Browse Source

first commit

main
Morteza Abolghasemi 4 months ago
commit
dc9ee53a1f

BIN
.DS_Store View File


+ 4
- 0
.gitignore View File

@@ -0,0 +1,4 @@
venv/
**/videos/
**/__pycache__/
**/__pycache__/

+ 7
- 0
.vscode/settings.json View File

@@ -0,0 +1,7 @@
{
"[python]": {
"editor.defaultFormatter": "ms-python.autopep8"
},
"python.formatting.provider": "none",
"cSpell.words": ["embedder", "pytube"]
}

+ 62
- 0
Readme.md View File

@@ -0,0 +1,62 @@
# Video Action Recognition Using Transfer Learning and Attention Mechanisms

This project focuses on video action recognition using deep learning techniques, leveraging transfer learning from language models and attention mechanisms.

## Getting Started

### 1. Dataset Preparation

1.1. Download the Kinetics dataset:
- Use `save_kinetics_dataset.ipynb` to download the dataset.
- Alternatively, you can use `download_k400.ipynb`.

1.2. Save the dataset:
- Store the downloaded dataset in your Google Drive for easy access.

### 2. Label Preprocessing

2.1. Update Kinetics labels:
- Run `preprocess_kinetics_labels.ipynb`.
- This script uses GPT-4 to generate detailed descriptions for each video action.

### 3. Model Training

3.1. Post-pretraining of VideoMAE:
- Execute `postpretrain_VideoMAE_to_CLIP_Space.ipynb`.
- This notebook trains a transformer layer to map VideoMAE embeddings to CLIP space.

### 4. Testing

4.1. Prepare the test dataset:
- Download the UCF101 dataset.
- Update the UCF101 labels using GPT-4, similar to the Kinetics label preprocessing step.

4.2. Run the test:
- Use `test.ipynb` to evaluate the model's performance.

## Prerequisites

- Python 3.x
- Jupyter Notebook
- PyTorch
- Transformers library
- CLIP model
- VideoMAE model
- Access to GPT-4 API for label preprocessing
- Google Drive (for storing datasets)

## Usage

1. Follow the steps in the "Getting Started" section to prepare your data and train the model.
2. Ensure all datasets are properly saved in your Google Drive.
3. Run the notebooks in the order specified above.
4. For testing, make sure you have the UCF101 dataset prepared and labels updated before running `test.ipynb`.

The model processes multiple frames from a video scene and creates rich representations in the CLIP space.

## Future Work

- Implement an adaptive frame selection unit
- Extend to more diverse datasets
- Integrate multimodal inputs (e.g., audio)
- Fine-tune hyperparameters

