Organ-aware 3D lesion segmentation dataset and pipeline for abdominal CT analysis (ACM Multimedia 2025 candidate)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

monai_wholeBody_ct_segmentation.ipynb 213KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. {
  2. "nbformat": 4,
  3. "nbformat_minor": 0,
  4. "metadata": {
  5. "colab": {
  6. "provenance": [],
  7. "gpuType": "T4",
  8. "authorship_tag": "ABX9TyOsNL7zeUDPTLklO8UfddKR",
  9. "include_colab_link": true
  10. },
  11. "kernelspec": {
  12. "name": "python3",
  13. "display_name": "Python 3"
  14. },
  15. "language_info": {
  16. "name": "python"
  17. },
  18. "accelerator": "GPU"
  19. },
  20. "cells": [
  21. {
  22. "cell_type": "markdown",
  23. "metadata": {
  24. "id": "view-in-github",
  25. "colab_type": "text"
  26. },
  27. "source": [
  28. "<a href=\"https://colab.research.google.com/github/ytl0623/monai_wholeBody_ct_segmentation/blob/master/monai_wholeBody_ct_segmentation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
  29. ]
  30. },
  31. {
  32. "cell_type": "markdown",
  33. "source": [
  34. "Change Python version 3.10 -> 3.9"
  35. ],
  36. "metadata": {
  37. "id": "_r2WxIAWn6T8"
  38. }
  39. },
  40. {
  41. "cell_type": "code",
  42. "source": [
  43. "!sudo apt-get install python3.9\n",
  44. "!sudo ln -sf /usr/bin/python3.9 /usr/bin/python3\n",
  45. "!sudo apt-get install python3-pip\n",
  46. "!sudo apt-get install python3.9-distutils"
  47. ],
  48. "metadata": {
  49. "id": "YmredzKthlTy",
  50. "colab": {
  51. "base_uri": "https://localhost:8080/"
  52. },
  53. "outputId": "47d284e1-9318-4888-fb9e-9298301496af"
  54. },
  55. "execution_count": 1,
  56. "outputs": [
  57. {
  58. "output_type": "stream",
  59. "name": "stdout",
  60. "text": [
  61. "Reading package lists... Done\n",
  62. "Building dependency tree... Done\n",
  63. "Reading state information... Done\n",
  64. "The following additional packages will be installed:\n",
  65. " libpython3.9-minimal libpython3.9-stdlib mailcap mime-support\n",
  66. " python3.9-minimal\n",
  67. "Suggested packages:\n",
  68. " python3.9-venv binfmt-support\n",
  69. "The following NEW packages will be installed:\n",
  70. " libpython3.9-minimal libpython3.9-stdlib mailcap mime-support python3.9\n",
  71. " python3.9-minimal\n",
  72. "0 upgraded, 6 newly installed, 0 to remove and 16 not upgraded.\n",
  73. "Need to get 5,278 kB of archives.\n",
  74. "After this operation, 19.4 MB of additional disk space will be used.\n",
  75. "Get:1 http://archive.ubuntu.com/ubuntu jammy/main amd64 mailcap all 3.70+nmu1ubuntu1 [23.8 kB]\n",
  76. "Get:2 http://archive.ubuntu.com/ubuntu jammy/main amd64 mime-support all 3.66 [3,696 B]\n",
  77. "Get:3 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 libpython3.9-minimal amd64 3.9.17-1+jammy1 [835 kB]\n",
  78. "Get:4 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 python3.9-minimal amd64 3.9.17-1+jammy1 [2,078 kB]\n",
  79. "Get:5 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 libpython3.9-stdlib amd64 3.9.17-1+jammy1 [1,842 kB]\n",
  80. "Get:6 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 python3.9 amd64 3.9.17-1+jammy1 [496 kB]\n",
  81. "Fetched 5,278 kB in 6s (910 kB/s)\n",
  82. "debconf: unable to initialize frontend: Dialog\n",
  83. "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 78, <> line 6.)\n",
  84. "debconf: falling back to frontend: Readline\n",
  85. "debconf: unable to initialize frontend: Readline\n",
  86. "debconf: (This frontend requires a controlling tty.)\n",
  87. "debconf: falling back to frontend: Teletype\n",
  88. "dpkg-preconfigure: unable to re-open stdin: \n",
  89. "Selecting previously unselected package libpython3.9-minimal:amd64.\n",
  90. "(Reading database ... 120511 files and directories currently installed.)\n",
  91. "Preparing to unpack .../0-libpython3.9-minimal_3.9.17-1+jammy1_amd64.deb ...\n",
  92. "Unpacking libpython3.9-minimal:amd64 (3.9.17-1+jammy1) ...\n",
  93. "Selecting previously unselected package python3.9-minimal.\n",
  94. "Preparing to unpack .../1-python3.9-minimal_3.9.17-1+jammy1_amd64.deb ...\n",
  95. "Unpacking python3.9-minimal (3.9.17-1+jammy1) ...\n",
  96. "Selecting previously unselected package mailcap.\n",
  97. "Preparing to unpack .../2-mailcap_3.70+nmu1ubuntu1_all.deb ...\n",
  98. "Unpacking mailcap (3.70+nmu1ubuntu1) ...\n",
  99. "Selecting previously unselected package mime-support.\n",
  100. "Preparing to unpack .../3-mime-support_3.66_all.deb ...\n",
  101. "Unpacking mime-support (3.66) ...\n",
  102. "Selecting previously unselected package libpython3.9-stdlib:amd64.\n",
  103. "Preparing to unpack .../4-libpython3.9-stdlib_3.9.17-1+jammy1_amd64.deb ...\n",
  104. "Unpacking libpython3.9-stdlib:amd64 (3.9.17-1+jammy1) ...\n",
  105. "Selecting previously unselected package python3.9.\n",
  106. "Preparing to unpack .../5-python3.9_3.9.17-1+jammy1_amd64.deb ...\n",
  107. "Unpacking python3.9 (3.9.17-1+jammy1) ...\n",
  108. "Setting up libpython3.9-minimal:amd64 (3.9.17-1+jammy1) ...\n",
  109. "Setting up python3.9-minimal (3.9.17-1+jammy1) ...\n",
  110. "Setting up mailcap (3.70+nmu1ubuntu1) ...\n",
  111. "Setting up mime-support (3.66) ...\n",
  112. "Setting up libpython3.9-stdlib:amd64 (3.9.17-1+jammy1) ...\n",
  113. "Setting up python3.9 (3.9.17-1+jammy1) ...\n",
  114. "Processing triggers for man-db (2.10.2-1) ...\n",
  115. "Reading package lists... Done\n",
  116. "Building dependency tree... Done\n",
  117. "Reading state information... Done\n",
  118. "The following additional packages will be installed:\n",
  119. " python3-setuptools python3-wheel\n",
  120. "Suggested packages:\n",
  121. " python-setuptools-doc\n",
  122. "The following NEW packages will be installed:\n",
  123. " python3-pip python3-setuptools python3-wheel\n",
  124. "0 upgraded, 3 newly installed, 0 to remove and 16 not upgraded.\n",
  125. "Need to get 1,677 kB of archives.\n",
  126. "After this operation, 8,965 kB of additional disk space will be used.\n",
  127. "Get:1 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 python3-setuptools all 59.6.0-1.2ubuntu0.22.04.1 [339 kB]\n",
  128. "Get:2 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3-wheel all 0.37.1-2ubuntu0.22.04.1 [32.0 kB]\n",
  129. "Get:3 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 python3-pip all 22.0.2+dfsg-1ubuntu0.3 [1,305 kB]\n",
  130. "Fetched 1,677 kB in 1s (2,398 kB/s)\n",
  131. "debconf: unable to initialize frontend: Dialog\n",
  132. "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 78, <> line 3.)\n",
  133. "debconf: falling back to frontend: Readline\n",
  134. "debconf: unable to initialize frontend: Readline\n",
  135. "debconf: (This frontend requires a controlling tty.)\n",
  136. "debconf: falling back to frontend: Teletype\n",
  137. "dpkg-preconfigure: unable to re-open stdin: \n",
  138. "Selecting previously unselected package python3-setuptools.\n",
  139. "(Reading database ... 121176 files and directories currently installed.)\n",
  140. "Preparing to unpack .../python3-setuptools_59.6.0-1.2ubuntu0.22.04.1_all.deb ...\n",
  141. "Unpacking python3-setuptools (59.6.0-1.2ubuntu0.22.04.1) ...\n",
  142. "Selecting previously unselected package python3-wheel.\n",
