.88

0.89

A
U

C

�e number of layers

Frappe

ASAE

Figure 8: +e influence of the number of hidden layers.

Table 2: +e relationship between the number of network layers
and iter.

iter
AUC

h � 2 h � 3 h � 4 h � 5 h � 6
10 0.6732 0.6717 0.6812 0.6771 0.6761
20 0.6834 0.6735 0.6968 0.6811 0.6814
30 0.6949 0.6812 0.7069 0.6869 0.6933
50 0.7132 0.7073 0.7231 0.7103 0.7058
70 0.7285 0.7191 0.7349 0.7215 0.7245
90 0.7372 0.7311 0.7482 0.7355 0.7401
100 0.7419 0.7429 0.7516 0.7481 0.7464
110 0.7432 0.7441 0.7543 0.7521 0.7508
130 0.7441 0.7452 0.7540 0.7529 0.7486
150 0.7456 0.7463 0.7524 0.7511 0.7502
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chosen as the number of iterations for training the pre-
diction model. As shown in Figure 9, the curve fluctuates
greatly with the change of iterations, and h � 4 is relatively
stable, so we choose h � 4.

When other factors remain constant, the number of
hidden layer units in the ASAE has a huge impact on
network performance and the direct cause of the problem is
extremely important. However, this figure does not have
a general parameter adjustment method in theory. +ere-
fore, in this part, we carry out experiments on the effect of
the number of hidden layer neurons. As we can observe from
Figure 10, increasing the number of neurons per layer does
not always bring benefit. For example, when the number of
neurons per layer is increased from 400 to 800, the ASAE
performs stably. +is is because the complicated model is
easy to overfit. In our experiment, 200 to 400 neurons per
layer is a good choice.

4.4.2. Performance Comparison. We trained the models on
the two datasets and evaluated the estimated results on the
same test set. Tables 3–5 describe the estimated results for
the different methods at different datasets.

Tables 3–5 show the overall performance. Compared
with the other five methods, the ASAE model showed
a better prediction effect. As the data size increased, the
accuracy rose and the logloss declined.

FM: this model was successfully applied to the user
response prediction task. It explores feature interaction,
which is effective on sparse data. However, this model is
limited in mining high-order latent patterns or learning
quality feature representations. As shown in Tables 3–5,
the performance of this model is worst in all com-
parison models.
FNN: FNN is a FM-initialized feedforward neural
network. +e FM pretraining strategy results in some
limitations, such as the embedding parameters might

be over affected by FM and the efficiency is reduced by
the overhead introduced by the pretraining stage. From
Tables 3–5, we can see that the performance of FNN
ranked fifth.
CCPM: this model is based on convolution neural
network for single and sequential advertising impres-
sion. However, this model highly relies on feature
alignment and is a lack of interpretation. +us, as
shown in Tables 3–5, the performance of this model
ranked fourth.
Deep cross: the deep cross is the deepest method that
stacks 10 layers above the embedding layer in all
compared methods. From Tables 3–5, we can see that
the performance of this model ranked third due to the
problems of overfitting.

10 30 50 70 90 110 130 150
0.66

0.68

0.70

0.72

0.74

0.76

A
U

C

iter

n = 2
n = 3
n = 4

n = 5
n = 6

Figure 9: AUC comparison of different iterations and different
network layers.
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�e number of hidden layer neurons

Frappe
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Figure 10: +e influence of the number of neurons.

Table 3: +e performance of AUC and Logloss in different models.

Frappe

FM FNN CCPM Deep
cross

Wide and
deep ASAE

AUC 0.7935 0.8012 0.8178 0.8266 0.8293 0.8386
Logloss 0.03842 0.03473 0.03208 0.03127 0.03015 0.02813

Table 4: +e AUC performance at different data sizes in KDD
dataset.

Data
size

AUC

FM FNN CCPM Deep
cross

Wide and
deep ASAE

150,000 0.6849 0.6941 0.6938 0.7135 0.7193 0.7212
200,000 0.6923 0.7012 0.7027 0.7263 0.7275 0.7355
300,000 0.7033 0.7186 0.7134 0.7397 0.7413 0.7482
500,000 0.7119 0.7235 0.7204 0.7434 0.7486 0.7547
600,000 0.7181 0.7398 0.7291 0.7503 0.7578 0.7672
750,000 0.7255 0.7490 0.7467 0.7549 0.7649 0.7793
1,000,000 0.7315 0.7517 0.7528 0.7652 0.7763 0.7981
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Wide and deep: wide and deep combines a linear model
and a deep model. It learns high- and low-order feature
interactions. +ere is a need for expertise feature en-
gineering on the input to the “wide” part. +us, as
shown in Tables 3–5, the performance of this model
ranked second.
ASAE: the ASAE model performed best. +e reasons
are as follows. (1) +e input of the model exploits
dimension reduction based on decomposition and
reduces the sparseness of data. (2) +e model takes
advantage of the attention mechanism in neural net-
work modelling and improves FM to make feature
interactions contribute differently to the prediction. (3)
We use improved FM for low-order feature in-
teractions, and stacked autoencoder is used for high-
order feature interactions. +e model more effectively
mines the relationship between features, which can
improve the CTR.

5. Conclusions

In this paper, based on the search advertising click data, we
proposed a sparse feature learning method for advertising
data from the perspective of feature learning (DLSAE). We
used the reduced dimension method to cluster similar ad-
vertisements, queries, and users and established a three-
dimensional tensor model for the trial after dimension re-
duction. +en the low-order approximate tensor was ob-
tained using the Tucker decomposition. Aiming at the highly
nonlinear relation between the features, we proposed a hy-
brid model (ASAE) for advertising CTR estimation based on
the stacked autoencoder from the perspective of feature
learning. +e ASAE model trains a deep component and an
AFM component jointly. Performance improved based on
these advantages. First, this model does not need any pre-
training. Second, it learns both high- and low-order feature
interactions, introduces a sharing strategy of feature em-
bedding, and more effectively mines the relationship be-
tween features. Last but not least, the proposed model
distinguishes the importance of features and makes click-
through rate predictions more accurate. More importantly,
the importance of feature interactions is automatically
learned from the data with any human-domain knowledge.
We conducted extensive experiments in two datasets to
compare the effectiveness of ASAE with other models.
+ere are two interesting directions for future study. One is

exploring a convolutional click prediction model based
on CNN for single and sequential advertising impression.
And another we are interested in exploring the pooling
for recurrent neural networks (RNNs) for sequential data
modelling.
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