+ 751
- 0
VideoMAE_frame_selector.ipynb View File

@@ -0,0 +1,751 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZGGB7jSjF1RD",
"outputId": "95aaefdd-a00e-46d9-86f9-556ab6ff53c2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=18AzsP1DOBECBL3vjzUhokro40mtu4Ggn\n",
"To: /content/vit_s_k710_dl_from_giant.pth\n",
"100% 44.3M/44.3M [00:00<00:00, 76.7MB/s]\n"
]
}
],
"source": [
"!gdown 18AzsP1DOBECBL3vjzUhokro40mtu4Ggn # vit_s_k710_dl_from_giant.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "G9r7PONyCbMO",
"outputId": "6758cef5-cac8-45a9-f424-3525dd38a25b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: decord in /usr/local/lib/python3.10/dist-packages (0.6.0)\n",
"Requirement already satisfied: deepspeed in /usr/local/lib/python3.10/dist-packages (0.12.2)\n",
"Requirement already satisfied: einops in /usr/local/lib/python3.10/dist-packages (0.7.0)\n",
"Requirement already satisfied: timm==0.4.12 in /usr/local/lib/python3.10/dist-packages (0.4.12)\n",
"Requirement already satisfied: tensorboardX in /usr/local/lib/python3.10/dist-packages (2.6.2.2)\n",
"Requirement already satisfied: mpi4py in /usr/local/lib/python3.10/dist-packages (3.1.5)\n",
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.35.0)\n",
"Requirement already satisfied: torch>=1.4 in /usr/local/lib/python3.10/dist-packages (from timm==0.4.12) (2.1.0+cu118)\n",
"Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from timm==0.4.12) (0.16.0+cu118)\n",
"Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from decord) (1.23.5)\n",
"Requirement already satisfied: hjson in /usr/local/lib/python3.10/dist-packages (from deepspeed) (3.1.0)\n",
"Requirement already satisfied: ninja in /usr/local/lib/python3.10/dist-packages (from deepspeed) (1.11.1.1)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from deepspeed) (23.2)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from deepspeed) (5.9.5)\n",
"Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from deepspeed) (9.0.0)\n",
"Requirement already satisfied: pydantic in /usr/local/lib/python3.10/dist-packages (from deepspeed) (1.10.13)\n",
"Requirement already satisfied: pynvml in /usr/local/lib/python3.10/dist-packages (from deepspeed) (11.5.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from deepspeed) (4.66.1)\n",
"Requirement already satisfied: protobuf>=3.20 in /usr/local/lib/python3.10/dist-packages (from tensorboardX) (3.20.3)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.4)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.16.4 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.17.3)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
"Requirement already satisfied: tokenizers<0.15,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.14.1)\n",
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.4.0)\n",
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.16.4->transformers) (2023.6.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.16.4->transformers) (4.5.0)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.4->timm==0.4.12) (1.12)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.4->timm==0.4.12) (3.2)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.4->timm==0.4.12) (3.1.2)\n",
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.4->timm==0.4.12) (2.1.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.3.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.7)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n",
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->timm==0.4.12) (9.4.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.4->timm==0.4.12) (2.1.3)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.4->timm==0.4.12) (1.3.0)\n"
]
}
],
"source": [
"!pip install decord deepspeed einops timm==0.4.12 tensorboardX mpi4py transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6qwB9RtaEVl5",
"outputId": "43f46c83-0f1d-404e-a1af-b08a5af05f4a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content\n",
"fatal: destination path 'VideoMAEv2' already exists and is not an empty directory.\n"
]
}
],
"source": [
"%cd /content\n",
"!git clone https://github.com/OpenGVLab/VideoMAEv2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Bwj7eNpwGLDI"
},
"outputs": [],
"source": [
"class_to_label = {}\n",
"\n",
"with open(\"/content/ucfTrainTestlist/classInd.txt\", 'r') as f:\n",
" for line in f:\n",
" label, class_name = line.split()\n",
" class_to_label[class_name] = label\n",
"\n",
"modes = ['train', 'test']\n",
"\n",
"for mode in modes:\n",
" files = [\n",
" f\"/content/ucfTrainTestlist/{mode}list01.txt\",\n",
" f\"/content/ucfTrainTestlist/{mode}list02.txt\",\n",
" f\"/content/ucfTrainTestlist/{mode}list03.txt\",\n",
" ]\n",
"\n",
" output_file_path = f\"/content/UCF101/{'val' if mode == 'test' else mode}.csv\"\n",
"\n",
" with open(output_file_path, 'w') as outfile:\n",
" for file_path in files:\n",
" with open(file_path, 'r') as infile:\n",
" for line in infile:\n",
" line_text = line.strip()\n",
" if mode == 'train':\n",
" video_path, label = line_text.split(' ')\n",
" else:\n",
" video_path = line_text\n",
" class_name = os.path.dirname(line_text)\n",
" label = class_to_label[class_name]\n",
" outfile.write(f\"/content/UCF101/{video_path} {label}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7Tfx84ZrEfFB",
"outputId": "b25afa77-92f1-4b69-c312-e21012794ba3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/VideoMAEv2\n",
"/content\n"
]
}
],
"source": [
"%cd /content/VideoMAEv2\n",
"from dataset.datasets import VideoClsDataset\n",
"\n",
"from models.modeling_finetune import VisionTransformer, _cfg\n",
"from utils import (\n",
" load_state_dict,\n",
")\n",
"from optim_factory import (\n",
" LayerDecayValueAssigner,\n",
" get_parameter_groups,\n",
")\n",
"%cd /content/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "WG9MzWkQI5tP",
"outputId": "40e59861-2ca7-400b-9d02-43285a68a85b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2023-11-05 21:20:09,304] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
]
}
],
"source": [
"import os\n",
"import sys\n",
"import json\n",
"import warnings\n",
"import math\n",
"import argparse\n",
"import logging\n",
"import random\n",
"import gc\n",
"import tqdm\n",
"\n",
"from collections import OrderedDict\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import deepspeed\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.backends.cudnn as cudnn\n",
"import torch.utils.checkpoint as cp\n",
"from torch.utils.data import Dataset\n",
"from torch.utils.data._utils.collate import default_collate\n",
"from torchvision import transforms\n",
"from timm.models import create_model\n",
"from timm.models.layers import trunc_normal_\n",
"from timm.models.registry import register_model\n",
"from timm.loss import SoftTargetCrossEntropy\n",
"from functools import partial\n",
"from datetime import datetime\n",
"\n",
"from transformers import AutoTokenizer, CLIPModel"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yFhdWFvhbLwF"
},
"outputs": [],
"source": [
"class EnhancedVisionTransformer(VisionTransformer):\n",
" def get_embeddings(self, x):\n",
" B, _, T, H, W = x.shape\n",
"\n",
" x = self.patch_embed(x)\n",
"\n",
" if self.pos_embed is not None:\n",
" x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()\n",
" x = self.pos_drop(x)\n",
"\n",
" for blk in self.blocks:\n",
" if self.with_cp:\n",
" x = cp.checkpoint(blk, x)\n",
" else:\n",
" x = blk(x)\n",
"\n",
" B, num_patches, embed_dim = x.shape\n",
"\n",
" T = T // self.tubelet_size\n",
" x = x.view(B, T, num_patches // T, embed_dim)\n",
" x = x.reshape(B, T, -1)\n",
"\n",
" return x\n",
"\n",
"@register_model\n",
"def vit_small_patch16_224(pretrained=False, **kwargs):\n",
" model = EnhancedVisionTransformer(\n",
" patch_size=16,\n",
" embed_dim=384,\n",
" depth=12,\n",
" num_heads=6,\n",
" mlp_ratio=4,\n",
" qkv_bias=True,\n",
" norm_layer=partial(nn.LayerNorm, eps=1e-6),\n",
" **kwargs)\n",
" model.default_cfg = _cfg()\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gRgLU0IzIcxQ"
},
"outputs": [],
"source": [
"def add_space_before_uppercase(s):\n",
" result = [s[0]]\n",
"\n",
" for char in s[1:]:\n",
" if char.isupper():\n",
" result.append(' ')\n",
" result.append(char)\n",
"\n",
" return ''.join(result)\n",
"\n",
"class EnhancedVideoClsDataset(VideoClsDataset):\n",
" def __getitem__(self, index):\n",
" original_data = super().__getitem__(index)\n",
"\n",
" video_filename = self.dataset_samples[index].split('/')[-1].split('.')[0].split('_')[1]\n",
"\n",
" label = add_space_before_uppercase(video_filename)\n",
"\n",
" return (*original_data, ''.join(label))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WhYEWCxiJBMa"
},
"outputs": [],
"source": [
"args = argparse.Namespace()\n",
"args.model = 'vit_small_patch16_224'\n",
"args.data_set = 'UCF101'\n",
"args.nb_classes = 101\n",
"args.data_path = '/content/UCF101/'\n",
"args.finetune = '/content/vit_s_k710_dl_from_giant.pth'\n",
"args.batch_size = 6\n",
"args.input_size = 224\n",
"args.short_side_size = 224\n",
"args.num_frames = 16\n",
"args.sampling_rate = 10\n",
"args.num_sample = 2\n",
"args.num_workers = 2\n",
"args.opt = 'adamw'\n",
"args.opt_eps = 1e-8\n",
"args.opt_betas = [0.9, 0.999]\n",
"args.lr = 1e-3\n",
"args.min_lr = 1e-6\n",
"args.drop = 0.0\n",
"args.attn_drop_rate = 0.0\n",
"args.drop_path = 0.35\n",
"args.clip_grad = None # 5.0\n",
"args.aa = 'rand-m7-n4-mstd0.5-inc1'\n",
"args.layer_decay = 0.92 # 0.9\n",
"args.weight_decay = 0.06 # 0.05\n",
"args.epochs = 5\n",
"\n",
"args.tubelet_size = 2\n",
"args.with_checkpoint = True\n",
"args.train_interpolation = 'bicubic'\n",
"args.reprob = 0.25\n",
"args.remode = 'pixel'\n",
"args.recount = 1\n",
"args.data_root = ''\n",
"\n",
"args.num_segments = 1\n",
"\n",
"args.start_epoch = 0\n",
"\n",
"args.pin_mem = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rhsNVcWuKMm0"
},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"torch.manual_seed(0)\n",
"np.random.seed(0)\n",
"random.seed(0)\n",
"cudnn.benchmark = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eRRzjmFsMM0T"
},
"outputs": [],
"source": [
"def multiple_samples_collate(batch):\n",
" inputs, labels, video_idx, extra_data, video_file_names = zip(*batch)\n",
" inputs = [item for sublist in inputs for item in sublist]\n",
" labels = [item for sublist in labels for item in sublist]\n",
" video_idx = [item for sublist in video_idx for item in sublist]\n",
" inputs, labels, video_idx, extra_data, video_file_names = (\n",
" default_collate(inputs),\n",
" default_collate(labels),\n",
" default_collate(video_idx),\n",
" default_collate(extra_data),\n",
" default_collate(video_file_names),\n",
" )\n",
" return inputs, labels, video_idx, extra_data, video_file_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Twu9hFl_KhbN"
},
"outputs": [],
"source": [
"train_dataset = EnhancedVideoClsDataset(\n",
" anno_path=os.path.join(args.data_path, 'train.csv'),\n",
" data_root=args.data_root,\n",
" clip_len=args.num_frames,\n",
" frame_sample_rate=args.sampling_rate,\n",
" num_segment=1,\n",
" crop_size=args.input_size,\n",
" short_side_size=args.short_side_size,\n",
" mode='train',\n",
" args=args)\n",
"\n",
"\n",
"data_loader_train = torch.utils.data.DataLoader(\n",
" train_dataset,\n",
" batch_size=args.batch_size,\n",
" num_workers=args.num_workers,\n",
" pin_memory=args.pin_mem,\n",
" shuffle=True,\n",
" drop_last=True,\n",
" collate_fn=partial(multiple_samples_collate),\n",
" persistent_workers=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eWxUWHrlLBYN"
},
"outputs": [],
"source": [
"class FrameScorePredictor(nn.Module):\n",
" def __init__(self, create_model_fn, args):\n",
" super().__init__()\n",
"\n",
"\n",
" self.base_model = create_model_fn(\n",
" args.model,\n",
" img_size=args.input_size,\n",
" pretrained=False,\n",
" all_frames=args.num_frames * args.num_segments,\n",
" tubelet_size=args.tubelet_size,\n",
" drop_rate=args.drop,\n",
" drop_path_rate=args.drop_path,\n",
" attn_drop_rate=args.attn_drop_rate,\n",
" drop_block_rate=None,\n",
" with_cp=args.with_checkpoint,\n",
" )\n",
"\n",
" self.base_embedding_dim = self.base_model.embed_dim * 14 ** 2 # TODO: use parameters\n",
" self.embedding_frame_number = args.num_frames // args.tubelet_size\n",
"\n",
" self.score_predictor = nn.Sequential(\n",
" nn.Linear(self.base_embedding_dim * self.embedding_frame_number, self.embedding_frame_number)\n",
" )\n",
"\n",
" def forward(self, x):\n",
" batch_size, num_channels, num_frames, height, width = x.shape\n",
"\n",
" embeddings = self.base_model.get_embeddings(x)\n",
"\n",
" embeddings = embeddings.reshape(batch_size, self.base_embedding_dim * self.embedding_frame_number)\n",
"\n",
" frame_scores = self.score_predictor(embeddings)\n",
" return frame_scores\n",
"\n",
" def load_base_model_state_dict(self, checkpoint_model):\n",
" load_state_dict(self.base_model, checkpoint_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VO4DA_QkKl0v",
"outputId": "a107c6dd-272a-4970-ced6-cd0e16abbaa5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"size mismatch for head.weight: copying a param with shape torch.Size([710, 384]) from checkpoint, the shape in current model is torch.Size([1000, 384]).\n",
"size mismatch for head.bias: copying a param with shape torch.Size([710]) from checkpoint, the shape in current model is torch.Size([1000]).\n"
]
},
{
"data": {
"text/plain": [
"124"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = FrameScorePredictor(create_model, args=args)\n",
"\n",
"checkpoint = torch.load(args.finetune, map_location='cpu')\n",
"\n",
"checkpoint_model = checkpoint['model'] if 'model' in checkpoint else checkpoint['module']\n",
"\n",
"model.load_base_model_state_dict(checkpoint_model)\n",
"\n",
"model = model.to(device)\n",
"\n",
"del checkpoint\n",
"del checkpoint_model\n",
"\n",
"gc.collect()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_aFo0-9J93FN"
},
"outputs": [],
"source": [
"class PairwiseLoss(torch.nn.Module):\n",
" def __init__(self, margin=0.2):\n",
" super(PairwiseLoss, self).__init__()\n",
" self.margin = margin\n",
"\n",
" def forward(self, scores, labels):\n",
" pairwise_diff = scores.unsqueeze(1) - scores.unsqueeze(0)\n",
"\n",
" positive_mask = (labels.unsqueeze(1) - labels.unsqueeze(0)) > self.margin\n",
"\n",
" positive_diffs = pairwise_diff[positive_mask]\n",
"\n",
" loss = torch.clamp(positive_diffs, min=0).sum()\n",
"\n",
" num_positive_pairs = positive_mask.sum()\n",
" return loss / num_positive_pairs if num_positive_pairs > 0 else loss\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GVGSAGKlPJye"
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
"clip_model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\").to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "E9nez-e8TOLp"
},
"outputs": [],
"source": [
"all_classes = [add_space_before_uppercase(text) for text in class_to_label.keys()]\n",
"all_classes_inputs = tokenizer(all_classes, padding=True, truncation=True, return_tensors=\"pt\").to(device)\n",
"with torch.no_grad():\n",
" text_embeddings = clip_model.get_text_features(**all_classes_inputs)\n",
"\n",
"all_classes_clip_embedding = {text: emb for text, emb in zip(all_classes, text_embeddings)}\n",
"all_classes_clip_embedding_list = torch.stack(list(all_classes_clip_embedding.values())).to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9lRGZ1ZuYmEe"
},
"outputs": [],
"source": [
"def compute_accuracies(frame_features, target_index):\n",
" similarities = torch.matmul(frame_features, all_classes_clip_embedding_list.T)\n",
"\n",
" top5_indices = torch.topk(similarities, 5, largest=True).indices\n",
"\n",
" top1 = int(top5_indices[0] == target_index)\n",
" top5 = int(target_index in top5_indices)\n",
"\n",
" return top1, top5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "nQ3f69MnGLcW"
},
"outputs": [],
"source": [
"embedding_frame_number = args.num_frames // args.tubelet_size\n",
"ranking_loss_scale = embedding_frame_number**3-embedding_frame_number\n",
"\n",
"# mse_criterion = nn.MSELoss()\n",
"# margin_ranking_loss = nn.MarginRankingLoss(margin=1)\n",
"\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n",
"\n",
"gc.collect()\n",
"torch.cuda.empty_cache()\n",
"\n",
"model.train()\n",
"\n",
"bce_loss_sum = 0.0\n",
"mse_loss_sum = 0.0\n",
"rank_loss_sum = 0.0\n",
"combined_loss_sum = 0.0\n",
"print_step = 10\n",
"\n",
"strategies_items = ['random', 'best_pseudo', 'best_predicted']\n",
"\n",
"acc1_sum = {strategy_name: 0 for strategy_name in strategies_items}\n",
"acc5_sum = {strategy_name: 0 for strategy_name in strategies_items}\n",
"acc_counter = {strategy_name: 0 for strategy_name in strategies_items}\n",
"\n",
"for step, (samples, targets, _, _, classes) in enumerate(data_loader_train):\n",
" optimizer.zero_grad()\n",
"\n",
" pseudo_labels = []\n",
" samples = samples.to(device)\n",
" targets = targets.to(device)\n",
" inputs = tokenizer(classes, padding=True, return_tensors=\"pt\").to(device)\n",
" text_features = clip_model.get_text_features(**inputs)\n",
"\n",
" all_frames_features = []\n",
"\n",
" for i in range(samples.shape[0]):\n",
" video_frames = samples[i].permute(1, 0, 2, 3)\n",
" video_frames = video_frames[1::2]\n",
" frames_features = clip_model.get_image_features(pixel_values=video_frames)\n",
" all_frames_features.append(frames_features)\n",
" similarity = torch.matmul(frames_features, text_features[i // args.num_sample])\n",
" pseudo_labels.append(similarity)\n",
" pseudo_labels = torch.stack(pseudo_labels).to(device)\n",
"\n",
" predicted_scores = model(samples)\n",
"\n",
" # mse_loss = mse_criterion(predicted_scores, pseudo_labels)\n",
"\n",
" best_frame_targets = torch.zeros_like(pseudo_labels)\n",
" best_frame_indices = pseudo_labels.argmax(dim=1)\n",
" best_frame_targets[torch.arange(pseudo_labels.size(0)), best_frame_indices] = 1\n",
" bce_loss = F.binary_cross_entropy_with_logits(predicted_scores, best_frame_targets)\n",
"\n",
" # target = (pseudo_labels[1:] > pseudo_labels[:-1]).float() * 2 - 1\n",
" # rank_loss = margin_ranking_loss(predicted_scores[:-1], predicted_scores[1:], target)\n",
"\n",
" # combined_loss = bce_loss + 0.02 * mse_loss + rank_loss\n",
"\n",
" # combined_loss.backward()\n",
" bce_loss.backward()\n",
" optimizer.step()\n",
"\n",
" # mse_loss_sum += mse_loss.item()\n",
" bce_loss_sum += bce_loss.item()\n",
" # rank_loss_sum += rank_loss.item()\n",
" # combined_loss_sum += combined_loss.item()\n",
"\n",
" strategies = {\n",
" 'random': torch.randint(low=0, high=args.num_frames // 2, size=(samples.size(0),)).to(device),\n",
" 'best_pseudo': pseudo_labels.argmax(dim=1),\n",
" 'best_predicted': predicted_scores.argmax(dim=1)\n",
" }\n",
"\n",
" for strategy_name, frame_indices in strategies.items():\n",
" for frames_features, frame_indice, target in zip(all_frames_features, frame_indices, targets):\n",
" frame_features = frames_features[frame_indice]\n",
" acc1, acc5 = compute_accuracies(frame_features, target - 1)\n",
"\n",
" acc1_sum[strategy_name] += acc1\n",
" acc5_sum[strategy_name] += acc5\n",
" acc_counter[strategy_name] += 1\n",
"\n",
" if (step + 1) % print_step == 0:\n",
" print(\n",
" f'Step {step}/{len(data_loader_train)}\\n'\n",
" # f'Average MSE Loss: {mse_loss_sum / print_step}\\n'\n",
" f'Average BCE Loss: {bce_loss_sum / print_step}\\n'\n",
" # f'Average Ranking Loss: {rank_loss_sum / print_step}\\n'\n",
" # f'Average Combined Loss: {combined_loss_sum / print_step}'\n",
" )\n",
"\n",
" for strategy_name in strategies.keys():\n",
" acc1_avg = acc1_sum[strategy_name] / acc_counter[strategy_name]\n",
" acc5_avg = acc5_sum[strategy_name] / acc_counter[strategy_name]\n",
"\n",
" print(f\"{strategy_name} Average Frame Acc@1: {acc1_avg:.2f}%, Acc@5: {acc5_avg:.2f}%\")\n",
"\n",
" # mse_loss_sum = 0.0\n",
" bce_loss_sum = 0.0\n",
" # rank_loss_sum = 0.0\n",
" # combined_loss_sum = 0.0\n",
"\n",
"\n",
" acc1_sum = {strategy_name: 0 for strategy_name in strategies_items}\n",
" acc5_sum = {strategy_name: 0 for strategy_name in strategies_items}\n",
" acc_counter = {strategy_name: 0 for strategy_name in strategies_items}\n",
"\n",
" print('------------------')\n",
" print()\n",
"\n",
"\n",
" gc.collect()\n",
" torch.cuda.empty_cache()"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