  143. "Preparing to unpack .../python3-wheel_0.37.1-2ubuntu0.22.04.1_all.deb ...\n",
  144. "Unpacking python3-wheel (0.37.1-2ubuntu0.22.04.1) ...\n",
  145. "Selecting previously unselected package python3-pip.\n",
  146. "Preparing to unpack .../python3-pip_22.0.2+dfsg-1ubuntu0.3_all.deb ...\n",
  147. "Unpacking python3-pip (22.0.2+dfsg-1ubuntu0.3) ...\n",
  148. "Setting up python3-setuptools (59.6.0-1.2ubuntu0.22.04.1) ...\n",
  149. "Setting up python3-wheel (0.37.1-2ubuntu0.22.04.1) ...\n",
  150. "Setting up python3-pip (22.0.2+dfsg-1ubuntu0.3) ...\n",
  151. "Processing triggers for man-db (2.10.2-1) ...\n",
  152. "Reading package lists... Done\n",
  153. "Building dependency tree... Done\n",
  154. "Reading state information... Done\n",
  155. "The following additional packages will be installed:\n",
  156. " python3.9-lib2to3\n",
  157. "The following NEW packages will be installed:\n",
  158. " python3.9-distutils python3.9-lib2to3\n",
  159. "0 upgraded, 2 newly installed, 0 to remove and 16 not upgraded.\n",
  160. "Need to get 319 kB of archives.\n",
  161. "After this operation, 1,234 kB of additional disk space will be used.\n",
  162. "Get:1 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 python3.9-lib2to3 all 3.9.17-1+jammy1 [127 kB]\n",
  163. "Get:2 https://ppa.launchpadcontent.net/deadsnakes/ppa/ubuntu jammy/main amd64 python3.9-distutils all 3.9.17-1+jammy1 [192 kB]\n",
  164. "Fetched 319 kB in 2s (153 kB/s)\n",
  165. "debconf: unable to initialize frontend: Dialog\n",
  166. "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 78, <> line 2.)\n",
  167. "debconf: falling back to frontend: Readline\n",
  168. "debconf: unable to initialize frontend: Readline\n",
  169. "debconf: (This frontend requires a controlling tty.)\n",
  170. "debconf: falling back to frontend: Teletype\n",
  171. "dpkg-preconfigure: unable to re-open stdin: \n",
  172. "Selecting previously unselected package python3.9-lib2to3.\n",
  173. "(Reading database ... 122038 files and directories currently installed.)\n",
  174. "Preparing to unpack .../python3.9-lib2to3_3.9.17-1+jammy1_all.deb ...\n",
  175. "Unpacking python3.9-lib2to3 (3.9.17-1+jammy1) ...\n",
  176. "Selecting previously unselected package python3.9-distutils.\n",
  177. "Preparing to unpack .../python3.9-distutils_3.9.17-1+jammy1_all.deb ...\n",
  178. "Unpacking python3.9-distutils (3.9.17-1+jammy1) ...\n",
  179. "Setting up python3.9-lib2to3 (3.9.17-1+jammy1) ...\n",
  180. "Setting up python3.9-distutils (3.9.17-1+jammy1) ...\n"
  181. ]
  182. }
  183. ]
  184. },
  185. {
  186. "cell_type": "markdown",
  187. "source": [
  188. "Clone Repository"
  189. ],
  190. "metadata": {
  191. "id": "KaymznnwM9BN"
  192. }
  193. },
  194. {
  195. "cell_type": "code",
  196. "execution_count": 2,
  197. "metadata": {
  198. "colab": {
  199. "base_uri": "https://localhost:8080/"
  200. },
  201. "id": "SccRcqOXMFKT",
  202. "outputId": "ac301d5c-c128-4447-d841-9bdefdde376e"
  203. },
  204. "outputs": [
  205. {
  206. "output_type": "stream",
  207. "name": "stdout",
  208. "text": [
  209. "Cloning into 'monai_wholeBody_ct_segmentation'...\n",
  210. "remote: Enumerating objects: 417, done.\u001b[K\n",
  211. "remote: Counting objects: 100% (219/219), done.\u001b[K\n",
  212. "remote: Compressing objects: 100% (212/212), done.\u001b[K\n",
  213. "remote: Total 417 (delta 22), reused 106 (delta 6), pack-reused 198\u001b[K\n",
  214. "Receiving objects: 100% (417/417), 223.31 MiB | 21.87 MiB/s, done.\n",
  215. "Resolving deltas: 100% (28/28), done.\n",
  216. "Updating files: 100% (199/199), done.\n"
  217. ]
  218. }
  219. ],
  220. "source": [
  221. "!git clone https://github.com/ytl0623/monai_wholeBody_ct_segmentation.git"
  222. ]
  223. },
  224. {
  225. "cell_type": "markdown",
  226. "source": [
  227. "Go to the cloned folder"
  228. ],
  229. "metadata": {
  230. "id": "3EAZt1jRNFX0"
  231. }
  232. },
  233. {
  234. "cell_type": "code",
  235. "source": [
  236. "%cd monai_wholeBody_ct_segmentation"
  237. ],
  238. "metadata": {
  239. "colab": {
  240. "base_uri": "https://localhost:8080/"
  241. },
  242. "id": "kOE7W2EoMdvV",
  243. "outputId": "f773a61d-6446-4b65-b7ed-80e4b0e7dbee"
  244. },
  245. "execution_count": 3,
  246. "outputs": [
  247. {
  248. "output_type": "stream",
  249. "name": "stdout",
  250. "text": [
  251. "/content/monai_wholeBody_ct_segmentation\n"
  252. ]
  253. }
  254. ]
  255. },
  256. {
  257. "cell_type": "markdown",
  258. "source": [
  259. "Install the dependencies"
  260. ],
  261. "metadata": {
  262. "id": "H2-H_2rcNGlT"
  263. }
  264. },
  265. {
  266. "cell_type": "code",
  267. "source": [
  268. "!pip install -r requirements.txt"
  269. ],
  270. "metadata": {
  271. "colab": {
  272. "base_uri": "https://localhost:8080/",
  273. "height": 1000
  274. },
  275. "id": "jn25fz1CMfMs",
  276. "outputId": "175e368f-993d-44ee-8c30-87bb67a3532e"
  277. },
  278. "execution_count": 4,
  279. "outputs": [
  280. {
  281. "output_type": "stream",
  282. "name": "stdout",
  283. "text": [
  284. "Collecting flake8>=3.8.1\n",
  285. " Downloading flake8-6.1.0-py2.py3-none-any.whl (58 kB)\n",
  286. "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/58.3 KB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 KB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  287. "\u001b[?25hCollecting flake8-bugbear\n",
  288. " Downloading flake8_bugbear-23.7.10-py3-none-any.whl (30 kB)\n",
  289. "Collecting flake8-comprehensions\n",
  290. " Downloading flake8_comprehensions-3.14.0-py3-none-any.whl (8.1 kB)\n",
  291. "Collecting flake8-executable\n",
  292. " Downloading flake8_executable-2.1.3-py3-none-any.whl (35 kB)\n",
  293. "Collecting pylint!=2.13\n",
  294. " Downloading pylint-2.17.5-py3-none-any.whl (536 kB)\n",
  295. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.7/536.7 KB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  296. "\u001b[?25hCollecting mccabe\n",
  297. " Downloading mccabe-0.7.0-py2.py3-none-any.whl (7.3 kB)\n",
  298. "Collecting pep8-naming\n",
  299. " Downloading pep8_naming-0.13.3-py3-none-any.whl (8.5 kB)\n",
  300. "Collecting pycodestyle\n",
  301. " Downloading pycodestyle-2.11.0-py2.py3-none-any.whl (31 kB)\n",
  302. "Collecting pyflakes\n",
  303. " Downloading pyflakes-3.1.0-py2.py3-none-any.whl (62 kB)\n",
  304. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.6/62.6 KB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  305. "\u001b[?25hCollecting black\n",
  306. " Downloading black-23.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n",
  307. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m75.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  308. "\u001b[?25hCollecting isort\n",
  309. " Downloading isort-5.12.0-py3-none-any.whl (91 kB)\n",
  310. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m91.2/91.2 KB\u001b[0m \u001b[31m12.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  311. "\u001b[?25hCollecting pytype>=2020.6.1\n",
  312. " Downloading pytype-2023.7.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB)\n",
  313. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.9/3.9 MB\u001b[0m \u001b[31m94.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  314. "\u001b[?25hCollecting types-pkg_resources\n",
