# -*- coding: utf-8 -*- """llama_10prompts0.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/ """ from tqdm import tqdm import numpy as np import pandas as pd import re import time import matplotlib from openai import OpenAI import json #from google.colab import files base_url = 'YOUR BASE URL' client = OpenAI( api_key=api_key, base_url=base_url ) df = pd.read_csv('news_dataset.csv', delimiter=';') def get_response(prompt, max_tokens=40): response = client.chat.completions.create( model="YOUR LLAMA MODEL", messages=[{"role": "user", "content": prompt}], max_tokens=max_tokens, temperature=1e-6 ) return response.choices[0].message.content def get_prompt(news, political_perspective): if political_perspective == 'Democrat': prompt = f"""You should decide if a news article is “True” or “False” from the view point of a democrat supporter and believer. What would a democrat supporter think of the following news article? The news: {news} You must determine whether it is True (1) or False (0). Respond in the following format: <0 or 1>. Reasoning Explanation. Your explanation must be concise, up to 40 tokens. Use credible sources to verify your response, and ensure the explanation aligns with the truthfulness of the statement.""" elif political_perspective == 'Republican': prompt = f"""You should decide if a news article is “True” or “False” from the view point of a republican supporter and believer. What would a republican supporter think of the following news article? The news: {news} You must determine whether it is True (1) or False (0). Respond in the following format: <0 or 1>. Reasoning Explanation. Your explanation must be concise, up to 40 tokens. Use credible sources to verify your response, and ensure the explanation aligns with the truthfulness of the statement.""" elif political_perspective == 'Neutral': prompt = f"""I will provide a news statement below. The news: {news} You must determine whether it is True (1) or False (0). Respond in the following format: <0 or 1>. Reasoning Explanation. Your explanation must be concise, up to 30 tokens. Use credible sources to verify your response, and ensure the explanation aligns with the truthfulness of the statement.""" return prompt def extract_response(response): pattern = r"?\.\s*(.*)" match = re.search(pattern, response) if match: validation = int(match.group(1)) explanation = match.group(2).strip() return validation, explanation else: return None, response def run(iter): all_explanations = [] for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows"): news = row['News'] explanations = {'Democrat': [], 'Republican': [], 'Neutral': []} validations = {'Democrat': [], 'Republican': [], 'Neutral': []} for perspective in tqdm(['Democrat', 'Republican', 'Neutral'], desc="Processing perspectives", leave=False): for i in range(iter): prompt = get_prompt(news, perspective) response = get_response(prompt) validation, explanation = extract_response(response) validations[perspective].append(validation) explanations[perspective].append(explanation) time.sleep(0.5) for i in range(iter): all_explanations.append({ 'News': news, 'Perspective': perspective, 'Iteration': i, 'Validations': validations[perspective][i], 'Explanations': explanations[perspective] }) true_count_democrat = sum(1 for v in validations['Democrat'] if v == 1) false_count_democrat = sum(1 for v in validations['Democrat'] if v == 0) true_count_republican = sum(1 for v in validations['Republican'] if v == 1) false_count_republican = sum(1 for v in validations['Republican'] if v == 0) true_count_neutral = sum(1 for v in validations['Neutral'] if v == 1) false_count_neutral = sum(1 for v in validations['Neutral'] if v == 0) df.at[idx, 'Count True Democrat'] = true_count_democrat df.at[idx, 'Count False Democrat'] = false_count_democrat df.at[idx, 'Count True Republican'] = true_count_republican df.at[idx, 'Count False Republican'] = false_count_republican df.at[idx, 'Count True Neutral'] = true_count_neutral df.at[idx, 'Count False Neutral'] = false_count_neutral explanations_df = pd.DataFrame(all_explanations) explanations_df.to_csv('explanations.csv', index=False) df.to_csv('updated.csv', index=False) # Download the files #files.download('explanations.csv') #files.download('updated.csv') iter = 10 run(iter=iter) prob_1_democrat = df['Count True Democrat'] / iter prob_0_democrat = df['Count False Democrat'] / iter prob_1_republican = df['Count True Republican'] / iter prob_0_republican = df['Count False Republican'] / iter prob_1_neutral = df['Count True Neutral'] / iter prob_0_neutral = df['Count False Neutral'] / iter ground_truth = df['Ground Truth'] def get_confusion_matrix(ground_truth, prob_1, prob_0): TP = np.sum(ground_truth * prob_1) FP = np.sum((1 - ground_truth) * prob_1) FN = np.sum(ground_truth * prob_0) TN = np.sum((1 - ground_truth) * prob_0) confusion_matrix_prob = np.array([[TP, FP], [FN, TN]]) return confusion_matrix_prob confusion_matrix_prob_democrat = get_confusion_matrix(ground_truth, prob_1_democrat, prob_0_democrat) confusion_matrix_prob_republican = get_confusion_matrix(ground_truth, prob_1_republican, prob_0_republican) confusion_matrix_prob_no = get_confusion_matrix(ground_truth, prob_1_neutral, prob_0_neutral) print(confusion_matrix_prob_democrat) print(confusion_matrix_prob_republican) print(confusion_matrix_prob_no)