+ 396
- 0
check_labels_dist_in_clip_space.ipynb View File

@@ -0,0 +1,396 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OoqkDAv64cdu",
"outputId": "e0d30294-01b0-48d7-8199-d3ade0698c52"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=1bLhNoh7VNY3nkVlhQ0TBo-KQzTa-WW8c\n",
"To: /content/enhanced-ucf-101-label-CLIP-embedding.txt\n",
"\r 0% 0.00/667k [00:00<?, ?B/s]\r100% 667k/667k [00:00<00:00, 24.2MB/s]\n"
]
}
],
"source": [
"!gdown 1bLhNoh7VNY3nkVlhQ0TBo-KQzTa-WW8c"
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"from operator import itemgetter\n",
"\n",
"def parse_embedding_line(line):\n",
" parts = line.strip().split('|')\n",
" label = parts[0].strip()\n",
" description = parts[1].strip()\n",
" embedding = np.array([float(x) for x in parts[2].strip(' []').split(',')])\n",
" return label, description, embedding\n",
"\n",
"# Read the file\n",
"with open('/content/enhanced-ucf-101-label-CLIP-embedding.txt', 'r') as f:\n",
" lines = f.readlines()\n",
"\n",
"# Parse the lines\n",
"embeddings = [parse_embedding_line(line) for line in lines]\n",
"\n",
"# Calculate similarity and sort\n",
"similarities = []\n",
"for i in range(len(embeddings)):\n",
" for j in range(i+1, len(embeddings)):\n",
" similarity = cosine_similarity([embeddings[i][2]], [embeddings[j][2]])[0][0]\n",
" similarities.append((embeddings[i][0], embeddings[j][0], similarity))\n",
"\n",
"# Sort by similarity\n",
"similarities.sort(key=itemgetter(2), reverse=True)\n",
"\n",
"# Print the sorted similarities\n",
"for similarity in similarities[:300]:\n",
" print(f\"{similarity[0]} and {similarity[1]}: {similarity[2]}\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9_AHfllm7Y1F",
"outputId": "1eb26326-78ae-4640-bb42-9baaacfe81cb"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"BreastStroke and FrontCrawl: 0.9135641566364405\n",
"HighJump and LongJump: 0.9058382170839308\n",
"PushUps and WallPushups: 0.893513324165334\n",
"BoxingPunchingBag and BoxingSpeedBag: 0.8610437315536404\n",
"PlayingCello and PlayingViolin: 0.8607566078247353\n",
"Kayaking and Rafting: 0.8516765812785851\n",
"HandstandPushups and PushUps: 0.8291473360831765\n",
"HammerThrow and ThrowDiscus: 0.8285788251299882\n",
"HighJump and PoleVault: 0.827215227814937\n",
"LongJump and Shotput: 0.8249689845096113\n",
"Shotput and ThrowDiscus: 0.8225986807562835\n",
"BreastStroke and Diving: 0.8198360899246\n",
"HammerThrow and Shotput: 0.8194067921502493\n",
"ParallelBars and UnevenBars: 0.8172351546564418\n",
"HandstandPushups and WallPushups: 0.8063430148554194\n",
"PlayingDhol and PlayingTabla: 0.8044929381515984\n",
"Drumming and PlayingTabla: 0.8036557686356149\n",
"BaseballPitch and TennisSwing: 0.7926770716298019\n",
"HighJump and Shotput: 0.7916822672394149\n",
"FieldHockeyPenalty and SoccerPenalty: 0.7912218906905013\n",
"PlayingFlute and PlayingViolin: 0.7907740407852453\n",
"BodyWeightSquats and Lunges: 0.790197964204252\n",
"Diving and SkyDiving: 0.7900033596110797\n",
"PlayingPiano and PlayingViolin: 0.7898563658083394\n",
"Diving and FrontCrawl: 0.7884088912671918\n",
"CricketBowling and CricketShot: 0.786969527453953\n",
"Kayaking and Rowing: 0.786382273584344\n",
"Haircut and HeadMassage: 0.7813618969695116\n",
"PlayingSitar and PlayingTabla: 0.7788554840779363\n",
"SkateBoarding and Skiing: 0.7762970903271766\n",
"Rafting and Rowing: 0.7752746043074626\n",
"GolfSwing and TennisSwing: 0.7734050524041192\n",
"PullUps and WallPushups: 0.7729951565091107\n",
"HandstandPushups and HandstandWalking: 0.7717042057111059\n",
"HighJump and TrampolineJumping: 0.7710276014756723\n",
"HandstandWalking and SkateBoarding: 0.7684993331159056\n",
"Biking and HorseRiding: 0.768091642690889\n",
"PlayingGuitar and PlayingViolin: 0.766646619086345\n",
"LongJump and TennisSwing: 0.7665787465707985\n",
"RopeClimbing and TrampolineJumping: 0.7659114066820266\n",
"SkyDiving and TrampolineJumping: 0.76511061957433\n",
"PlayingCello and PlayingPiano: 0.7647740312136126\n",
"Diving and HighJump: 0.7629321426272753\n",
"JugglingBalls and YoYo: 0.7610768612305048\n",
"BrushingTeeth and ShavingBeard: 0.7591425280885891\n",
"Diving and LongJump: 0.7574804843984438\n",
"LongJump and TrampolineJumping: 0.7571481857197025\n",
"HighJump and TennisSwing: 0.7566156464932003\n",
"HammerThrow and LongJump: 0.7558300803658048\n",
"Diving and SkateBoarding: 0.7536973390587902\n",
"JumpRope and RopeClimbing: 0.753327828396938\n",
"LongJump and ThrowDiscus: 0.7529842080950556\n",
"Diving and TrampolineJumping: 0.7518814257833246\n",
"Biking and SkateBoarding: 0.7517431292455309\n",
"LongJump and PoleVault: 0.7507306877543533\n",
"BaseballPitch and CricketShot: 0.7499026266438265\n",
"Shotput and TennisSwing: 0.7489834916216616\n",
"PoleVault and Shotput: 0.7488596433999501\n",
"Swing and TrampolineJumping: 0.7487908446460982\n",
"CliffDiving and Diving: 0.7483162287151933\n",
"CricketShot and TableTennisShot: 0.7481777580061397\n",
"Diving and TennisSwing: 0.7471226907881188\n",
"FrisbeeCatch and ThrowDiscus: 0.7443262070746838\n",
"Skiing and Surfing: 0.7431443081264507\n",
"SkateBoarding and SkyDiving: 0.7426388562026282\n",
"PlayingGuitar and PlayingSitar: 0.7421187542614355\n",
"Punch and SkyDiving: 0.741055650388424\n",
"Rafting and SkyDiving: 0.7403432891302099\n",
"CricketShot and SoccerPenalty: 0.7399070298540545\n",
"RopeClimbing and Swing: 0.739812652356636\n",
"SkateBoarding and TrampolineJumping: 0.7398099398134427\n",
"Hammering and Typing: 0.7391169263001942\n",
"HandstandWalking and LongJump: 0.7376174197128719\n",
"HorseRiding and SkateBoarding: 0.7373558640663447\n",
"HandstandWalking and HighJump: 0.7373394124461938\n",
"CricketShot and TennisSwing: 0.7367685620369944\n",
"LongJump and SkateBoarding: 0.7363108945108562\n",
"Diving and HandstandWalking: 0.7361879858427884\n",
"PlayingGuitar and PlayingPiano: 0.7360426048849933\n",
"Hammering and Punch: 0.7355299374133767\n",
"Punch and TennisSwing: 0.7349357411747358\n",
"BalanceBeam and ParallelBars: 0.734626447206699\n",
"PlayingPiano and Typing: 0.7342818000329813\n",
"Drumming and PlayingDhol: 0.7342338545960496\n",
"Diving and Shotput: 0.733686875936528\n",
"PlayingFlute and PlayingPiano: 0.7334535071686105\n",
"FloorGymnastics and PoleVault: 0.7332110651309142\n",
"HorseRace and HorseRiding: 0.7326100067023478\n",
"HandstandWalking and TrampolineJumping: 0.7324930780008992\n",
"Basketball and BasketballDunk: 0.7320448669471811\n",
"HighJump and ThrowDiscus: 0.7312358151246964\n",
"ApplyEyeMakeup and ApplyLipstick: 0.7308442688180419\n",
"RopeClimbing and SkyDiving: 0.7306117431890142\n",
"TennisSwing and VolleyballSpiking: 0.7303710434696256\n",
"Billiards and Bowling: 0.7291336136266361\n",
"Skiing and SkyDiving: 0.7289941358107048\n",
"Diving and Skiing: 0.7279314246716805\n",
"Swing and TennisSwing: 0.7275821346958722\n",
"BaseballPitch and LongJump: 0.7264541939600715\n",
"PlayingCello and PlayingGuitar: 0.7263333055199999\n",
"HammerThrow and JavelinThrow: 0.7257228448556832\n",
"Haircut and Typing: 0.7257034588639546\n",
"RopeClimbing and SkateBoarding: 0.7255599711121894\n",
"HandstandPushups and PullUps: 0.7253599334545812\n",
"Rowing and Skiing: 0.7249357111858055\n",
"TennisSwing and TrampolineJumping: 0.7240195069941607\n",
"HammerThrow and PoleVault: 0.7239577542426181\n",
"LongJump and Skiing: 0.7237669589998139\n",
"BreastStroke and Shotput: 0.7236121929503939\n",
"PlayingCello and PlayingSitar: 0.7232122696549205\n",
"Punch and Swing: 0.7230845724023044\n",
"SkateBoarding and TennisSwing: 0.7228170165773073\n",
"BodyWeightSquats and HandstandPushups: 0.7220405937519339\n",
"FloorGymnastics and StillRings: 0.7219493456486239\n",
"PullUps and PushUps: 0.7213810950131618\n",
"HorseRiding and Skiing: 0.7206407102268063\n",
"SkyDiving and Typing: 0.7202455770918296\n",
"HorseRiding and RopeClimbing: 0.7191262064512949\n",
"SkyDiving and Swing: 0.7180675832908672\n",
"PlayingFlute and PlayingGuitar: 0.7180613359728372\n",
"HammerThrow and HighJump: 0.7179640718224373\n",
"Diving and Punch: 0.7176298910268708\n",
"PlayingViolin and TennisSwing: 0.7174823425623374\n",
"Diving and RopeClimbing: 0.7167796270997888\n",
"Rafting and RopeClimbing: 0.7167763884184823\n",
"TableTennisShot and TennisSwing: 0.7165475089712395\n",
"Biking and Skiing: 0.7164028469479011\n",
"JavelinThrow and PoleVault: 0.7159371318136043\n",
"RopeClimbing and Typing: 0.7155954413924253\n",
"HeadMassage and Typing: 0.7153357826215936\n",
"Rafting and Typing: 0.7138269972502138\n",
"Biking and Rowing: 0.7137891147805048\n",
"Kayaking and Typing: 0.7137610634362122\n",
"BreastStroke and HighJump: 0.7126134869505956\n",
"Diving and Rowing: 0.7125020136521408\n",
"HighJump and SkateBoarding: 0.7117778149802355\n",
"SoccerPenalty and VolleyballSpiking: 0.7111150090759842\n",
"LongJump and SkyDiving: 0.7110640850737046\n",
"PlayingFlute and PlayingSitar: 0.7110108149484404\n",
"BaseballPitch and Shotput: 0.7109615116869581\n",
"PlayingSitar and PlayingViolin: 0.7104350026580752\n",
"HandstandPushups and JumpingJack: 0.7103055239175267\n",
"SkateBoarding and Surfing: 0.7098772586463374\n",
"Punch and RopeClimbing: 0.7086769659664385\n",
"Punch and TrampolineJumping: 0.7078881926354027\n",
"Diving and Surfing: 0.707117497226668\n",
"PlayingPiano and TennisSwing: 0.706919504587053\n",
"Shotput and SkateBoarding: 0.7061596986078766\n",
"PlayingCello and PlayingFlute: 0.7058423238727487\n",
"FloorGymnastics and UnevenBars: 0.7057777115167209\n",
"ParallelBars and StillRings: 0.7055355076859835\n",
"CleanAndJerk and Shotput: 0.7055125658073746\n",
"Kayaking and SkyDiving: 0.704658976975876\n",
"TableTennisShot and VolleyballSpiking: 0.7045804240564966\n",
"Drumming and PlayingPiano: 0.7045712194927514\n",
"Haircut and Hammering: 0.7044598702031014\n",
"Rowing and TennisSwing: 0.7042651727056333\n",
"HorseRiding and Typing: 0.7040858174512816\n",
"Punch and Shotput: 0.704052525603613\n",
"Archery and TennisSwing: 0.7036815296561322\n",
"SkateBoarding and YoYo: 0.7030016415760869\n",
"RopeClimbing and YoYo: 0.7029277827820148\n",
"Punch and YoYo: 0.7023995431749964\n",
"LongJump and Lunges: 0.7018532908775557\n",
"JumpRope and TrampolineJumping: 0.7016024452998298\n",
"Diving and Rafting: 0.7013908045763904\n",
"Bowling and CricketBowling: 0.7013511724501809\n",
"Punch and TaiChi: 0.7008104891179683\n",
"BalanceBeam and UnevenBars: 0.7005837043328924\n",
"SkateBoarding and Typing: 0.7005140816781765\n",
"PlayingViolin and YoYo: 0.7003404861306218\n",
"BasketballDunk and TennisSwing: 0.6999227936958208\n",
"HighJump and VolleyballSpiking: 0.6998266362653691\n",
"FloorGymnastics and ParallelBars: 0.6988077818792078\n",
"PlayingViolin and Punch: 0.6973703128445751\n",
"Punch and Typing: 0.6967775549981869\n",
"Archery and Shotput: 0.6967583917284877\n",
"Billiards and TableTennisShot: 0.6967073608377916\n",
"BreastStroke and TennisSwing: 0.6966987394749857\n",
"Punch and SkateBoarding: 0.6964323711013919\n",
"TennisSwing and ThrowDiscus: 0.6964309660329386\n",
"Biking and TennisSwing: 0.6962187137964084\n",
"BaseballPitch and GolfSwing: 0.6961587111393436\n",
"SkateBoarding and Swing: 0.6960365072022532\n",
"BalanceBeam and FloorGymnastics: 0.6956748992112082\n",
"RopeClimbing and Skiing: 0.6954019941797185\n",
"BasketballDunk and HighJump: 0.6952324557182699\n",
"RopeClimbing and TennisSwing: 0.6952311829515747\n",
"BreastStroke and Rowing: 0.6949829501769483\n",
"Skiing and TennisSwing: 0.6947422694408114\n",
"JumpingJack and TrampolineJumping: 0.6946418413900224\n",
"ParallelBars and PommelHorse: 0.6943619896075937\n",
"BreastStroke and LongJump: 0.6926574264131027\n",
"FloorGymnastics and HandstandPushups: 0.6924127157339901\n",
"Shotput and Skiing: 0.692409162454707\n",
"BodyWeightSquats and JumpingJack: 0.6915140858910102\n",
"Archery and PlayingViolin: 0.6914364939922757\n",
"BasketballDunk and TrampolineJumping: 0.6910720435738926\n",
"Haircut and SkyDiving: 0.6906279918436358\n",
"HorseRiding and Rowing: 0.6906078683829708\n",
"Diving and Kayaking: 0.6904115966869461\n",
"HighJump and SkyDiving: 0.6903223255840882\n",
"HandstandWalking and RopeClimbing: 0.6900177976361846\n",
"Biking and Typing: 0.688663446247988\n",
"Archery and Punch: 0.6885543671849701\n",
"BreastStroke and Surfing: 0.6882605898627008\n",
"Diving and PlayingPiano: 0.6877803133466125\n",
"PlayingPiano and SkateBoarding: 0.6872490075085536\n",
"BaseballPitch and Punch: 0.6871945116845465\n",
"HandstandWalking and UnevenBars: 0.6869197476332304\n",
"CricketShot and GolfSwing: 0.6868492889521802\n",
"Kayaking and Surfing: 0.6865820428631303\n",
"Basketball and TennisSwing: 0.6864463021798647\n",
"Shotput and YoYo: 0.6862387737044783\n",
"PlayingViolin and SkateBoarding: 0.6861837432385506\n",
"SoccerPenalty and TennisSwing: 0.6861144923920035\n",
"BaseballPitch and SkateBoarding: 0.6855318206995243\n",
"Shotput and TrampolineJumping: 0.6854082143018928\n",
"CricketShot and Shotput: 0.6852120255606943\n",
"Kayaking and Skiing: 0.6850696489537216\n",
"Archery and Fencing: 0.6850545206297898\n",
"HighJump and Skiing: 0.6847553551867225\n",
"BaseballPitch and PlayingViolin: 0.6840371878413228\n",
"HorseRiding and Swing: 0.6835796664282903\n",
"Archery and SkyDiving: 0.683544816768237\n",
"PlayingCello and YoYo: 0.6833837981485343\n",
"Rowing and Typing: 0.6833516303139973\n",
"HorseRiding and SkyDiving: 0.6832857317563026\n",
"Lunges and TennisSwing: 0.6827234718924219\n",
"BasketballDunk and LongJump: 0.6825552137357147\n",
"Rowing and Surfing: 0.6820142752266611\n",
"JumpingJack and LongJump: 0.6819915349194994\n",
"Haircut and Punch: 0.6819490061511206\n",
"Haircut and SkateBoarding: 0.6818481724348707\n",
"FloorGymnastics and HighJump: 0.6808541160844553\n",
"Punch and Rafting: 0.6807997071512121\n",
"PlayingPiano and Rowing: 0.680677304303248\n",
"JavelinThrow and ThrowDiscus: 0.6806693704418652\n",
"Rowing and SkateBoarding: 0.6803773211285751\n",
"Hammering and HeadMassage: 0.6802512293515253\n",
"Punch and Rowing: 0.6802002555149966\n",
"BodyWeightSquats and PushUps: 0.6799776131017082\n",
"Diving and Typing: 0.6797726174709029\n",
"Shotput and SkyDiving: 0.6797673354951406\n",
"Hammering and PlayingViolin: 0.6796496669473412\n",
"HandstandWalking and SkyDiving: 0.6794054995491691\n",
"FloorGymnastics and HandstandWalking: 0.6794028936136237\n",
"BasketballDunk and CricketShot: 0.6792758965914687\n",
"Biking and Diving: 0.6790006973364628\n",
"BaseballPitch and CricketBowling: 0.6786719503376799\n",
"LongJump and VolleyballSpiking: 0.6784090342928275\n",
"PullUps and RopeClimbing: 0.678258564371885\n",
"Rafting and Skiing: 0.6781782308964603\n",
"SkyDiving and TennisSwing: 0.6780321924063827\n",
"Biking and Kayaking: 0.6778740166200692\n",
"HorseRiding and Punch: 0.6775237101716206\n",
"Hammering and SkateBoarding: 0.6770651672183081\n",
"Mixing and Typing: 0.6770458400648384\n",
"Shotput and VolleyballSpiking: 0.6769503514713261\n",
"LongJump and Punch: 0.6768260936231084\n",
"Billiards and TennisSwing: 0.676687811162065\n",
"SoccerJuggling and SoccerPenalty: 0.6765064274372669\n",
"StillRings and UnevenBars: 0.6764089115086491\n",
"JugglingBalls and SoccerJuggling: 0.6760817346996303\n",
"BaseballPitch and SoccerPenalty: 0.6759697039170522\n",
"Hammering and HorseRiding: 0.6757606742710943\n",
"Billiards and PlayingPiano: 0.6756887070040185\n",
"Basketball and Shotput: 0.6756210059393115\n",
"TrampolineJumping and Typing: 0.6756177121880147\n",
"BalanceBeam and PommelHorse: 0.6755478243357194\n",
"CliffDiving and SkyDiving: 0.6754688197958925\n",
"BenchPress and HandstandPushups: 0.6753462315331547\n",
"Rowing and Skijet: 0.6749020427705266\n",
"PlayingCello and TennisSwing: 0.6748126664110354\n",
"CricketBowling and TennisSwing: 0.6747936810472541\n",
"TrampolineJumping and UnevenBars: 0.6747665868776003\n",
"BodyWeightSquats and HandstandWalking: 0.6744448381666313\n",
"Hammering and RopeClimbing: 0.6740811403604476\n",
"Lunges and Shotput: 0.6737521021449214\n",
"Drumming and PlayingSitar: 0.6736439263992084\n",
"Skiing and Skijet: 0.6734635666570382\n",
"HandstandWalking and Shotput: 0.6732521658396622\n",
"BandMarching and SkateBoarding: 0.6730512018894181\n",
"HandstandWalking and TennisSwing: 0.672699463584204\n",
"HorseRiding and TennisSwing: 0.6722271368365996\n",
"Biking and RopeClimbing: 0.6721048261242591\n",
"PlayingViolin and Typing: 0.6720289417432124\n",
"HandstandWalking and JumpingJack: 0.671939227917232\n",
"PlayingPiano and PlayingSitar: 0.671923104534426\n",
"HorseRiding and Rafting: 0.6716409889288361\n",
"Biking and LongJump: 0.6713809775815504\n",
"Lunges and TaiChi: 0.6711312367339834\n",
"BandMarching and HorseRiding: 0.6711082186179306\n",
"CricketBowling and Shotput: 0.6705659431969646\n",
"BodyWeightSquats and WallPushups: 0.6705453623257535\n",
"SoccerPenalty and TableTennisShot: 0.6703895759334059\n",
"HandstandWalking and PushUps: 0.6702445259363492\n",
"RopeClimbing and UnevenBars: 0.6699618121733547\n",
"Rowing and Swing: 0.6697346266800764\n",
"PlayingCello and SkateBoarding: 0.6696594880529304\n"
]
}
]
}
]
}