  315. " Downloading types_pkg_resources-0.1.3-py2.py3-none-any.whl (4.8 kB)\n",
  316. "Collecting mypy>=0.790\n",
  317. " Downloading mypy-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB)\n",
  318. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.0/12.0 MB\u001b[0m \u001b[31m50.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  319. "\u001b[?25hCollecting pre-commit\n",
  320. " Downloading pre_commit-3.3.3-py2.py3-none-any.whl (202 kB)\n",
  321. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m202.8/202.8 KB\u001b[0m \u001b[31m23.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  322. "\u001b[?25hCollecting fire\n",
  323. " Downloading fire-0.5.0.tar.gz (88 kB)\n",
  324. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.3/88.3 KB\u001b[0m \u001b[31m12.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  325. "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
  326. "Collecting pytorch-ignite>=0.4.9\n",
  327. " Downloading pytorch_ignite-0.4.12-py3-none-any.whl (266 kB)\n",
  328. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m266.8/266.8 KB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  329. "\u001b[?25hCollecting einops\n",
  330. " Downloading einops-0.6.1-py3-none-any.whl (42 kB)\n",
  331. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.2/42.2 KB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  332. "\u001b[?25hCollecting nibabel\n",
  333. " Downloading nibabel-5.1.0-py3-none-any.whl (3.3 MB)\n",
  334. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/3.3 MB\u001b[0m \u001b[31m93.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  335. "\u001b[?25hCollecting pyyaml\n",
  336. " Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB)\n",
  337. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m738.9/738.9 KB\u001b[0m \u001b[31m69.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  338. "\u001b[?25hCollecting jsonschema\n",
  339. " Downloading jsonschema-4.19.0-py3-none-any.whl (83 kB)\n",
  340. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m83.4/83.4 KB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  341. "\u001b[?25hCollecting gdown>=4.5.4\n",
  342. " Downloading gdown-4.7.1-py3-none-any.whl (15 kB)\n",
  343. "Collecting tensorboard\n",
  344. " Downloading tensorboard-2.13.0-py3-none-any.whl (5.6 MB)\n",
  345. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m115.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  346. "\u001b[?25hCollecting parameterized\n",
  347. " Downloading parameterized-0.9.0-py2.py3-none-any.whl (20 kB)\n",
  348. "Collecting monai>=1.2.0\n",
  349. " Downloading monai-1.2.0-202306081546-py3-none-any.whl (1.3 MB)\n",
  350. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m85.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  351. "\u001b[?25hCollecting pillow!=8.3.0\n",
  352. " Downloading Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)\n",
  353. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m107.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  354. "\u001b[?25hCollecting itk>=5.2\n",
  355. " Downloading itk-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (8.3 kB)\n",
  356. "Collecting scikit-learn\n",
  357. " Downloading scikit_learn-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB)\n",
  358. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.9/10.9 MB\u001b[0m \u001b[31m76.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  359. "\u001b[?25hCollecting pandas\n",
  360. " Downloading pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB)\n",
  361. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m35.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  362. "\u001b[?25hCollecting cucim==22.8.1\n",
  363. " Downloading cucim-22.8.1-py3-none-manylinux2014_x86_64.whl (8.6 MB)\n",
  364. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  365. "\u001b[?25hCollecting scikit-image>=0.19.0\n",
  366. " Downloading scikit_image-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB)\n",
  367. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m69.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  368. "\u001b[?25hCollecting PyGithub\n",
  369. " Downloading PyGithub-1.59.1-py3-none-any.whl (342 kB)\n",
  370. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m342.2/342.2 KB\u001b[0m \u001b[31m33.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  371. "\u001b[?25hCollecting opencv-python\n",
  372. " Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB)\n",
  373. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.7/61.7 MB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  374. "\u001b[?25hCollecting natsort\n",
  375. " Downloading natsort-8.4.0-py3-none-any.whl (38 kB)\n",
  376. "Collecting pydicom\n",
  377. " Downloading pydicom-2.4.2-py3-none-any.whl (1.8 MB)\n",
  378. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m85.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  379. "\u001b[?25hCollecting matplotlib\n",
  380. " Downloading matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)\n",
  381. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.6/11.6 MB\u001b[0m \u001b[31m116.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  382. "\u001b[?25hCollecting click\n",
  383. " Downloading click-8.1.6-py3-none-any.whl (97 kB)\n",
  384. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.9/97.9 KB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  385. "\u001b[?25hCollecting numpy\n",
  386. " Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB)\n",
  387. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.3/18.3 MB\u001b[0m \u001b[31m97.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  388. "\u001b[?25hCollecting attrs>=19.2.0\n",
  389. " Downloading attrs-23.1.0-py3-none-any.whl (61 kB)\n",
  390. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.2/61.2 KB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  391. "\u001b[?25hCollecting astroid<=2.17.0-dev0,>=2.15.6\n",
  392. " Downloading astroid-2.15.6-py3-none-any.whl (278 kB)\n",
  393. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m278.3/278.3 KB\u001b[0m \u001b[31m32.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  394. "\u001b[?25hCollecting tomli>=1.1.0\n",
  395. " Downloading tomli-2.0.1-py3-none-any.whl (12 kB)\n",
  396. "Collecting tomlkit>=0.10.1\n",
  397. " Downloading tomlkit-0.12.1-py3-none-any.whl (37 kB)\n",
  398. "Collecting dill>=0.2\n",
  399. " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
  400. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 KB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  401. "\u001b[?25hCollecting platformdirs>=2.2.0\n",
  402. " Downloading platformdirs-3.10.0-py3-none-any.whl (17 kB)\n",
  403. "Collecting typing-extensions>=3.10.0\n",
  404. " Downloading typing_extensions-4.7.1-py3-none-any.whl (33 kB)\n",
  405. "Collecting pathspec>=0.9.0\n",
  406. " Downloading pathspec-0.11.2-py3-none-any.whl (29 kB)\n",
  407. "Collecting packaging>=22.0\n",
  408. " Downloading packaging-23.1-py3-none-any.whl (48 kB)\n",
  409. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.9/48.9 KB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  410. "\u001b[?25hCollecting mypy-extensions>=0.4.3\n",
