123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- {
- "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
- "version": "0.1.2",
- "changelog": {
- "0.1.2": "Update figure with links",
- "0.1.1": "adapt to BundleWorkflow interface and val metric",
- "0.1.0": "complete the model package",
- "0.0.1": "initialize the model package structure"
- },
- "monai_version": "1.2.0rc3",
- "pytorch_version": "1.13.1",
- "numpy_version": "1.22.2",
- "optional_packages_version": {
- "nibabel": "4.0.1",
- "pytorch-ignite": "0.4.9"
- },
- "name": "Whole body CT segmentation",
- "task": "TotalSegmentator Segmentation",
- "description": "A pre-trained SegResNet model for volumetric (3D) segmentation of the 104 whole body segments",
- "authors": "MONAI team",
- "copyright": "Copyright (c) MONAI Consortium",
- "data_source": "TotalSegmentator",
- "data_type": "nibabel",
- "image_classes": "104 foreground channels, 0 channel for the background, intensity scaled to [0, 1]",
- "label_classes": "0 is the background, others are whole body segments",
- "pred_classes": "0 is the background, 104 other chanels are whole body segments",
- "eval_metrics": {
- "mean_dice": 0.8
- },
- "intended_use": "This is an example, not to be used for diagnostic purposes",
- "references": [
- "Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S. and Segeroth, M., 2022. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868.",
- "Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y. and Xu, D., 2022. Automated head and neck tumor segmentation from 3D PET/CT. arXiv preprint arXiv:2209.10809.",
- "Tang, Y., Gao, R., Lee, H.H., Han, S., Chen, Y., Gao, D., Nath, V., Bermudez, C., Savona, M.R., Abramson, R.G. and Bao, S., 2021. High-resolution 3D abdominal segmentation with random patch network fusion. Medical image analysis, 69, p.101894."
- ],
- "network_data_format": {
- "inputs": {
- "image": {
- "type": "image",
- "format": "hounsfield",
- "modality": "CT",
- "num_channels": 1,
- "spatial_shape": [
- 96,
- 96,
- 96
- ],
- "dtype": "float32",
- "value_range": [
- 0,
- 1
- ],
- "is_patch_data": true,
- "channel_def": {
- "0": "image"
- }
- }
- },
- "outputs": {
- "pred": {
- "type": "image",
- "format": "segmentation",
- "num_channels": 105,
- "spatial_shape": [
- 96,
- 96,
- 96
- ],
- "dtype": "float32",
- "value_range": [
- 0,
- 104
- ],
- "is_patch_data": true,
- "channel_def": {
- "0": "background",
- "1": "spleen",
- "2": "kidney_right",
- "3": "kidney_left",
- "4": "gallbladder",
- "5": "liver",
- "6": "stomach",
- "7": "aorta",
- "8": "inferior_vena_cava",
- "9": "portal_vein_and_splenic_vein",
- "10": "pancreas",
- "11": "adrenal_gland_right",
- "12": "adrenal_gland_left",
- "13": "lung_upper_lobe_left",
- "14": "lung_lower_lobe_left",
- "15": "lung_upper_lobe_right",
- "16": "lung_middle_lobe_right",
- "17": "lung_lower_lobe_right",
- "18": "vertebrae_L5",
- "19": "vertebrae_L4",
- "20": "vertebrae_L3",
- "21": "vertebrae_L2",
- "22": "vertebrae_L1",
- "23": "vertebrae_T12",
- "24": "vertebrae_T11",
- "25": "vertebrae_T10",
- "26": "vertebrae_T9",
- "27": "vertebrae_T8",
- "28": "vertebrae_T7",
- "29": "vertebrae_T6",
- "30": "vertebrae_T5",
- "31": "vertebrae_T4",
- "32": "vertebrae_T3",
- "33": "vertebrae_T2",
- "34": "vertebrae_T1",
- "35": "vertebrae_C7",
- "36": "vertebrae_C6",
- "37": "vertebrae_C5",
- "38": "vertebrae_C4",
- "39": "vertebrae_C3",
- "40": "vertebrae_C2",
- "41": "vertebrae_C1",
- "42": "esophagus",
- "43": "trachea",
- "44": "heart_myocardium",
- "45": "heart_atrium_left",
- "46": "heart_ventricle_left",
- "47": "heart_atrium_right",
- "48": "heart_ventricle_right",
- "49": "pulmonary_artery",
- "50": "brain",
- "51": "iliac_artery_left",
- "52": "iliac_artery_right",
- "53": "iliac_vena_left",
- "54": "iliac_vena_right",
- "55": "small_bowel",
- "56": "duodenum",
- "57": "colon",
- "58": "rib_left_1",
- "59": "rib_left_2",
- "60": "rib_left_3",
- "61": "rib_left_4",
- "62": "rib_left_5",
- "63": "rib_left_6",
- "64": "rib_left_7",
- "65": "rib_left_8",
- "66": "rib_left_9",
- "67": "rib_left_10",
- "68": "rib_left_11",
- "69": "rib_left_12",
- "70": "rib_right_1",
- "71": "rib_right_2",
- "72": "rib_right_3",
- "73": "rib_right_4",
- "74": "rib_right_5",
- "75": "rib_right_6",
- "76": "rib_right_7",
- "77": "rib_right_8",
- "78": "rib_right_9",
- "79": "rib_right_10",
- "80": "rib_right_11",
- "81": "rib_right_12",
- "82": "humerus_left",
- "83": "humerus_right",
- "84": "scapula_left",
- "85": "scapula_right",
- "86": "clavicula_left",
- "87": "clavicula_right",
- "88": "femur_left",
- "89": "femur_right",
- "90": "hip_left",
- "91": "hip_right",
- "92": "sacrum",
- "93": "face",
- "94": "gluteus_maximus_left",
- "95": "gluteus_maximus_right",
- "96": "gluteus_medius_left",
- "97": "gluteus_medius_right",
- "98": "gluteus_minimus_left",
- "99": "gluteus_minimus_right",
- "100": "autochthon_left",
- "101": "autochthon_right",
- "102": "iliopsoas_left",
- "103": "iliopsoas_right",
- "104": "urinary_bladder"
- }
- }
- }
- }
- }
|