+ 255
- 0
dataloaders/data_dataloaders.py View File

@@ -0,0 +1,255 @@
import torch
from torch.utils.data import DataLoader
from dataloaders.dataloader_msrvtt_retrieval import MSRVTT_DataLoader
from dataloaders.dataloader_msrvtt_retrieval import MSRVTT_TrainDataLoader
from dataloaders.dataloader_msvd_retrieval import MSVD_DataLoader
from dataloaders.dataloader_lsmdc_retrieval import LSMDC_DataLoader
from dataloaders.dataloader_activitynet_retrieval import ActivityNet_DataLoader
from dataloaders.dataloader_didemo_retrieval import DiDeMo_DataLoader

def dataloader_msrvtt_train(args, tokenizer):
msrvtt_dataset = MSRVTT_TrainDataLoader(
csv_path=args.train_csv,
json_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
unfold_sentences=args.expand_msrvtt_sentences,
frame_order=args.train_frame_order,
slice_framepos=args.slice_framepos,
)

train_sampler = torch.utils.data.distributed.DistributedSampler(msrvtt_dataset)
dataloader = DataLoader(
msrvtt_dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(train_sampler is None),
sampler=train_sampler,
drop_last=True,
)

return dataloader, len(msrvtt_dataset), train_sampler

def dataloader_msrvtt_test(args, tokenizer, subset="test"):
msrvtt_testset = MSRVTT_DataLoader(
csv_path=args.val_csv,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.eval_frame_order,
slice_framepos=args.slice_framepos,
)
dataloader_msrvtt = DataLoader(
msrvtt_testset,
batch_size=args.batch_size_val,
num_workers=args.num_thread_reader,
shuffle=False,
drop_last=False,
)
return dataloader_msrvtt, len(msrvtt_testset)


def dataloader_msvd_train(args, tokenizer):
msvd_dataset = MSVD_DataLoader(
subset="train",
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.train_frame_order,
slice_framepos=args.slice_framepos,
)

train_sampler = torch.utils.data.distributed.DistributedSampler(msvd_dataset)
dataloader = DataLoader(
msvd_dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(train_sampler is None),
sampler=train_sampler,
drop_last=True,
)

return dataloader, len(msvd_dataset), train_sampler

def dataloader_msvd_test(args, tokenizer, subset="test"):
msvd_testset = MSVD_DataLoader(
subset=subset,
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.eval_frame_order,
slice_framepos=args.slice_framepos,
)
dataloader_msrvtt = DataLoader(
msvd_testset,
batch_size=args.batch_size_val,
num_workers=args.num_thread_reader,
shuffle=False,
drop_last=False,
)
return dataloader_msrvtt, len(msvd_testset)


def dataloader_lsmdc_train(args, tokenizer):
lsmdc_dataset = LSMDC_DataLoader(
subset="train",
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.train_frame_order,
slice_framepos=args.slice_framepos,
)