  411. " Downloading mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
  412. "Collecting libcst>=1.0.1\n",
  413. " Downloading libcst-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB)\n",
  414. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.9/2.9 MB\u001b[0m \u001b[31m106.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  415. "\u001b[?25hCollecting ninja>=1.10.0.post2\n",
  416. " Downloading ninja-1.11.1-py2.py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (145 kB)\n",
  417. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m146.0/146.0 KB\u001b[0m \u001b[31m20.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  418. "\u001b[?25hCollecting pydot>=1.4.2\n",
  419. " Downloading pydot-1.4.2-py2.py3-none-any.whl (21 kB)\n",
  420. "Collecting tabulate>=0.8.10\n",
  421. " Downloading tabulate-0.9.0-py3-none-any.whl (35 kB)\n",
  422. "Collecting toml>=0.10.2\n",
  423. " Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB)\n",
  424. "Collecting networkx<3.2\n",
  425. " Downloading networkx-3.1-py3-none-any.whl (2.1 MB)\n",
  426. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m95.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  427. "\u001b[?25hCollecting importlab>=0.8\n",
  428. " Downloading importlab-0.8-py2.py3-none-any.whl (21 kB)\n",
  429. "Collecting jinja2>=3.1.2\n",
  430. " Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)\n",
  431. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m133.1/133.1 KB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  432. "\u001b[?25hCollecting cfgv>=2.0.0\n",
  433. " Downloading cfgv-3.3.1-py2.py3-none-any.whl (7.3 kB)\n",
  434. "Collecting nodeenv>=0.11.1\n",
  435. " Downloading nodeenv-1.8.0-py2.py3-none-any.whl (22 kB)\n",
  436. "Collecting virtualenv>=20.10.0\n",
  437. " Downloading virtualenv-20.24.2-py3-none-any.whl (3.0 MB)\n",
  438. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m113.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  439. "\u001b[?25hCollecting identify>=1.0.0\n",
  440. " Downloading identify-2.5.26-py2.py3-none-any.whl (98 kB)\n",
  441. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.8/98.8 KB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  442. "\u001b[?25hRequirement already satisfied: six in /usr/lib/python3/dist-packages (from fire->-r requirements.txt (line 17)) (1.16.0)\n",
  443. "Collecting termcolor\n",
  444. " Downloading termcolor-2.3.0-py3-none-any.whl (6.9 kB)\n",
  445. "Collecting torch<3,>=1.3\n",
  446. " Downloading torch-2.0.1-cp39-cp39-manylinux1_x86_64.whl (619.9 MB)\n",
  447. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m619.9/619.9 MB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  448. "\u001b[?25hCollecting referencing>=0.28.4\n",
  449. " Downloading referencing-0.30.2-py3-none-any.whl (25 kB)\n",
  450. "Collecting jsonschema-specifications>=2023.03.6\n",
  451. " Downloading jsonschema_specifications-2023.7.1-py3-none-any.whl (17 kB)\n",
  452. "Collecting rpds-py>=0.7.1\n",
  453. " Downloading rpds_py-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
  454. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m73.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  455. "\u001b[?25hCollecting filelock\n",
  456. " Downloading filelock-3.12.2-py3-none-any.whl (10 kB)\n",
  457. "Collecting beautifulsoup4\n",
  458. " Downloading beautifulsoup4-4.12.2-py3-none-any.whl (142 kB)\n",
  459. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.0/143.0 KB\u001b[0m \u001b[31m19.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  460. "\u001b[?25hCollecting tqdm\n",
  461. " Downloading tqdm-4.65.0-py3-none-any.whl (77 kB)\n",
  462. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.1/77.1 KB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  463. "\u001b[?25hCollecting requests[socks]\n",
  464. " Downloading requests-2.31.0-py3-none-any.whl (62 kB)\n",
  465. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.6/62.6 KB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  466. "\u001b[?25hRequirement already satisfied: setuptools>=41.0.0 in /usr/lib/python3/dist-packages (from tensorboard->-r requirements.txt (line 24)) (59.6.0)\n",
  467. "Collecting grpcio>=1.48.2\n",
  468. " Downloading grpcio-1.56.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB)\n",
  469. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.2/5.2 MB\u001b[0m \u001b[31m98.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  470. "\u001b[?25hCollecting protobuf>=3.19.6\n",
  471. " Downloading protobuf-4.23.4-cp37-abi3-manylinux2014_x86_64.whl (304 kB)\n",
  472. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m304.5/304.5 KB\u001b[0m \u001b[31m35.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  473. "\u001b[?25hCollecting google-auth<3,>=1.6.3\n",
  474. " Downloading google_auth-2.22.0-py2.py3-none-any.whl (181 kB)\n",
  475. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.8/181.8 KB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  476. "\u001b[?25hCollecting werkzeug>=1.0.1\n",
  477. " Downloading Werkzeug-2.3.6-py3-none-any.whl (242 kB)\n",
  478. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m242.5/242.5 KB\u001b[0m \u001b[31m29.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  479. "\u001b[?25hRequirement already satisfied: wheel>=0.26 in /usr/lib/python3/dist-packages (from tensorboard->-r requirements.txt (line 24)) (0.37.1)\n",
  480. "Collecting tensorboard-data-server<0.8.0,>=0.7.0\n",
  481. " Downloading tensorboard_data_server-0.7.1-py3-none-manylinux2014_x86_64.whl (6.6 MB)\n",
  482. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m107.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  483. "\u001b[?25hCollecting markdown>=2.6.8\n",
  484. " Downloading Markdown-3.4.4-py3-none-any.whl (94 kB)\n",
  485. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.2/94.2 KB\u001b[0m \u001b[31m14.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  486. "\u001b[?25hCollecting google-auth-oauthlib<1.1,>=0.5\n",
  487. " Downloading google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)\n",
  488. "Collecting absl-py>=0.4\n",
  489. " Downloading absl_py-1.4.0-py3-none-any.whl (126 kB)\n",
  490. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m126.5/126.5 KB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  491. "\u001b[?25hCollecting itk-core==5.3.0\n",
  492. " Downloading itk_core-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (81.2 MB)\n",
  493. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.2/81.2 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  494. "\u001b[?25hCollecting itk-segmentation==5.3.0\n",
  495. " Downloading itk_segmentation-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (16.5 MB)\n",
  496. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.5/16.5 MB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  497. "\u001b[?25hCollecting itk-io==5.3.0\n",
  498. " Downloading itk_io-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (25.6 MB)\n",
  499. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m25.6/25.6 MB\u001b[0m \u001b[31m25.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  500. "\u001b[?25hCollecting itk-numerics==5.3.0\n",
  501. " Downloading itk_numerics-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (58.8 MB)\n",
