eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wave.cpp 32KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. /***************************************************************************
  2. * Copyright (C) 2007, Gilles Casse <[email protected]> *
  3. * based on AudioIO.cc (Audacity-1.2.4b) and wavegen.cpp *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #include "speech.h"
  21. #ifdef USE_ASYNC
  22. // This source file is only used for asynchronious modes
  23. #include <stdio.h>
  24. #include <string.h>
  25. #include <stdlib.h>
  26. #include <math.h>
  27. #include <assert.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include "portaudio.h"
  31. #ifndef PLATFORM_WINDOWS
  32. #include <unistd.h>
  33. #endif
  34. #include "wave.h"
  35. #include "debug.h"
  36. //<Definitions
  37. enum {ONE_BILLION=1000000000};
  38. #ifdef USE_PORTAUDIO
  39. #undef USE_PORTAUDIO
  40. // determine portaudio version by looking for a #define which is not in V18
  41. #ifdef paNeverDropInput
  42. #define USE_PORTAUDIO 19
  43. #else
  44. #define USE_PORTAUDIO 18
  45. #endif
  46. #ifdef USE_PULSEAUDIO
  47. // create some wrappers for runtime detection
  48. // checked on wave_init
  49. static int pulse_running;
  50. // wave.cpp (this file)
  51. void wave_port_init(int);
  52. void* wave_port_open(const char* the_api);
  53. size_t wave_port_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  54. int wave_port_close(void* theHandler);
  55. int wave_port_is_busy(void* theHandler);
  56. void wave_port_terminate();
  57. uint32_t wave_port_get_read_position(void* theHandler);
  58. uint32_t wave_port_get_write_position(void* theHandler);
  59. void wave_port_flush(void* theHandler);
  60. void wave_port_set_callback_is_output_enabled(t_wave_callback* cb);
  61. void* wave_port_test_get_write_buffer();
  62. int wave_port_get_remaining_time(uint32_t sample, uint32_t* time);
  63. // wave_pulse.cpp
  64. int is_pulse_running();
  65. void wave_pulse_init(int);
  66. void* wave_pulse_open(const char* the_api);
  67. size_t wave_pulse_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  68. int wave_pulse_close(void* theHandler);
  69. int wave_pulse_is_busy(void* theHandler);
  70. void wave_pulse_terminate();
  71. uint32_t wave_pulse_get_read_position(void* theHandler);
  72. uint32_t wave_pulse_get_write_position(void* theHandler);
  73. void wave_pulse_flush(void* theHandler);
  74. void wave_pulse_set_callback_is_output_enabled(t_wave_callback* cb);
  75. void* wave_pulse_test_get_write_buffer();
  76. int wave_pulse_get_remaining_time(uint32_t sample, uint32_t* time);
  77. // wrappers
  78. void wave_init(int srate) {
  79. pulse_running = is_pulse_running();
  80. if (pulse_running)
  81. wave_pulse_init(srate);
  82. else
  83. wave_port_init(srate);
  84. }
  85. void* wave_open(const char* the_api) {
  86. if (pulse_running)
  87. return wave_pulse_open(the_api);
  88. else
  89. return wave_port_open(the_api);
  90. }
  91. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {
  92. if (pulse_running)
  93. return wave_pulse_write(theHandler, theMono16BitsWaveBuffer, theSize);
  94. else
  95. return wave_port_write(theHandler, theMono16BitsWaveBuffer, theSize);
  96. }
  97. int wave_close(void* theHandler) {
  98. if (pulse_running)
  99. return wave_pulse_close(theHandler);
  100. else
  101. return wave_port_close(theHandler);
  102. }
  103. int wave_is_busy(void* theHandler) {
  104. if (pulse_running)
  105. return wave_pulse_is_busy(theHandler);
  106. else
  107. return wave_port_is_busy(theHandler);
  108. }
  109. void wave_terminate() {
  110. if (pulse_running)
  111. wave_pulse_terminate();
  112. else
  113. wave_port_terminate();
  114. }
  115. uint32_t wave_get_read_position(void* theHandler) {
  116. if (pulse_running)
  117. return wave_pulse_get_read_position(theHandler);
  118. else
  119. return wave_port_get_read_position(theHandler);
  120. }
  121. uint32_t wave_get_write_position(void* theHandler) {
  122. if (pulse_running)
  123. return wave_pulse_get_write_position(theHandler);
  124. else
  125. return wave_port_get_write_position(theHandler);
  126. }
  127. void wave_flush(void* theHandler) {
  128. if (pulse_running)
  129. wave_pulse_flush(theHandler);
  130. else
  131. wave_port_flush(theHandler);
  132. }
  133. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {
  134. if (pulse_running)