train_sampler = torch.utils.data.distributed.DistributedSampler(lsmdc_dataset)
dataloader = DataLoader(
lsmdc_dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(train_sampler is None),
sampler=train_sampler,
drop_last=True,
)

return dataloader, len(lsmdc_dataset), train_sampler

def dataloader_lsmdc_test(args, tokenizer, subset="test"):
lsmdc_testset = LSMDC_DataLoader(
subset=subset,
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.eval_frame_order,
slice_framepos=args.slice_framepos,
)
dataloader_msrvtt = DataLoader(
lsmdc_testset,
batch_size=args.batch_size_val,
num_workers=args.num_thread_reader,
shuffle=False,
drop_last=False,
)
return dataloader_msrvtt, len(lsmdc_testset)


def dataloader_activity_train(args, tokenizer):
activity_dataset = ActivityNet_DataLoader(
subset="train",
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.train_frame_order,
slice_framepos=args.slice_framepos,
)

train_sampler = torch.utils.data.distributed.DistributedSampler(activity_dataset)
dataloader = DataLoader(
activity_dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(train_sampler is None),
sampler=train_sampler,
drop_last=True,
)

return dataloader, len(activity_dataset), train_sampler

def dataloader_activity_test(args, tokenizer, subset="test"):
activity_testset = ActivityNet_DataLoader(
subset=subset,
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.eval_frame_order,
slice_framepos=args.slice_framepos,
)
dataloader_msrvtt = DataLoader(
activity_testset,
batch_size=args.batch_size_val,
num_workers=args.num_thread_reader,
shuffle=False,
drop_last=False,
)
return dataloader_msrvtt, len(activity_testset)


def dataloader_didemo_train(args, tokenizer):
didemo_dataset = DiDeMo_DataLoader(
subset="train",
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.train_frame_order,
slice_framepos=args.slice_framepos,
)

train_sampler = torch.utils.data.distributed.DistributedSampler(didemo_dataset)
dataloader = DataLoader(
didemo_dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(train_sampler is None),
sampler=train_sampler,
drop_last=True,
)

return dataloader, len(didemo_dataset), train_sampler

def dataloader_didemo_test(args, tokenizer, subset="test"):
didemo_testset = DiDeMo_DataLoader(
subset=subset,
data_path=args.data_path,
features_path=args.features_path,
max_words=args.max_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
max_frames=args.max_frames,
frame_order=args.eval_frame_order,
slice_framepos=args.slice_framepos,
)
dataloader_didemo = DataLoader(
didemo_testset,
batch_size=args.batch_size_val,
num_workers=args.num_thread_reader,
shuffle=False,
drop_last=False,
)
return dataloader_didemo, len(didemo_testset)


DATALOADER_DICT = {}
DATALOADER_DICT["msrvtt"] = {"train":dataloader_msrvtt_train, "val":dataloader_msrvtt_test, "test":None}
DATALOADER_DICT["msvd"] = {"train":dataloader_msvd_train, "val":dataloader_msvd_test, "test":dataloader_msvd_test}
DATALOADER_DICT["lsmdc"] = {"train":dataloader_lsmdc_train, "val":dataloader_lsmdc_test, "test":dataloader_lsmdc_test}
DATALOADER_DICT["activity"] = {"train":dataloader_activity_train, "val":dataloader_activity_test, "test":None}
DATALOADER_DICT["didemo"] = {"train":dataloader_didemo_train, "val":dataloader_didemo_test, "test":dataloader_didemo_test}

+ 227
- 0
dataloaders/dataloader_activitynet_retrieval.py View File

@@ -0,0 +1,227 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function

import os
from torch.utils.data import Dataset
import numpy as np
import json
import math
from dataloaders.rawvideo_util import RawVideoExtractor

class ActivityNet_DataLoader(Dataset):
def __init__(
self,
subset,
data_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data_path = data_path
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.subset = subset
assert self.subset in ["train", "val"]

video_id_path_dict = {}
video_id_path_dict["train"] = os.path.join(self.data_path, "train_ids.json")
video_id_path_dict["val"] = os.path.join(self.data_path, "val_ids.json")

video_json_path_dict = {}
video_json_path_dict["train"] = os.path.join(self.data_path, "train.json")
video_json_path_dict["val"] = os.path.join(self.data_path, "val_1.json")

pseudo_video_id_list, video_id_list = self._get_video_id_single(video_id_path_dict[self.subset])
pseudo_caption_dict = self._get_captions_single(video_json_path_dict[self.subset])

print("video id list: {}".format(len(video_id_list)))
print("pseudo caption dict: {}".format(len(pseudo_caption_dict.keys())))

video_dict = {}
for root, dub_dir, video_files in os.walk(self.features_path):
for video_file in video_files:
video_id_ = ".".join(video_file.split(".")[:-1])
if video_id_ not in video_id_list:
continue
file_path_ = os.path.join(root, video_file)
video_dict[video_id_] = file_path_
self.video_dict = video_dict
print("video dict: {}".format(len(video_dict)))

self.pseudo_video_id_list = pseudo_video_id_list
self.video_id_list = video_id_list
self.pseudo_caption_dict = pseudo_caption_dict

# Get iterator video ids
self.video_id2idx_dict = {pseudo_video_id: id for id, pseudo_video_id in enumerate(self.pseudo_video_id_list)}
# Get all captions
self.iter2video_pairs_dict = {}
for pseudo_video_id, video_id in zip(self.pseudo_video_id_list, self.video_id_list):
if pseudo_video_id not in self.pseudo_caption_dict or video_id not in self.video_dict:
continue
caption = self.pseudo_caption_dict[pseudo_video_id]
n_caption = len(caption['start'])
for sub_id in range(n_caption):
self.iter2video_pairs_dict[len(self.iter2video_pairs_dict)] = (pseudo_video_id, sub_id)

self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return len(self.iter2video_pairs_dict)

def _get_video_id_from_pseduo(self, pseudo_video_id):
video_id = pseudo_video_id[2:]
return video_id

def _get_video_id_single(self, path):
pseudo_video_id_list = []
video_id_list = []
print('Loading json: {}'.format(path))
with open(path, 'r') as f:
json_data = json.load(f)

for pseudo_video_id in json_data:
if pseudo_video_id in pseudo_video_id_list:
print("reduplicate.")
else:
video_id = self._get_video_id_from_pseduo(pseudo_video_id)
pseudo_video_id_list.append(pseudo_video_id)
video_id_list.append(video_id)
return pseudo_video_id_list, video_id_list

def _get_captions_single(self, path):
pseudo_caption_dict = {}
with open(path, 'r') as f:
json_data = json.load(f)

for pseudo_video_id, v_ in json_data.items():
pseudo_caption_dict[pseudo_video_id] = {}
duration = v_["duration"]
pseudo_caption_dict[pseudo_video_id]["start"] = np.array([0], dtype=object)
pseudo_caption_dict[pseudo_video_id]["end"] = np.array([int(math.ceil(float(duration)))], dtype=object)
pseudo_caption_dict[pseudo_video_id]["text"] = np.array([" ".join(v_["sentences"])], dtype=object)
return pseudo_caption_dict

def _get_text(self, pseudo_video_id, sub_id):
caption = self.pseudo_caption_dict[pseudo_video_id]
k = 1
r_ind = [sub_id]

starts = np.zeros(k, dtype=np.long)
ends = np.zeros(k, dtype=np.long)
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i in range(k):
ind = r_ind[i]
start_, end_ = caption['start'][ind], caption['end'][ind]
words = self.tokenizer.tokenize(caption['text'][ind])
starts[i], ends[i] = start_, end_

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, starts, ends

def _get_rawvideo(self, idx, s, e):
video_mask = np.zeros((len(s), self.max_frames), dtype=np.long)
max_video_length = [0] * len(s)

# Pair x L x T x 3 x H x W
video = np.zeros((len(s), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)
video_path = self.video_dict[idx]
try:
for i in range(len(s)):
start_time = int(s[i])
end_time = int(e[i])
start_time = start_time if start_time >= 0. else 0.
end_time = end_time if end_time >= 0. else 0.
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = end_time + 1

# Should be optimized by gathering all asking of this video
raw_video_data = self.rawVideoExtractor.get_video_data(video_path, start_time, end_time)
raw_video_data = raw_video_data['video']

if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}, start: {}, end: {}".format(video_path, idx, start_time, end_time))
except Exception as excep:
print("video path: {} error. video id: {}, start: {}, end: {}, Error: {}".format(video_path, idx, s, e, excep))
raise excep

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length

return video, video_mask

def __getitem__(self, feature_idx):
pseudo_video_id, sub_id = self.iter2video_pairs_dict[feature_idx]
idx = self.video_id2idx_dict[pseudo_video_id]

pairs_text, pairs_mask, pairs_segment, starts, ends = self._get_text(pseudo_video_id, sub_id)
video, video_mask = self._get_rawvideo(self.video_id_list[idx], starts, ends)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

+ 222
- 0
dataloaders/dataloader_didemo_retrieval.py View File

@@ -0,0 +1,222 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function

import os
from torch.utils.data import Dataset
import numpy as np
import json
from dataloaders.rawvideo_util import RawVideoExtractor

class DiDeMo_DataLoader(Dataset):
def __init__(
self,
subset,
data_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data_path = data_path
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.subset = subset
assert self.subset in ["train", "val", "test"]

video_id_path_dict = {}
video_id_path_dict["train"] = os.path.join(self.data_path, "train_list.txt")
video_id_path_dict["val"] = os.path.join(self.data_path, "val_list.txt")
video_id_path_dict["test"] = os.path.join(self.data_path, "test_list.txt")

video_json_path_dict = {}
video_json_path_dict["train"] = os.path.join(self.data_path, "train_data.json")
video_json_path_dict["val"] = os.path.join(self.data_path, "val_data.json")
video_json_path_dict["test"] = os.path.join(self.data_path, "test_data.json")

with open(video_id_path_dict[self.subset], 'r') as fp:
video_ids = [itm.strip() for itm in fp.readlines()]

caption_dict = {}
with open(video_json_path_dict[self.subset], 'r') as f:
json_data = json.load(f)
for itm in json_data:
description = itm["description"]
times = itm["times"]
video = itm["video"]
if video not in video_ids:
continue

# each video is split into 5-second temporal chunks
# average the points from each annotator
start_ = np.mean([t_[0] for t_ in times]) * 5
end_ = (np.mean([t_[1] for t_ in times]) + 1) * 5
if video in caption_dict:
caption_dict[video]["start"].append(start_)
caption_dict[video]["end"].append(end_)
caption_dict[video]["text"].append(description)
else:
caption_dict[video] = {}
caption_dict[video]["start"] = [start_]
caption_dict[video]["end"] = [end_]
caption_dict[video]["text"] = [description]

for k_ in caption_dict.keys():
caption_dict[k_]["start"] = [0]
# trick to save time on obtaining each video length
# [https://github.com/LisaAnne/LocalizingMoments/blob/master/README.md]:
# Some videos are longer than 30 seconds. These videos were truncated to 30 seconds during annotation.
caption_dict[k_]["end"] = [31]
caption_dict[k_]["text"] = [" ".join(caption_dict[k_]["text"])]

video_dict = {}
for root, dub_dir, video_files in os.walk(self.features_path):
for video_file in video_files:
video_id_ = video_file
if video_id_ not in video_ids:
continue
file_path_ = os.path.join(root, video_file)
video_dict[video_id_] = file_path_

self.caption_dict = caption_dict
self.video_dict = video_dict
video_ids = list(set(video_ids) & set(self.caption_dict.keys()) & set(self.video_dict.keys()))

# Get all captions
self.iter2video_pairs_dict = {}
for video_id in self.caption_dict.keys():
if video_id not in video_ids:
continue
caption = self.caption_dict[video_id]
n_caption = len(caption['start'])
for sub_id in range(n_caption):
self.iter2video_pairs_dict[len(self.iter2video_pairs_dict)] = (video_id, sub_id)

self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return len(self.iter2video_pairs_dict)

def _get_text(self, video_id, sub_id):
caption = self.caption_dict[video_id]
k = 1
r_ind = [sub_id]

starts = np.zeros(k, dtype=np.long)
ends = np.zeros(k, dtype=np.long)
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i in range(k):
ind = r_ind[i]
start_, end_ = caption['start'][ind], caption['end'][ind]
words = self.tokenizer.tokenize(caption['text'][ind])
starts[i], ends[i] = start_, end_