  502. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 MB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  503. "\u001b[?25hCollecting itk-filtering==5.3.0\n",
  504. " Downloading itk_filtering-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (73.5 MB)\n",
  505. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m73.5/73.5 MB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  506. "\u001b[?25hCollecting itk-registration==5.3.0\n",
  507. " Downloading itk_registration-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (26.6 MB)\n",
  508. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m26.6/26.6 MB\u001b[0m \u001b[31m30.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  509. "\u001b[?25hCollecting scipy>=1.5.0\n",
  510. " Downloading scipy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB)\n",
  511. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.5/36.5 MB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  512. "\u001b[?25hCollecting threadpoolctl>=2.0.0\n",
  513. " Downloading threadpoolctl-3.2.0-py3-none-any.whl (15 kB)\n",
  514. "Collecting joblib>=1.1.1\n",
  515. " Downloading joblib-1.3.1-py3-none-any.whl (301 kB)\n",
  516. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.0/302.0 KB\u001b[0m \u001b[31m31.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  517. "\u001b[?25hCollecting tzdata>=2022.1\n",
  518. " Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB)\n",
  519. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.8/341.8 KB\u001b[0m \u001b[31m30.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  520. "\u001b[?25hCollecting python-dateutil>=2.8.2\n",
  521. " Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)\n",
  522. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m247.7/247.7 KB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  523. "\u001b[?25hCollecting pytz>=2020.1\n",
  524. " Downloading pytz-2023.3-py2.py3-none-any.whl (502 kB)\n",
  525. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m502.3/502.3 KB\u001b[0m \u001b[31m54.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  526. "\u001b[?25hCollecting imageio>=2.27\n",
  527. " Downloading imageio-2.31.1-py3-none-any.whl (313 kB)\n",
  528. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m313.2/313.2 KB\u001b[0m \u001b[31m34.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  529. "\u001b[?25hCollecting PyWavelets>=1.1.1\n",
  530. " Downloading PyWavelets-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB)\n",
  531. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m119.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  532. "\u001b[?25hCollecting tifffile>=2022.8.12\n",
  533. " Downloading tifffile-2023.7.18-py3-none-any.whl (221 kB)\n",
  534. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m221.4/221.4 KB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  535. "\u001b[?25hCollecting lazy_loader>=0.2\n",
  536. " Downloading lazy_loader-0.3-py3-none-any.whl (9.1 kB)\n",
  537. "Collecting deprecated\n",
  538. " Downloading Deprecated-1.2.14-py2.py3-none-any.whl (9.6 kB)\n",
  539. "Collecting pynacl>=1.4.0\n",
  540. " Downloading PyNaCl-1.5.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (856 kB)\n",
  541. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m856.7/856.7 KB\u001b[0m \u001b[31m71.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  542. "\u001b[?25hCollecting pyjwt[crypto]>=2.4.0\n",
  543. " Downloading PyJWT-2.8.0-py3-none-any.whl (22 kB)\n",
  544. "Collecting importlib-resources>=3.2.0\n",
  545. " Downloading importlib_resources-6.0.1-py3-none-any.whl (34 kB)\n",
  546. "Collecting contourpy>=1.0.1\n",
  547. " Downloading contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (300 kB)\n",
  548. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m300.4/300.4 KB\u001b[0m \u001b[31m37.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  549. "\u001b[?25hCollecting pyparsing<3.1,>=2.3.1\n",
  550. " Downloading pyparsing-3.0.9-py3-none-any.whl (98 kB)\n",
  551. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.3/98.3 KB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  552. "\u001b[?25hCollecting cycler>=0.10\n",
  553. " Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
  554. "Collecting kiwisolver>=1.0.1\n",
  555. " Downloading kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
  556. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m70.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  557. "\u001b[?25hCollecting fonttools>=4.22.0\n",
  558. " Downloading fonttools-4.42.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n",
  559. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m111.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  560. "\u001b[?25hCollecting lazy-object-proxy>=1.4.0\n",
  561. " Downloading lazy_object_proxy-1.9.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62 kB)\n",
  562. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.1/62.1 KB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  563. "\u001b[?25hCollecting wrapt<2,>=1.11\n",
  564. " Downloading wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78 kB)\n",
  565. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.3/78.3 KB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  566. "\u001b[?25hCollecting urllib3<2.0\n",
  567. " Downloading urllib3-1.26.16-py2.py3-none-any.whl (143 kB)\n",
  568. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.1/143.1 KB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  569. "\u001b[?25hCollecting cachetools<6.0,>=2.0.0\n",
  570. " Downloading cachetools-5.3.1-py3-none-any.whl (9.3 kB)\n",
  571. "Collecting rsa<5,>=3.1.4\n",
  572. " Downloading rsa-4.9-py3-none-any.whl (34 kB)\n",
  573. "Collecting pyasn1-modules>=0.2.1\n",
  574. " Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB)\n",
  575. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.3/181.3 KB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  576. "\u001b[?25hCollecting requests-oauthlib>=0.7.0\n",
  577. " Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)\n",
  578. "Collecting zipp>=3.1.0\n",
  579. " Downloading zipp-3.16.2-py3-none-any.whl (7.2 kB)\n",
  580. "Collecting MarkupSafe>=2.0\n",
  581. " Downloading MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n",
  582. "Collecting typing-inspect>=0.4.0\n",
  583. " Downloading typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)\n",
  584. "Requirement already satisfied: importlib-metadata>=4.4 in /usr/lib/python3/dist-packages (from markdown>=2.6.8->tensorboard->-r requirements.txt (line 24)) (4.6.4)\n",
  585. "Requirement already satisfied: cryptography>=3.4.0 in /usr/lib/python3/dist-packages (from pyjwt[crypto]>=2.4.0->PyGithub->-r requirements.txt (line 33)) (3.4.8)\n",
  586. "Collecting cffi>=1.4.1\n",
  587. " Downloading cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (441 kB)\n",
  588. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m441.2/441.2 KB\u001b[0m \u001b[31m50.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  589. "\u001b[?25hCollecting certifi>=2017.4.17\n",
  590. " Downloading certifi-2023.7.22-py3-none-any.whl (158 kB)\n",