  135. wave_pulse_set_callback_is_output_enabled(cb);
  136. else
  137. wave_port_set_callback_is_output_enabled(cb);
  138. }
  139. void* wave_test_get_write_buffer() {
  140. if (pulse_running)
  141. return wave_pulse_test_get_write_buffer();
  142. else
  143. return wave_port_test_get_write_buffer();
  144. }
  145. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  146. {
  147. if (pulse_running)
  148. return wave_pulse_get_remaining_time(sample, time);
  149. else
  150. return wave_port_get_remaining_time(sample, time);
  151. }
  152. // rename functions to be wrapped
  153. #define wave_init wave_port_init
  154. #define wave_open wave_port_open
  155. #define wave_write wave_port_write
  156. #define wave_close wave_port_close
  157. #define wave_is_busy wave_port_is_busy
  158. #define wave_terminate wave_port_terminate
  159. #define wave_get_read_position wave_port_get_read_position
  160. #define wave_get_write_position wave_port_get_write_position
  161. #define wave_flush wave_port_flush
  162. #define wave_set_callback_is_output_enabled wave_port_set_callback_is_output_enabled
  163. #define wave_test_get_write_buffer wave_port_test_get_write_buffer
  164. #define wave_get_remaining_time wave_port_get_remaining_time
  165. #endif // USE_PULSEAUDIO
  166. static t_wave_callback* my_callback_is_output_enabled=NULL;
  167. #define N_WAV_BUF 10
  168. #define MAX_SAMPLE_RATE 22050
  169. #define FRAMES_PER_BUFFER 512
  170. #define BUFFER_LENGTH (MAX_SAMPLE_RATE*2*sizeof(uint16_t))
  171. //#define THRESHOLD (BUFFER_LENGTH/5)
  172. static char myBuffer[BUFFER_LENGTH];
  173. static char* myRead=NULL;
  174. static char* myWrite=NULL;
  175. static int out_channels=1;
  176. static int my_stream_could_start=0;
  177. static int wave_samplerate;
  178. static int mInCallbackFinishedState = false;
  179. #if (USE_PORTAUDIO == 18)
  180. static PortAudioStream *pa_stream=NULL;
  181. #endif
  182. #if (USE_PORTAUDIO == 19)
  183. static struct PaStreamParameters myOutputParameters;
  184. static PaStream *pa_stream=NULL;
  185. #endif
  186. static int userdata[4];
  187. static PaError pa_init_err=0;
  188. // time measurement
  189. // The read and write position audio stream in the audio stream are measured in ms.
  190. //
  191. // * When the stream is opened, myReadPosition and myWritePosition are cleared.
  192. // * myWritePosition is updated in wave_write.
  193. // * myReadPosition is updated in pa_callback (+ sample delay).
  194. static uint32_t myReadPosition = 0; // in ms
  195. static uint32_t myWritePosition = 0;
  196. //>
  197. //<init_buffer, get_used_mem
  198. static void init_buffer()
  199. {
  200. myWrite = myBuffer;
  201. myRead = myBuffer;
  202. memset(myBuffer,0,BUFFER_LENGTH);
  203. myReadPosition = myWritePosition = 0;
  204. SHOW("init_buffer > myRead=0x%x, myWrite=0x%x, BUFFER_LENGTH=0x%x, myReadPosition = myWritePosition = 0\n", (int)myRead, (int)myWrite, BUFFER_LENGTH);
  205. }
  206. static unsigned int get_used_mem()
  207. {
  208. char* aRead = myRead;
  209. char* aWrite = myWrite;
  210. unsigned int used = 0;
  211. assert ((aRead >= myBuffer)
  212. && (aRead <= myBuffer + BUFFER_LENGTH)
  213. && (aWrite >= myBuffer)
  214. && (aWrite <= myBuffer + BUFFER_LENGTH));
  215. if (aRead < aWrite)
  216. {
  217. used = aWrite - aRead;
  218. }
  219. else
  220. {
  221. used = aWrite + BUFFER_LENGTH - aRead;
  222. }
  223. SHOW("get_used_mem > %d\n", used);
  224. return used;
  225. }
  226. //>
  227. //<start stream
  228. static void start_stream()
  229. {
  230. PaError err;
  231. SHOW_TIME("start_stream");
  232. my_stream_could_start=0;
  233. mInCallbackFinishedState = false;
  234. err = Pa_StartStream(pa_stream);
  235. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  236. #if USE_PORTAUDIO == 19
  237. if(err == paStreamIsNotStopped)
  238. {
  239. SHOW_TIME("start_stream > restart stream (begin)");
  240. // not sure why we need this, but PA v19 seems to need it
  241. err = Pa_StopStream(pa_stream);
  242. SHOW("start_stream > Pa_StopStream=%d (%s)\n", err, Pa_GetErrorText(err));
  243. err = Pa_StartStream(pa_stream);
  244. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  245. SHOW_TIME("start_stream > restart stream (end)");
  246. }
  247. #endif
  248. }
  249. //>
  250. //<pa_callback
  251. /* This routine will be called by the PortAudio engine when audio is needed.