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, starts, ends

def _get_rawvideo(self, idx, s, e):
video_mask = np.zeros((len(s), self.max_frames), dtype=np.long)
max_video_length = [0] * len(s)

# Pair x L x T x 3 x H x W
video = np.zeros((len(s), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)
video_path = self.video_dict[idx]

try:
for i in range(len(s)):
start_time = int(s[i])
end_time = int(e[i])
start_time = start_time if start_time >= 0. else 0.
end_time = end_time if end_time >= 0. else 0.
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = end_time + 1

cache_id = "{}_{}_{}".format(video_path, start_time, end_time)
# Should be optimized by gathering all asking of this video
raw_video_data = self.rawVideoExtractor.get_video_data(video_path, start_time, end_time)
raw_video_data = raw_video_data['video']

if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}, start: {}, end: {}".format(video_path, idx, start_time, end_time))
except Exception as excep:
print("video path: {} error. video id: {}, start: {}, end: {}, Error: {}".format(video_path, idx, s, e, excep))
pass
# raise e

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length

return video, video_mask

def __getitem__(self, feature_idx):
video_id, sub_id = self.iter2video_pairs_dict[feature_idx]

pairs_text, pairs_mask, pairs_segment, starts, ends = self._get_text(video_id, sub_id)
video, video_mask = self._get_rawvideo(video_id, starts, ends)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

+ 208
- 0
dataloaders/dataloader_lsmdc_retrieval.py View File

@@ -0,0 +1,208 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function

import os
from torch.utils.data import Dataset
import numpy as np
import json
import math
from dataloaders.rawvideo_util import RawVideoExtractor

class LSMDC_DataLoader(Dataset):
"""LSMDC dataset loader."""
def __init__(
self,
subset,
data_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data_path = data_path
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.subset = subset
assert self.subset in ["train", "val", "test"]

video_json_path_dict = {}
video_json_path_dict["train"] = os.path.join(self.data_path, "LSMDC16_annos_training.csv")
video_json_path_dict["val"] = os.path.join(self.data_path, "LSMDC16_annos_val.csv")
video_json_path_dict["test"] = os.path.join(self.data_path, "LSMDC16_challenge_1000_publictect.csv")

# <CLIP_ID>\t<START_ALIGNED>\t<END_ALIGNED>\t<START_EXTRACTED>\t<END_EXTRACTED>\t<SENTENCE>
# <CLIP_ID> is not a unique identifier, i.e. the same <CLIP_ID> can be associated with multiple sentences.
# However, LSMDC16_challenge_1000_publictect.csv has no repeat instances
video_id_list = []
caption_dict = {}
with open(video_json_path_dict[self.subset], 'r') as fp:
for line in fp:
line = line.strip()
line_split = line.split("\t")
assert len(line_split) == 6
clip_id, start_aligned, end_aligned, start_extracted, end_extracted, sentence = line_split
caption_dict[len(caption_dict)] = (clip_id, sentence)
if clip_id not in video_id_list: video_id_list.append(clip_id)

video_dict = {}
for root, dub_dir, video_files in os.walk(self.features_path):
for video_file in video_files:
video_id_ = ".".join(video_file.split(".")[:-1])
if video_id_ not in video_id_list:
continue
file_path_ = os.path.join(root, video_file)
video_dict[video_id_] = file_path_

self.video_dict = video_dict

# Get all captions
self.iter2video_pairs_dict = {}
for clip_id, sentence in caption_dict.values():
if clip_id not in self.video_dict:
continue
self.iter2video_pairs_dict[len(self.iter2video_pairs_dict)] = (clip_id, sentence)

self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return len(self.iter2video_pairs_dict)

def _get_video_id_from_pseduo(self, pseudo_video_id):
video_id = pseudo_video_id[2:]
return video_id

def _get_video_id_single(self, path):
pseudo_video_id_list = []
video_id_list = []
print('Loading json: {}'.format(path))
with open(path, 'r') as f:
json_data = json.load(f)

for pseudo_video_id in json_data:
if pseudo_video_id in pseudo_video_id_list:
print("reduplicate.")
else:
video_id = self._get_video_id_from_pseduo(pseudo_video_id)
pseudo_video_id_list.append(pseudo_video_id)
video_id_list.append(video_id)
return pseudo_video_id_list, video_id_list

def _get_captions_single(self, path):
pseudo_caption_dict = {}
with open(path, 'r') as f:
json_data = json.load(f)

for pseudo_video_id, v_ in json_data.items():
pseudo_caption_dict[pseudo_video_id] = {}
timestamps = v_["timestamps"]
pseudo_caption_dict[pseudo_video_id]["start"] = \
np.array([int(math.floor(float(itm[0]))) for itm in timestamps], dtype=object)
pseudo_caption_dict[pseudo_video_id]["end"] = \
np.array([int(math.ceil(float(itm[1]))) for itm in timestamps], dtype=object)
pseudo_caption_dict[pseudo_video_id]["text"] = np.array(v_["sentences"], dtype=object)
return pseudo_caption_dict

def _get_text(self, video_id, caption):
k = 1
choice_video_ids = [video_id]
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i, video_id in enumerate(choice_video_ids):
words = self.tokenizer.tokenize(caption)

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, choice_video_ids

def _get_rawvideo(self, choice_video_ids):
video_mask = np.zeros((len(choice_video_ids), self.max_frames), dtype=np.long)
max_video_length = [0] * len(choice_video_ids)

# Pair x L x T x 3 x H x W
video = np.zeros((len(choice_video_ids), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)

try:
for i, video_id in enumerate(choice_video_ids):
video_path = self.video_dict[video_id]

raw_video_data = self.rawVideoExtractor.get_video_data(video_path)
raw_video_data = raw_video_data['video']

if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0]-1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}".format(video_path, video_id))
except Exception as excep:
print("Video ids: {}".format(choice_video_ids))
raise excep

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length
return video, video_mask

def __getitem__(self, feature_idx):
clip_id, sentence = self.iter2video_pairs_dict[feature_idx]
pairs_text, pairs_mask, pairs_segment, choice_video_ids = self._get_text(clip_id, sentence)
video, video_mask = self._get_rawvideo(choice_video_ids)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

+ 300
- 0
dataloaders/dataloader_msrvtt_retrieval.py View File

@@ -0,0 +1,300 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function

import os
from torch.utils.data import Dataset
import numpy as np
import pandas as pd
from collections import defaultdict
import json
import random
from dataloaders.rawvideo_util import RawVideoExtractor

class MSRVTT_DataLoader(Dataset):
"""MSRVTT dataset loader."""
def __init__(
self,
csv_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data = pd.read_csv(csv_path)
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return len(self.data)

def _get_text(self, video_id, sentence):
choice_video_ids = [video_id]
n_caption = len(choice_video_ids)

k = n_caption
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i, video_id in enumerate(choice_video_ids):
words = self.tokenizer.tokenize(sentence)

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, choice_video_ids

def _get_rawvideo(self, choice_video_ids):
video_mask = np.zeros((len(choice_video_ids), self.max_frames), dtype=np.long)
max_video_length = [0] * len(choice_video_ids)

# Pair x L x T x 3 x H x W
video = np.zeros((len(choice_video_ids), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)

for i, video_id in enumerate(choice_video_ids):
# Individual for YoucokII dataset, due to it video format
video_path = os.path.join(self.features_path, "{}.mp4".format(video_id))
if os.path.exists(video_path) is False:
video_path = video_path.replace(".mp4", ".webm")

raw_video_data = self.rawVideoExtractor.get_video_data(video_path)
raw_video_data = raw_video_data['video']
if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}".format(video_path, video_id))

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length

return video, video_mask

def __getitem__(self, idx):
video_id = self.data['video_id'].values[idx]
sentence = self.data['sentence'].values[idx]

pairs_text, pairs_mask, pairs_segment, choice_video_ids = self._get_text(video_id, sentence)
video, video_mask = self._get_rawvideo(choice_video_ids)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

class MSRVTT_TrainDataLoader(Dataset):
"""MSRVTT train dataset loader."""
def __init__(
self,
csv_path,
json_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
unfold_sentences=False,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.csv = pd.read_csv(csv_path)
self.data = json.load(open(json_path, 'r'))
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.unfold_sentences = unfold_sentences
self.sample_len = 0
if self.unfold_sentences:
train_video_ids = list(self.csv['video_id'].values)
self.sentences_dict = {}
for itm in self.data['sentences']:
if itm['video_id'] in train_video_ids:
self.sentences_dict[len(self.sentences_dict)] = (itm['video_id'], itm['caption'])
self.sample_len = len(self.sentences_dict)
else:
num_sentences = 0
self.sentences = defaultdict(list)
s_video_id_set = set()
for itm in self.data['sentences']:
self.sentences[itm['video_id']].append(itm['caption'])
num_sentences += 1
s_video_id_set.add(itm['video_id'])

# Use to find the clips in the same video
self.parent_ids = {}
self.children_video_ids = defaultdict(list)
for itm in self.data['videos']:
vid = itm["video_id"]
url_posfix = itm["url"].split("?v=")[-1]
self.parent_ids[vid] = url_posfix
self.children_video_ids[url_posfix].append(vid)
self.sample_len = len(self.csv)

self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return self.sample_len

def _get_text(self, video_id, caption=None):
k = 1
choice_video_ids = [video_id]
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i, video_id in enumerate(choice_video_ids):
if caption is not None:
words = self.tokenizer.tokenize(caption)
else:
words = self._get_single_text(video_id)

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, choice_video_ids

def _get_single_text(self, video_id):
rind = random.randint(0, len(self.sentences[video_id]) - 1)
caption = self.sentences[video_id][rind]
words = self.tokenizer.tokenize(caption)
return words

def _get_rawvideo(self, choice_video_ids):
video_mask = np.zeros((len(choice_video_ids), self.max_frames), dtype=np.long)
max_video_length = [0] * len(choice_video_ids)

# Pair x L x T x 3 x H x W
video = np.zeros((len(choice_video_ids), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)

for i, video_id in enumerate(choice_video_ids):
# Individual for YoucokII dataset, due to it video format
video_path = os.path.join(self.features_path, "{}.mp4".format(video_id))
if os.path.exists(video_path) is False:
video_path = video_path.replace(".mp4", ".webm")

raw_video_data = self.rawVideoExtractor.get_video_data(video_path)
raw_video_data = raw_video_data['video']
if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}".format(video_path, video_id))

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length

return video, video_mask

def __getitem__(self, idx):
if self.unfold_sentences:
video_id, caption = self.sentences_dict[idx]
else:
video_id, caption = self.csv['video_id'].values[idx], None
pairs_text, pairs_mask, pairs_segment, choice_video_ids = self._get_text(video_id, caption)
video, video_mask = self._get_rawvideo(choice_video_ids)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

+ 180
- 0
dataloaders/dataloader_msvd_retrieval.py View File

@@ -0,0 +1,180 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function

import os
from torch.utils.data import Dataset
import numpy as np
import pickle
from dataloaders.rawvideo_util import RawVideoExtractor

class MSVD_DataLoader(Dataset):
"""MSVD dataset loader."""
def __init__(
self,
subset,
data_path,
features_path,
tokenizer,
max_words=30,
feature_framerate=1.0,
max_frames=100,
image_resolution=224,
frame_order=0,
slice_framepos=0,
):
self.data_path = data_path
self.features_path = features_path
self.feature_framerate = feature_framerate
self.max_words = max_words
self.max_frames = max_frames
self.tokenizer = tokenizer
# 0: ordinary order; 1: reverse order; 2: random order.
self.frame_order = frame_order
assert self.frame_order in [0, 1, 2]
# 0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.
self.slice_framepos = slice_framepos
assert self.slice_framepos in [0, 1, 2]

self.subset = subset
assert self.subset in ["train", "val", "test"]
video_id_path_dict = {}
video_id_path_dict["train"] = os.path.join(self.data_path, "train_list.txt")
video_id_path_dict["val"] = os.path.join(self.data_path, "val_list.txt")
video_id_path_dict["test"] = os.path.join(self.data_path, "test_list.txt")
caption_file = os.path.join(self.data_path, "raw-captions.pkl")

with open(video_id_path_dict[self.subset], 'r') as fp:
video_ids = [itm.strip() for itm in fp.readlines()]

with open(caption_file, 'rb') as f:
captions = pickle.load(f)

video_dict = {}
for root, dub_dir, video_files in os.walk(self.features_path):
for video_file in video_files:
video_id_ = ".".join(video_file.split(".")[:-1])
if video_id_ not in video_ids:
continue
file_path_ = os.path.join(root, video_file)
video_dict[video_id_] = file_path_
self.video_dict = video_dict

self.sample_len = 0
self.sentences_dict = {}
self.cut_off_points = []
for video_id in video_ids:
assert video_id in captions
for cap in captions[video_id]:
cap_txt = " ".join(cap)
self.sentences_dict[len(self.sentences_dict)] = (video_id, cap_txt)
self.cut_off_points.append(len(self.sentences_dict))