  591. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m158.3/158.3 KB\u001b[0m \u001b[31m21.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  592. "\u001b[?25hCollecting idna<4,>=2.5\n",
  593. " Downloading idna-3.4-py3-none-any.whl (61 kB)\n",
  594. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.5/61.5 KB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  595. "\u001b[?25hCollecting charset-normalizer<4,>=2\n",
  596. " Downloading charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (202 kB)\n",
  597. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m202.1/202.1 KB\u001b[0m \u001b[31m25.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  598. "\u001b[?25hCollecting nvidia-cuda-nvrtc-cu11==11.7.99\n",
  599. " Downloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl (21.0 MB)\n",
  600. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m81.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  601. "\u001b[?25hCollecting nvidia-nccl-cu11==2.14.3\n",
  602. " Downloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl (177.1 MB)\n",
  603. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m177.1/177.1 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  604. "\u001b[?25hCollecting nvidia-cudnn-cu11==8.5.0.96\n",
  605. " Downloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)\n",
  606. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  607. "\u001b[?25hCollecting nvidia-cusparse-cu11==11.7.4.91\n",
  608. " Downloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl (173.2 MB)\n",
  609. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m173.2/173.2 MB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  610. "\u001b[?25hCollecting sympy\n",
  611. " Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n",
  612. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m74.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  613. "\u001b[?25hCollecting nvidia-curand-cu11==10.2.10.91\n",
  614. " Downloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl (54.6 MB)\n",
  615. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.6/54.6 MB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  616. "\u001b[?25hCollecting nvidia-cuda-cupti-cu11==11.7.101\n",
  617. " Downloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl (11.8 MB)\n",
  618. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.8/11.8 MB\u001b[0m \u001b[31m109.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  619. "\u001b[?25hCollecting nvidia-cuda-runtime-cu11==11.7.99\n",
  620. " Downloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl (849 kB)\n",
  621. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m849.3/849.3 KB\u001b[0m \u001b[31m65.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  622. "\u001b[?25hCollecting nvidia-cufft-cu11==10.9.0.58\n",
  623. " Downloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB)\n",
  624. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m168.4/168.4 MB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  625. "\u001b[?25hCollecting nvidia-nvtx-cu11==11.7.91\n",
  626. " Downloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl (98 kB)\n",
  627. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.6/98.6 KB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  628. "\u001b[?25hCollecting nvidia-cublas-cu11==11.10.3.66\n",
  629. " Downloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl (317.1 MB)\n",
  630. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  631. "\u001b[?25hCollecting triton==2.0.0\n",
  632. " Downloading triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (63.3 MB)\n",
  633. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.3/63.3 MB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  634. "\u001b[?25hCollecting nvidia-cusolver-cu11==11.4.0.1\n",
  635. " Downloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl (102.6 MB)\n",
  636. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.6/102.6 MB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  637. "\u001b[?25hCollecting cmake\n",
  638. " Downloading cmake-3.27.1-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (26.0 MB)\n",
  639. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m26.0/26.0 MB\u001b[0m \u001b[31m54.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  640. "\u001b[?25hCollecting lit\n",
  641. " Downloading lit-16.0.6.tar.gz (153 kB)\n",
  642. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m153.7/153.7 KB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  643. "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
  644. " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
  645. " Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
  646. " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
  647. "Collecting distlib<1,>=0.3.7\n",
  648. " Downloading distlib-0.3.7-py2.py3-none-any.whl (468 kB)\n",
  649. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m468.9/468.9 KB\u001b[0m \u001b[31m38.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  650. "\u001b[?25hCollecting soupsieve>1.2\n",
  651. " Downloading soupsieve-2.4.1-py3-none-any.whl (36 kB)\n",
  652. "Collecting PySocks!=1.5.7,>=1.5.6\n",
  653. " Downloading PySocks-1.7.1-py3-none-any.whl (16 kB)\n",
  654. "Collecting pycparser\n",
  655. " Downloading pycparser-2.21-py2.py3-none-any.whl (118 kB)\n",
  656. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m118.7/118.7 KB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  657. "\u001b[?25hCollecting pyasn1<0.6.0,>=0.4.6\n",
  658. " Downloading pyasn1-0.5.0-py2.py3-none-any.whl (83 kB)\n",
  659. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m83.9/83.9 KB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  660. "\u001b[?25hCollecting oauthlib>=3.0.0\n",
  661. " Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB)\n",
  662. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m151.7/151.7 KB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  663. "\u001b[?25hCollecting mpmath>=0.19\n",
  664. " Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
  665. "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 KB\u001b[0m \u001b[31m52.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
  666. "\u001b[?25hBuilding wheels for collected packages: fire, lit\n",
  667. " Building wheel for fire (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
  668. " Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116951 sha256=532122dd1bd434615ee929ed20dad80c3a272be109739d6422d626f266f93f50\n",
  669. " Stored in directory: /root/.cache/pip/wheels/f7/f1/89/b9ea2bf8f80ec027a88fef1d354b3816b4d3d29530988972f6\n",
  670. " Building wheel for lit (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
  671. " Created wheel for lit: filename=lit-16.0.6-py3-none-any.whl size=93583 sha256=15df868c627dda7845b33112eb0dff5ff5455bcb8a9e34ec161261a3a7ca093c\n",
  672. " Stored in directory: /root/.cache/pip/wheels/a5/36/d6/cac2e6fb891889b33a548f2fddb8b4b7726399aaa2ed32b188\n",
  673. "Successfully built fire lit\n",