  252. ** It may called at interrupt level on some machines so don't do anything
  253. ** that could mess up the system like calling malloc() or free().
  254. */
  255. #if USE_PORTAUDIO == 18
  256. static int pa_callback(void *inputBuffer, void *outputBuffer,
  257. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  258. #else
  259. static int pa_callback(const void *inputBuffer, void *outputBuffer,
  260. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  261. PaStreamCallbackFlags flags, void *userData )
  262. #endif
  263. {
  264. int aResult=0; // paContinue
  265. char* aWrite = myWrite;
  266. size_t n = out_channels*sizeof(uint16_t)*framesPerBuffer;
  267. myReadPosition += framesPerBuffer;
  268. SHOW("pa_callback > myReadPosition=%u, framesPerBuffer=%lu (n=0x%x) \n",(int)myReadPosition, framesPerBuffer, n);
  269. if (aWrite >= myRead)
  270. {
  271. if((size_t)(aWrite - myRead) >= n)
  272. {
  273. memcpy(outputBuffer, myRead, n);
  274. myRead += n;
  275. }
  276. else
  277. {
  278. SHOW_TIME("pa_callback > underflow");
  279. aResult=1; // paComplete;
  280. mInCallbackFinishedState = true;
  281. size_t aUsedMem=0;
  282. aUsedMem = (size_t)(aWrite - myRead);
  283. if (aUsedMem)
  284. {
  285. memcpy(outputBuffer, myRead, aUsedMem);
  286. }
  287. char* p = (char*)outputBuffer + aUsedMem;
  288. memset(p, 0, n - aUsedMem);
  289. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  290. myRead = aWrite;
  291. }
  292. }
  293. else // myRead > aWrite
  294. {
  295. if ((size_t)(myBuffer + BUFFER_LENGTH - myRead) >= n)
  296. {
  297. memcpy(outputBuffer, myRead, n);
  298. myRead += n;
  299. }
  300. else if ((size_t)(aWrite + BUFFER_LENGTH - myRead) >= n)
  301. {
  302. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  303. if (aTopMem)
  304. {
  305. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  306. memcpy(outputBuffer, myRead, aTopMem);
  307. }
  308. int aRest = n - aTopMem;
  309. if (aRest)
  310. {
  311. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  312. char* p = (char*)outputBuffer + aTopMem;
  313. memcpy(p, myBuffer, aRest);
  314. }
  315. myRead = myBuffer + aRest;
  316. }
  317. else
  318. {
  319. SHOW_TIME("pa_callback > underflow");
  320. aResult=1; // paComplete;
  321. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  322. if (aTopMem)
  323. {
  324. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  325. memcpy(outputBuffer, myRead, aTopMem);
  326. }
  327. int aRest = aWrite - myBuffer;
  328. if (aRest)
  329. {
  330. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  331. char* p = (char*)outputBuffer + aTopMem;
  332. memcpy(p, myBuffer, aRest);
  333. }
  334. size_t aUsedMem = aTopMem + aRest;
  335. char* p = (char*)outputBuffer + aUsedMem;
  336. memset(p, 0, n - aUsedMem);
  337. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  338. myRead = aWrite;
  339. }
  340. }
  341. SHOW("pa_callback > myRead=%x\n",(int)myRead);
  342. // #if USE_PORTAUDIO == 18
  343. // if(aBufferEmpty)
  344. // {
  345. // static int end_timer = 0;
  346. // if(end_timer == 0)
  347. // end_timer = 4;
  348. // if(end_timer > 0)
  349. // {
  350. // end_timer--;
  351. // if(end_timer == 0)
  352. // return(1);
  353. // }
  354. // }
  355. // return(0);
  356. // #else
  357. #ifdef ARCH_BIG
  358. {