## below variables are used to multi-sentences retrieval
# self.cut_off_points: used to tag the label when calculate the metric
# self.sentence_num: used to cut the sentence representation
# self.video_num: used to cut the video representation
self.multi_sentence_per_video = True # !!! important tag for eval
if self.subset == "val" or self.subset == "test":
self.sentence_num = len(self.sentences_dict)
self.video_num = len(video_ids)
assert len(self.cut_off_points) == self.video_num
print("For {}, sentence number: {}".format(self.subset, self.sentence_num))
print("For {}, video number: {}".format(self.subset, self.video_num))

print("Video number: {}".format(len(self.video_dict)))
print("Total Paire: {}".format(len(self.sentences_dict)))

self.sample_len = len(self.sentences_dict)
self.rawVideoExtractor = RawVideoExtractor(framerate=feature_framerate, size=image_resolution)
self.SPECIAL_TOKEN = {"CLS_TOKEN": "<|startoftext|>", "SEP_TOKEN": "<|endoftext|>",
"MASK_TOKEN": "[MASK]", "UNK_TOKEN": "[UNK]", "PAD_TOKEN": "[PAD]"}

def __len__(self):
return self.sample_len

def _get_text(self, video_id, caption):
k = 1
choice_video_ids = [video_id]
pairs_text = np.zeros((k, self.max_words), dtype=np.long)
pairs_mask = np.zeros((k, self.max_words), dtype=np.long)
pairs_segment = np.zeros((k, self.max_words), dtype=np.long)

for i, video_id in enumerate(choice_video_ids):
words = self.tokenizer.tokenize(caption)

words = [self.SPECIAL_TOKEN["CLS_TOKEN"]] + words
total_length_with_CLS = self.max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
words = words + [self.SPECIAL_TOKEN["SEP_TOKEN"]]

input_ids = self.tokenizer.convert_tokens_to_ids(words)
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
while len(input_ids) < self.max_words:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == self.max_words
assert len(input_mask) == self.max_words
assert len(segment_ids) == self.max_words

pairs_text[i] = np.array(input_ids)
pairs_mask[i] = np.array(input_mask)
pairs_segment[i] = np.array(segment_ids)

return pairs_text, pairs_mask, pairs_segment, choice_video_ids

def _get_rawvideo(self, choice_video_ids):
video_mask = np.zeros((len(choice_video_ids), self.max_frames), dtype=np.long)
max_video_length = [0] * len(choice_video_ids)

# Pair x L x T x 3 x H x W
video = np.zeros((len(choice_video_ids), self.max_frames, 1, 3,
self.rawVideoExtractor.size, self.rawVideoExtractor.size), dtype=np.float)

for i, video_id in enumerate(choice_video_ids):
video_path = self.video_dict[video_id]

raw_video_data = self.rawVideoExtractor.get_video_data(video_path)
raw_video_data = raw_video_data['video']

if len(raw_video_data.shape) > 3:
raw_video_data_clip = raw_video_data
# L x T x 3 x H x W
raw_video_slice = self.rawVideoExtractor.process_raw_data(raw_video_data_clip)
if self.max_frames < raw_video_slice.shape[0]:
if self.slice_framepos == 0:
video_slice = raw_video_slice[:self.max_frames, ...]
elif self.slice_framepos == 1:
video_slice = raw_video_slice[-self.max_frames:, ...]
else:
sample_indx = np.linspace(0, raw_video_slice.shape[0] - 1, num=self.max_frames, dtype=int)
video_slice = raw_video_slice[sample_indx, ...]
else:
video_slice = raw_video_slice

video_slice = self.rawVideoExtractor.process_frame_order(video_slice, frame_order=self.frame_order)

slice_len = video_slice.shape[0]
max_video_length[i] = max_video_length[i] if max_video_length[i] > slice_len else slice_len
if slice_len < 1:
pass
else:
video[i][:slice_len, ...] = video_slice
else:
print("video path: {} error. video id: {}".format(video_path, video_id))

for i, v_length in enumerate(max_video_length):
video_mask[i][:v_length] = [1] * v_length

return video, video_mask

def __getitem__(self, idx):
video_id, caption = self.sentences_dict[idx]

pairs_text, pairs_mask, pairs_segment, choice_video_ids = self._get_text(video_id, caption)
video, video_mask = self._get_rawvideo(choice_video_ids)
return pairs_text, pairs_mask, pairs_segment, video, video_mask

+ 106
- 0
dataloaders/rawvideo_util.py View File

@@ -0,0 +1,106 @@
import torch as th
import numpy as np
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import cv2


class RawVideoExtractorCV2():
def __init__(self, centercrop=False, size=224, framerate=-1, ):
self.centercrop = centercrop
self.size = size
self.framerate = framerate
self.transform = self._transform(self.size)

def _transform(self, n_px):
return Compose([
Resize(n_px, interpolation=Image.BICUBIC),
CenterCrop(n_px),
lambda image: image.convert("RGB"),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])

def video_to_tensor(self, video_file, preprocess, sample_fp=0, start_time=None, end_time=None):
if start_time is not None or end_time is not None:
assert isinstance(start_time, int) and isinstance(end_time, int) \
and start_time > -1 and end_time > start_time
assert sample_fp > -1

# Samples a frame sample_fp X frames.
cap = cv2.VideoCapture(video_file)
frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

total_duration = (frameCount + fps - 1) // fps
start_sec, end_sec = 0, total_duration

if start_time is not None:
start_sec, end_sec = start_time, end_time if end_time <= total_duration else total_duration
cap.set(cv2.CAP_PROP_POS_FRAMES, int(start_time * fps))

interval = 1
if sample_fp > 0:
interval = fps // sample_fp
else:
sample_fp = fps
if interval == 0:
interval = 1

inds = [ind for ind in np.arange(0, fps, interval)]
assert len(inds) >= sample_fp
inds = inds[:sample_fp]

ret = True
images, included = [], []

for sec in np.arange(start_sec, end_sec + 1):
if not ret:
break
sec_base = int(sec * fps)
for ind in inds:
cap.set(cv2.CAP_PROP_POS_FRAMES, sec_base + ind)
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
images.append(preprocess(
Image.fromarray(frame_rgb).convert("RGB")))

cap.release()

if len(images) > 0:
video_data = th.tensor(np.stack(images))
else:
video_data = th.zeros(1)
return {'video': video_data}

def get_video_data(self, video_path, start_time=None, end_time=None):
image_input = self.video_to_tensor(
video_path, self.transform, sample_fp=self.framerate, start_time=start_time, end_time=end_time)
return image_input

def process_raw_data(self, raw_video_data):
tensor_size = raw_video_data.size()
tensor = raw_video_data.view(-1, 1,
tensor_size[-3], tensor_size[-2], tensor_size[-1])
return tensor

def process_frame_order(self, raw_video_data, frame_order=0):
# 0: ordinary order; 1: reverse order; 2: random order.
if frame_order == 0:
pass
elif frame_order == 1:
reverse_order = np.arange(raw_video_data.size(0) - 1, -1, -1)
raw_video_data = raw_video_data[reverse_order, ...]
elif frame_order == 2:
random_order = np.arange(raw_video_data.size(0))
np.random.shuffle(random_order)
raw_video_data = raw_video_data[random_order, ...]

return raw_video_data


# An ordinary video frame extractor based CV2
RawVideoExtractor = RawVideoExtractorCV2

+ 5436
- 0
download_k400.ipynb
File diff suppressed because it is too large
View File


+ 104
- 0
examples/uniform_sample.ipynb View File

@@ -0,0 +1,104 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install transformers\n",
"!pip install pytube"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!git clone https://github.com/abreza/clip-video-embedder\n",
"%cd clip-video-embedder/"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from utils.video_loader import download_video_from_youtube\n",
"\n",
"video_id = \"4uw4co69JUQ\"\n",
"video_path = download_video_from_youtube('4uw4co69JUQ', './videos')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPModel, CLIPProcessor\n",
"\n",
"model = CLIPModel.from_pretrained(\"clip-vit-large-patch14\")\n",
"processor = CLIPProcessor.from_pretrained(\"clip-vit-large-patch14\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from modules.frame_sampler.uniform_sampler import uniform_sample_frames\n",
"from modules.frame_sampler.aggregate_embedding import aggregate_embeddings\n",
"\n",
"num_frames = 10\n",
"video_frames = uniform_sample_frames(video_path, num_frames)\n",
"\n",
"frame_embeddings = []\n",
"for frame in video_frames:\n",
" inputs = processor(images=frame, return_tensors=\"pt\")\n",
" outputs = model.get_image_features(**inputs)\n",
" frame_embedding = outputs.detach().numpy()\n",
" frame_embeddings.append(frame_embedding)\n",
"\n",
"video_embedding = aggregate_embeddings(frame_embeddings, strategy=\"mean\")\n",
"\n",
"# Compare the video embedding to a given text\n",
"texts = [\"a dog playing in the park\", \"playing basketball\"]\n",
"for text in texts:\n",
" text_inputs = processor(text=text, return_tensors=\"pt\", padding=True)\n",
" text_outputs = model.get_text_features(**text_inputs)\n",
" text_embedding = text_outputs.detach().numpy()\n",
" \n",
" similarity = np.inner(video_embedding, text_embedding)\n",
" print(text, similarity)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

+ 31
- 0
main.py View File

@@ -0,0 +1,31 @@
from utils.dotdict import DotNotationDict

from dataloaders.data_dataloaders import DATALOADER_DICT

from transformers import CLIPTokenizer


def main():
tokenizer = CLIPTokenizer.from_pretrained("clip-vit-large-patch14")

train_args = DotNotationDict({
"train_csv": 'MSRVTT_train.9k.csv',
"data_path": 'MSRVTT_data.json',
"features_path": 'MSRVTT_Videos',
"max_words": 32,
"feature_framerate": 1,
"max_frames": 100,
"expand_msrvtt_sentences": True,
"train_frame_order": 0,
"slice_framepos": 2,
"batch_size": 128,
"n_gpu": 1,
"num_thread_reader": 0,
})

train_dataloader, train_length = DATALOADER_DICT['msrvtt']["train"](
train_args, tokenizer)


if __name__ == '__main__':
main()

BIN
modules/.DS_Store View File


+ 46
- 0
modules/clip_video_embedder/VideoEmbedder.py View File

@@ -0,0 +1,46 @@
import numpy as np
from transformers import CLIPProcessor, CLIPModel


class VideoEmbedder:
def __init__(self, model_name="openai/clip-vit-large-patch14"):
self.model = CLIPModel.from_pretrained(model_name)
self.processor = CLIPProcessor.from_pretrained(model_name)

def uniform_sampling(self, frames, num_samples):
frame_count = len(frames)
indices = np.linspace(0, frame_count - 1, num_samples, dtype=int)
sampled_frames = [frames[i] for i in indices]
return sampled_frames

def get_frame_embeddings(self, frames):
inputs = self.processor(images=frames, return_tensors="pt")
outputs = self.model.get_image_features(**inputs)
frame_embeddings = outputs.detach().numpy()
return frame_embeddings

def aggregate_embeddings(self, embeddings, strategy="mean"):
if strategy == "mean":
return np.mean(embeddings, axis=0)
elif strategy == "average":
return np.average(embeddings, axis=0)
else:
raise ValueError("Invalid aggregation strategy")

def embed_video(self, frames, num_samples, aggregation_strategy="mean"):
sampled_frames = self.uniform_sampling(frames, num_samples)
frame_embeddings = self.get_frame_embeddings(sampled_frames)
aggregated_embedding = self.aggregate_embeddings(
frame_embeddings, aggregation_strategy)
return aggregated_embedding

def get_text_embedding(self, text):
text_inputs = self.processor(
text=text, return_tensors="pt", padding=True)
text_outputs = self.model.get_text_features(**text_inputs)
text_embedding = text_outputs.detach().numpy()
return text_embedding

def similarity(self, video_embedding, text_embedding):
similarity_score = np.dot(video_embedding, text_embedding.T)
return similarity_score