  674. "Installing collected packages: types-pkg_resources, pytz, ninja, mpmath, lit, distlib, cmake, zipp, wrapt, urllib3, tzdata, typing-extensions, tqdm, tomlkit, tomli, toml, threadpoolctl, termcolor, tensorboard-data-server, tabulate, sympy, soupsieve, rpds-py, pyyaml, python-dateutil, PySocks, pyparsing, pyjwt, pyflakes, pydicom, pycparser, pycodestyle, pyasn1, protobuf, platformdirs, pillow, pathspec, parameterized, packaging, oauthlib, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, nodeenv, networkx, natsort, mypy-extensions, mccabe, MarkupSafe, markdown, lazy-object-proxy, lazy_loader, kiwisolver, joblib, isort, idna, identify, grpcio, fonttools, filelock, einops, dill, cycler, click, charset-normalizer, cfgv, certifi, cachetools, attrs, absl-py, werkzeug, virtualenv, typing-inspect, tifffile, scipy, rsa, requests, referencing, PyWavelets, pydot, pyasn1-modules, pandas, opencv-python, nvidia-cusolver-cu11, nvidia-cudnn-cu11, nibabel, mypy, jinja2, itk-core, importlib-resources, importlab, imageio, flake8, fire, deprecated, cucim, contourpy, cffi, black, beautifulsoup4, astroid, scikit-learn, scikit-image, requests-oauthlib, pynacl, pylint, pre-commit, pep8-naming, matplotlib, libcst, jsonschema-specifications, itk-numerics, itk-io, google-auth, flake8-executable, flake8-comprehensions, flake8-bugbear, pytype, PyGithub, jsonschema, itk-filtering, google-auth-oauthlib, gdown, tensorboard, itk-segmentation, itk-registration, itk, triton, torch, pytorch-ignite, monai\n",
  675. " Attempting uninstall: pyjwt\n",
  676. " Found existing installation: PyJWT 2.3.0\n",
  677. " Not uninstalling pyjwt at /usr/lib/python3/dist-packages, outside environment /usr\n",
  678. " Can't uninstall 'PyJWT'. No files were found to uninstall.\n",
  679. "Successfully installed MarkupSafe-2.1.3 PyGithub-1.59.1 PySocks-1.7.1 PyWavelets-1.4.1 absl-py-1.4.0 astroid-2.15.6 attrs-23.1.0 beautifulsoup4-4.12.2 black-23.7.0 cachetools-5.3.1 certifi-2023.7.22 cffi-1.15.1 cfgv-3.3.1 charset-normalizer-3.2.0 click-8.1.6 cmake-3.27.1 contourpy-1.1.0 cucim-22.8.1 cycler-0.11.0 deprecated-1.2.14 dill-0.3.7 distlib-0.3.7 einops-0.6.1 filelock-3.12.2 fire-0.5.0 flake8-6.1.0 flake8-bugbear-23.7.10 flake8-comprehensions-3.14.0 flake8-executable-2.1.3 fonttools-4.42.0 gdown-4.7.1 google-auth-2.22.0 google-auth-oauthlib-1.0.0 grpcio-1.56.2 identify-2.5.26 idna-3.4 imageio-2.31.1 importlab-0.8 importlib-resources-6.0.1 isort-5.12.0 itk-5.3.0 itk-core-5.3.0 itk-filtering-5.3.0 itk-io-5.3.0 itk-numerics-5.3.0 itk-registration-5.3.0 itk-segmentation-5.3.0 jinja2-3.1.2 joblib-1.3.1 jsonschema-4.19.0 jsonschema-specifications-2023.7.1 kiwisolver-1.4.4 lazy-object-proxy-1.9.0 lazy_loader-0.3 libcst-1.0.1 lit-16.0.6 markdown-3.4.4 matplotlib-3.7.2 mccabe-0.7.0 monai-1.2.0 mpmath-1.3.0 mypy-1.4.1 mypy-extensions-1.0.0 natsort-8.4.0 networkx-3.1 nibabel-5.1.0 ninja-1.11.1 nodeenv-1.8.0 numpy-1.25.2 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 oauthlib-3.2.2 opencv-python-4.8.0.74 packaging-23.1 pandas-2.0.3 parameterized-0.9.0 pathspec-0.11.2 pep8-naming-0.13.3 pillow-10.0.0 platformdirs-3.10.0 pre-commit-3.3.3 protobuf-4.23.4 pyasn1-0.5.0 pyasn1-modules-0.3.0 pycodestyle-2.11.0 pycparser-2.21 pydicom-2.4.2 pydot-1.4.2 pyflakes-3.1.0 pyjwt-2.8.0 pylint-2.17.5 pynacl-1.5.0 pyparsing-3.0.9 python-dateutil-2.8.2 pytorch-ignite-0.4.12 pytype-2023.7.28 pytz-2023.3 pyyaml-6.0.1 referencing-0.30.2 requests-2.31.0 requests-oauthlib-1.3.1 rpds-py-0.9.2 rsa-4.9 scikit-image-0.21.0 scikit-learn-1.3.0 scipy-1.11.1 soupsieve-2.4.1 sympy-1.12 tabulate-0.9.0 tensorboard-2.13.0 tensorboard-data-server-0.7.1 termcolor-2.3.0 threadpoolctl-3.2.0 tifffile-2023.7.18 toml-0.10.2 tomli-2.0.1 tomlkit-0.12.1 torch-2.0.1 tqdm-4.65.0 triton-2.0.0 types-pkg_resources-0.1.3 typing-extensions-4.7.1 typing-inspect-0.9.0 tzdata-2023.3 urllib3-1.26.16 virtualenv-20.24.2 werkzeug-2.3.6 wrapt-1.15.0 zipp-3.16.2\n",
  680. "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
  681. "\u001b[0m"
  682. ]
  683. },
  684. {
  685. "output_type": "display_data",
  686. "data": {
  687. "application/vnd.colab-display-data+json": {
  688. "pip_warning": {
  689. "packages": [
  690. "certifi",
  691. "cffi",
  692. "cycler",
  693. "dateutil",
  694. "kiwisolver",
  695. "socks"
  696. ]
  697. }
  698. }
  699. },
  700. "metadata": {}
  701. }
  702. ]
  703. },
  704. {
  705. "cell_type": "markdown",
  706. "source": [
  707. "Execute inference"
  708. ],
  709. "metadata": {
  710. "id": "5MUQJU2WNn40"
  711. }
  712. },
  713. {
  714. "cell_type": "markdown",
  715. "source": [
  716. "\n",
  717. "It will cost about three minutes. Check NIFTI directory after run done."
  718. ],
  719. "metadata": {
  720. "id": "9x7qRnttNuPu"
  721. }
  722. },
  723. {
  724. "cell_type": "code",
  725. "source": [
  726. "!python -m monai.bundle run --config_file configs/inference.json"
  727. ],
  728. "metadata": {
  729. "colab": {
  730. "base_uri": "https://localhost:8080/"
  731. },
  732. "id": "HbDBe8jANMpY",
  733. "outputId": "d26f8fa1-7dfc-473b-8817-48d871fc1413"
  734. },
  735. "execution_count": 5,
  736. "outputs": [
  737. {
  738. "output_type": "stream",
  739. "name": "stdout",
  740. "text": [
  741. "2023-08-08 01:02:00,317 - INFO - --- input summary of monai.bundle.scripts.run ---\n",
  742. "2023-08-08 01:02:00,317 - INFO - > config_file: 'configs/inference.json'\n",
  743. "2023-08-08 01:02:00,317 - INFO - ---\n",
  744. "\n",
  745. "\n",
  746. "2023-08-08 01:02:00,317 - INFO - Setting logging properties based on config: configs/logging.conf.\n",
  747. "monai.transforms.io.dictionary LoadImaged.__init__:image_only: Current default value of argument `image_only=False` has been deprecated since version 1.1. It will be changed to `image_only=True` in version 1.3.\n",
  748. "monai.transforms.io.dictionary SaveImaged.__init__:resample: Current default value of argument `resample=True` has been deprecated since version 1.1. It will be changed to `resample=False` in version 1.3.\n",
  749. "monai.handlers.stats_handler StatsHandler.__init__:name: Current default value of argument `name=None` has been deprecated since version 1.1. It will be changed to `name=StatsHandler` in version 1.3.\n",
  750. "2023-08-08 01:02:00,562 - ignite.engine.engine.SupervisedEvaluator - INFO - Engine run resuming from iteration 0, epoch 0 until 1 epochs\n",
  751. "2023-08-08 01:02:02,723 - ignite.engine.engine.SupervisedEvaluator - INFO - Restored all variables from ./models/model_lowres.pt\n",
  752. "^C\n"
  753. ]
  754. }
  755. ]
  756. },
  757. {
  758. "cell_type": "markdown",
  759. "source": [
  760. "Unzip inference file"
  761. ],
  762. "metadata": {
  763. "id": "zlHCcB4rQMS5"
  764. }
  765. },
  766. {
  767. "cell_type": "code",
  768. "source": [
  769. "!gzip -d NIFTI/DLCSI033/DLCSI033_trans.nii.gz"
  770. ],
  771. "metadata": {
  772. "colab": {
  773. "base_uri": "https://localhost:8080/"
  774. },
  775. "id": "jd_5gJdRVlZF",
  776. "outputId": "1d0e159d-a86c-4410-92fd-cf6572d204ff"
  777. },
  778. "execution_count": 6,
  779. "outputs": [
  780. {
  781. "output_type": "stream",
  782. "name": "stdout",
  783. "text": [
  784. "gzip: NIFTI/DLCSI033/DLCSI033_trans.nii.gz: No such file or directory\n"
  785. ]
  786. }
  787. ]
  788. },
  789. {
  790. "cell_type": "markdown",
  791. "source": [
  792. "Convert NIFTI file to mask file"
  793. ],
  794. "metadata": {
  795. "id": "KokHjc9zaUXm"
  796. }
  797. },
  798. {
  799. "cell_type": "markdown",
  800. "source": [
  801. "It will cost about three minutes. Check MONAI directory after run done."
  802. ],
  803. "metadata": {
  804. "id": "rRb-NTzoaXTm"
  805. }
  806. },
  807. {
  808. "cell_type": "code",
  809. "source": [
  810. "!python nii2png.py"
  811. ],
  812. "metadata": {
  813. "colab": {
  814. "base_uri": "https://localhost:8080/"
  815. },
  816. "id": "VP2O7ECYaVxu",
  817. "outputId": "a0b263bd-4faa-42a6-f672-70f90e2e79fe"
  818. },
  819. "execution_count": 7,
  820. "outputs": [
  821. {
  822. "output_type": "stream",
  823. "name": "stdout",
  824. "text": [
  825. ".gitignore ==================================================\n",
  826. "Label's shape:\n",
  827. " (105, 0)\n"
  828. ]
  829. }
  830. ]
  831. },
  832. {
  833. "cell_type": "markdown",
  834. "source": [
  835. "Generate DICOM-RT file"
  836. ],
  837. "metadata": {
  838. "id": "MzjEOxCCabPF"
  839. }
  840. },
  841. {
  842. "cell_type": "markdown",
  843. "source": [
  844. "It will cost about two minutes. Check DICOM directory after run done."
  845. ],
  846. "metadata": {
  847. "id": "F7tWolcQad7u"
  848. }
  849. },
  850. {
  851. "cell_type": "code",
  852. "source": [
  853. "!python main.py"
  854. ],
  855. "metadata": {
  856. "colab": {
  857. "base_uri": "https://localhost:8080/"
  858. },
  859. "id": "--GWn5vOacXk",
  860. "outputId": "9be6e087-b3ca-4d2a-d9c1-c0c70bca5847"
  861. },
  862. "execution_count": 8,
  863. "outputs": [
  864. {
  865. "output_type": "stream",
  866. "name": "stdout",
  867. "text": [
  868. ".gitignore ==================================================\n",
  869. "DICOM/.gitignore/ MONAI/.gitignore/\n",
  870. "get Contour Sequence from Images.Traceback (most recent call last):\n",
  871. " File \"/content/monai_wholeBody_ct_segmentation/main.py\", line 22, in <module>\n",
  872. " spacingDatabase, DICOMInformation = SegmentiontoImageData(dcm_file_path, label_path)()\n",
  873. " File \"/content/monai_wholeBody_ct_segmentation/SegmentiontoImageData.py\", line 29, in __call__\n",
  874. " self.getDICOMinformation()\n",
  875. " File \"/content/monai_wholeBody_ct_segmentation/SegmentiontoImageData.py\", line 43, in getDICOMinformation\n",
  876. " DICOMdir = os.listdir(self.DICOM_File_PATH)\n",
  877. "FileNotFoundError: [Errno 2] No such file or directory: 'DICOM/.gitignore/'\n"
  878. ]
  879. }
  880. ]
  881. },
  882. {
  883. "cell_type": "markdown",
  884. "source": [
  885. "Download DICOM directory"
  886. ],
  887. "metadata": {
  888. "id": "5FC-8olzagBm"
  889. }
  890. },
  891. {
  892. "cell_type": "markdown",
  893. "source": [
  894. "There are two DICOM-RT files. (Original and MONAI)"
  895. ],
  896. "metadata": {
  897. "id": "38eTIn_Cai3W"
  898. }
  899. },
  900. {
  901. "cell_type": "markdown",
  902. "source": [
  903. "![螢幕擷取畫面 2023-08-07 163256.jpg]()"
  904. ],
  905. "metadata": {
  906. "id": "vuKqblW9bCH-"
  907. }
  908. },
  909. {
  910. "cell_type": "markdown",
  911. "source": [
  912. "Download [Dicompyler](https://github.com/bastula/dicompyler/releases/download/release-0.4.2/dicompyler_setup-0.4.2.win32.exe)"
  913. ],
  914. "metadata": {
  915. "id": "eBhwQg3cam_e"
  916. }
  917. },
  918. {
  919. "cell_type": "markdown",
  920. "source": [
  921. "![螢幕擷取畫面 2023-08-07 162717.jpg]()"
  922. ],
  923. "metadata": {
  924. "id": "K2hKyLSabEeW"
  925. }
  926. },
  927. {
  928. "cell_type": "markdown",
  929. "source": [
  930. "Show results with Dicompyler"
  931. ],
  932. "metadata": {
  933. "id": "RwDs61JhbGpO"
  934. }
  935. },
  936. {
  937. "cell_type": "markdown",
  938. "source": [
  939. "Pay attention to the Chinese path."
  940. ],
  941. "metadata": {
  942. "id": "VBDUHhTnbK1e"
  943. }
  944. },
  945. {
  946. "cell_type": "markdown",
  947. "source": [
  948. "![螢幕擷取畫面 2023-08-07 162941.jpg]()"
  949. ],
  950. "metadata": {
  951. "id": "D15tjOn_bNP2"
  952. }
  953. },
  954. {
  955. "cell_type": "markdown",
  956. "source": [
  957. "Reference\n",
  958. "- https://github.com/Kiragroh/Kira_DICOM-RT-Anonymizer-MG\n",
  959. "- https://github.com/Project-MONAI/model-zoo\n",
  960. "- https://monai.io/model-zoo.html"
  961. ],
  962. "metadata": {
  963. "id": "cFLRp9zDbRE-"
  964. }
  965. }
  966. ]
  967. }