+ 8
- 0
modules/frame_sampler/aggregate_embedding.py View File

@@ -0,0 +1,8 @@
import numpy as np


def aggregate_embeddings(embeddings, strategy="mean"):
if strategy == "mean":
return np.mean(embeddings, axis=0)
else:
raise ValueError(f"Unknown aggregation strategy: {strategy}")

+ 41
- 0
modules/frame_sampler/clip_saliency_frame_sampler/model.py View File

@@ -0,0 +1,41 @@
import timm
import torch.nn as nn
from transformers import CLIPProcessor, CLIPModel


class SaliencyNet(nn.Module):
def __init__(self):
super(SaliencyNet, self).__init__()
self.model = timm.create_model('resnet50', pretrained=True)
self.fc1 = nn.Linear(self.model.num_features, 512)
self.fc2 = nn.Linear(512, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()

def forward(self, images):
features = self.model.forward_features(images)
x = self.fc1(features)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x


class CLIPTeacher(nn.Module):
def __init__(self):
super(CLIPTeacher, self).__init__()
self.model = CLIPModel.from_pretrained('openai/clip-vit-large-patch14')
self.processor = CLIPProcessor.from_pretrained(
'openai/clip-vit-large-patch14')

def forward(self, images, descriptions):
inputs = self.processor(
text=descriptions, images=images, return_tensors="pt", padding=True
)

outputs = self.model(**inputs)
logits_per_image = outputs.logits_per_image

average_scores = logits_per_image.mean(dim=1)

return average_scores

+ 53
- 0
modules/frame_sampler/clip_saliency_frame_sampler/train.py View File

@@ -0,0 +1,53 @@
import torch
import torch.nn as nn

from torch.utils.data import DataLoader


def train_salient_frame_sampler(teacher, student, train_dataloader: DataLoader, val_dataloader: DataLoader, epochs: int, optimizer, device):
teacher.eval()
teacher.to(device)
student.train()
student.to(device)

criterion = nn.MSELoss()

num_samples = 10

for epoch in range(epochs):
running_loss = 0.0
for frames, descriptions in train_dataloader:
frames = frames.to(device)
descriptions = descriptions.to(device)

student_scores = student(frames).squeeze()

with torch.no_grad():
teacher_scores = teacher(frames, descriptions)

optimizer.zero_grad()
loss = criterion(student_scores, teacher_scores)
loss.backward()
optimizer.step()

running_loss += loss.item()

train_loss = running_loss / len(train_dataloader)
print(f"Epoch {epoch + 1}/{epochs}, Training Loss: {train_loss:.4f}")

# Calculate validation loss
with torch.no_grad():
running_val_loss = 0.0
for val_frames, val_descriptions in val_dataloader:
val_frames = val_frames.to(device)
val_descriptions = val_descriptions.to(device)

val_student_scores = student(val_frames).squeeze()
val_teacher_scores = teacher(val_frames, val_descriptions)

val_loss = criterion(val_student_scores, val_teacher_scores)
running_val_loss += val_loss.item()

val_loss = running_val_loss / len(val_dataloader)
print(
f"Epoch {epoch + 1}/{epochs}, Validation Loss: {val_loss:.4f}")

+ 20
- 0
modules/frame_sampler/uniform_sampler.py View File

@@ -0,0 +1,20 @@
import cv2
import numpy as np
from PIL import Image


def uniform_sample_frames(video_path, num_frames):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_idxs = np.linspace(0, total_frames - 1, num=num_frames, dtype=int)

frames = []
for idx in frame_idxs:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))

cap.release()
return frames

+ 2171
- 0
postpretrain_VideoMAE_to_CLIP_Space.ipynb
File diff suppressed because it is too large
View File


+ 193
- 0
preprocess_kinetics_labels.ipynb View File

@@ -0,0 +1,193 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QGkNRWwCX4Z4"
},
"outputs": [],
"source": [
"!wget https://storage.googleapis.com/deepmind-media/Datasets/kinetics700_2020.tar.gz"
]
},
{
"cell_type": "code",
"source": [
"!tar -xf kinetics700_2020.tar.gz"
],
"metadata": {
"id": "87GXSaprYGxe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('/content/kinetics700_2020/train.csv')\n",
"\n",
"unique_labels = df['label'].unique()\n",
"\n",
"for i, label in enumerate(unique_labels):\n",
" print(f\"{i}- {label}\")"
],
"metadata": {
"id": "wJ4USlBtZWi9"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def merge_files(real_labels_file, gpt_labels_file):\n",
" with open(real_labels_file, 'r') as real_file, open(gpt_labels_file, 'r') as gpt_file:\n",
" real_labels = real_file.readlines()\n",
" gpt_labels = gpt_file.readlines()\n",
"\n",
" merged_labels = []\n",
" for real, gpt in zip(real_labels, gpt_labels):\n",
" real_label = real.split('-')[1].strip()\n",
" gpt_label = gpt.split('-')[1].strip()\n",
"\n",
" # Merge the labels and add to the list\n",
" merged_labels.append(f'{real_label}: {gpt_label}')\n",
"\n",
" return merged_labels\n",
"\n",
"real_labels_file = '/content/real-labels.txt'\n",
"gpt_labels_file = '/content/chatgpt-labels.txt'\n",
"\n",
"merged_labels = merge_files(real_labels_file, gpt_labels_file)"
],
"metadata": {
"id": "CUMXgnGkDXXB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!pip install transformers"
],
"metadata": {
"id": "gvWmOILaIUI1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from transformers import CLIPProcessor, CLIPModel\n",
"\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\")"
],
"metadata": {
"id": "gPfdGYiHIMss"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"with open('enhanced-kinetics-label-CLIP-embedding.txt', 'w') as write_file:\n",
" for label in merged_labels:\n",
" text_inputs = processor(text=label, return_tensors=\"pt\", padding=True)\n",
" text_features = model.get_text_features(**text_inputs).float()\n",
" # format output to only have 4 digits after decimal point\n",
" formatted_features = ['{:.4f}'.format(val) for val in text_features[0].tolist()]\n",
" write_file.write(label.replace(':', ' |') + ' | ' + str(formatted_features) + '\\n')"
],
"metadata": {
"id": "x84uh8PdIdXI"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!wget https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip --no-check-certificate\n",
"!unzip UCF101TrainTestSplits-RecognitionTask.zip"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jbg7PJSXO9so",
"outputId": "f2e84ec0-37ae-49c3-a732-d35529d38eed"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"--2023-08-02 13:01:00-- https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip\n",
"Resolving www.crcv.ucf.edu (www.crcv.ucf.edu)... 132.170.214.127\n",
"Connecting to www.crcv.ucf.edu (www.crcv.ucf.edu)|132.170.214.127|:443... connected.\n",
"WARNING: cannot verify www.crcv.ucf.edu's certificate, issued by ‘CN=InCommon RSA Server CA,OU=InCommon,O=Internet2,L=Ann Arbor,ST=MI,C=US’:\n",
" Unable to locally verify the issuer's authority.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 113943 (111K) [application/zip]\n",
"Saving to: ‘UCF101TrainTestSplits-RecognitionTask.zip’\n",
"\n",
"\r UCF101Tra 0%[ ] 0 --.-KB/s \rUCF101TrainTestSpli 100%[===================>] 111.27K --.-KB/s in 0.05s \n",
"\n",
"2023-08-02 13:01:00 (2.03 MB/s) - ‘UCF101TrainTestSplits-RecognitionTask.zip’ saved [113943/113943]\n",
"\n",
"Archive: UCF101TrainTestSplits-RecognitionTask.zip\n",
" creating: ucfTrainTestlist/\n",
" inflating: ucfTrainTestlist/classInd.txt \n",
" inflating: ucfTrainTestlist/testlist01.txt \n",
" inflating: ucfTrainTestlist/testlist02.txt \n",
" inflating: ucfTrainTestlist/testlist03.txt \n",
" inflating: ucfTrainTestlist/trainlist01.txt \n",
" inflating: ucfTrainTestlist/trainlist02.txt \n",
" inflating: ucfTrainTestlist/trainlist03.txt \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"with open('enhanced-ucf-101-label-CLIP-embedding.txt', 'w') as write_file:\n",
" with open('ucf101-labels.txt', 'r') as ucf101_labels_file:\n",
" ucf101_labels = ucf101_labels_file.readlines()\n",
" for label in ucf101_labels:\n",
" text_inputs = processor(text=label, return_tensors=\"pt\", padding=True)\n",
" text_features = model.get_text_features(**text_inputs).float()\n",
" # format output to only have 4 digits after decimal point\n",
" formatted_features = ['{:.4f}'.format(val) for val in text_features[0].tolist()]\n",
" write_file.write(label.replace(':', ' |') + ' | ' + str(formatted_features) + '\\n')"
],
"metadata": {
"id": "jAQgg2nMgIE6"
},
"execution_count": null,
"outputs": []
}
]
}

+ 7
- 0
requirements.txt View File

@@ -0,0 +1,7 @@
pytube
timm
transformers
torchvision




+ 76
- 0
save_kinetics_dataset.ipynb View File

@@ -0,0 +1,76 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "ucqaqtLhPY6T",
"outputId": "ceea603c-8b61-4c19-cdc3-1de8062ecfc4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BBOM9m-EQ7so"
},
"outputs": [],
"source": [
"# !pip install opendatalab\n",
"# !odl login\n",
"# %cd /content/drive/MyDrive/Kinetics\n",
"# !odl get Kinetics_700-2020"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"background_save": true
},
"id": "MTa17FVePkqM"
},
"outputs": [],
"source": [
"%cd /content/\n",
"\n",
"!git clone https://github.com/cvdfoundation/kinetics-dataset\n",
"\n",
"%cd /content/drive/MyDrive/Kinetics\n",
"!bash /content/kinetics-dataset/k700_2020_downloader.sh\n",
"!bash /content/kinetics-dataset/k700_2020_extractor.sh"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

+ 1657
- 0
test.ipynb
File diff suppressed because it is too large
View File


+ 22
- 0
uniform-sampler-video-embedder.py View File

@@ -0,0 +1,22 @@
from datasets.msrvtt.dataset import MSRVTTDataset
from modules.clip_video_embedder import VideoEmbedder


def main():
dataset = MSRVTTDataset()
video_embedder = VideoEmbedder()

for idx in range(len(dataset)):
frames, captions = dataset[idx]
video_embedding = video_embedder.embed_video(frames, num_samples=10)

for caption in captions:
text_embedding = video_embedder.get_text_embedding(caption)
similarity_score = video_embedder.similarity(
video_embedding, text_embedding)
print(
f"Similarity between video and caption '{caption}': {similarity_score}")


if __name__ == "__main__":
main()

+ 11
- 0
utils/dotdict.py View File

@@ -0,0 +1,11 @@
class DotNotationDict(dict):
"""Enables dot notation access to dictionary attributes."""

def getattr(self, key):
return self.get(key)

def __setattr__(self, key, value):
self.__setitem__(key, value)

def __delattr__(self, key):
self.__delitem__(key)

+ 8
- 0
utils/sampling.py View File

@@ -0,0 +1,8 @@
import torch


def uniform_sample_frames(frames, num_samples):
total_frames = frames.shape[0]
step_size = total_frames // num_samples
indices = torch.arange(0, total_frames, step_size)[:num_samples]
return frames[indices]

+ 21
- 0
utils/video_loader.py View File

@@ -0,0 +1,21 @@
import os
import pytube


def download_video_from_youtube(video_id_or_url, destination_path=None, video_name=None):
video_url = video_id_or_url if "://" in video_id_or_url else f'https://youtu.be/{video_id_or_url}'

video_id = pytube.extract.video_id(video_url)
destination_path = destination_path if destination_path else '/content/'
video_name = video_name if video_name else f'{video_id}.mp4'
video_path = os.path.join(destination_path, video_name)

if os.path.isfile(video_path):
return video_path

print(f'Downloading YouTube video {video_id}.')
pytube.YouTube(video_url).streams.get_highest_resolution().download(
destination_path, filename=video_name)
print(f'Download complete.')

return video_path

Loading…
Cancel
Save