  359. // BIG-ENDIAN, swap the order of bytes in each sound sample in the portaudio buffer
  360. int c;
  361. unsigned char *out_ptr;
  362. unsigned char *out_end;
  363. out_ptr = (unsigned char *)outputBuffer;
  364. out_end = out_ptr + framesPerBuffer*2 * out_channels;
  365. while(out_ptr < out_end)
  366. {
  367. c = out_ptr[0];
  368. out_ptr[0] = out_ptr[1];
  369. out_ptr[1] = c;
  370. out_ptr += 2;
  371. }
  372. }
  373. #endif
  374. return(aResult);
  375. //#endif
  376. } // end of WaveCallBack
  377. //>
  378. void wave_flush(void* theHandler)
  379. {
  380. ENTER("wave_flush");
  381. if (my_stream_could_start)
  382. {
  383. // #define buf 1024
  384. // static char a_buffer[buf*2];
  385. // memset(a_buffer,0,buf*2);
  386. // wave_write(theHandler, a_buffer, buf*2);
  387. start_stream();
  388. }
  389. }
  390. //<wave_open_sound
  391. static int wave_open_sound()
  392. {
  393. ENTER("wave_open_sound");
  394. PaError err=paNoError;
  395. PaError active;
  396. #if USE_PORTAUDIO == 18
  397. active = Pa_StreamActive(pa_stream);
  398. #else
  399. active = Pa_IsStreamActive(pa_stream);
  400. #endif
  401. if(active == 1)
  402. {
  403. SHOW_TIME("wave_open_sound > already active");
  404. return(0);
  405. }
  406. if(active < 0)
  407. {
  408. out_channels = 1;
  409. #if USE_PORTAUDIO == 18
  410. // err = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,wave_samplerate,FRAMES_PER_BUFFER,N_WAV_BUF,pa_callback,(void *)userdata);
  411. PaDeviceID playbackDevice = Pa_GetDefaultOutputDeviceID();
  412. PaError err = Pa_OpenStream( &pa_stream,
  413. /* capture parameters */
  414. paNoDevice,
  415. 0,
  416. paInt16,
  417. NULL,
  418. /* playback parameters */
  419. playbackDevice,
  420. out_channels,
  421. paInt16,
  422. NULL,
  423. /* general parameters */
  424. wave_samplerate, FRAMES_PER_BUFFER, 0,
  425. //paClipOff | paDitherOff,
  426. paNoFlag,
  427. pa_callback, (void *)userdata);
  428. SHOW("wave_open_sound > Pa_OpenDefaultStream(1): err=%d (%s)\n",err, Pa_GetErrorText(err));
  429. if(err == paInvalidChannelCount)
  430. {
  431. SHOW_TIME("wave_open_sound > try stereo");
  432. // failed to open with mono, try stereo
  433. out_channels = 2;
  434. // myOutputParameters.channelCount = out_channels;
  435. PaError err = Pa_OpenStream( &pa_stream,
  436. /* capture parameters */
  437. paNoDevice,
  438. 0,
  439. paInt16,
  440. NULL,
  441. /* playback parameters */
  442. playbackDevice,
  443. out_channels,
  444. paInt16,
  445. NULL,
  446. /* general parameters */
  447. wave_samplerate, FRAMES_PER_BUFFER, 0,
  448. //paClipOff | paDitherOff,
  449. paNoFlag,
  450. pa_callback, (void *)userdata);
  451. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,
  452. // wave_samplerate,
  453. // FRAMES_PER_BUFFER,
  454. // N_WAV_BUF,pa_callback,(void *)userdata);
  455. SHOW("wave_open_sound > Pa_OpenDefaultStream(2): err=%d (%s)\n",err, Pa_GetErrorText(err));
  456. err=0; // avoid warning
  457. }
  458. mInCallbackFinishedState = false; // v18 only
  459. #else
  460. myOutputParameters.channelCount = out_channels;
  461. unsigned long framesPerBuffer = paFramesPerBufferUnspecified;
  462. err = Pa_OpenStream(
  463. &pa_stream,
  464. NULL, /* no input */
  465. &myOutputParameters,
  466. wave_samplerate,
  467. framesPerBuffer,
  468. paNoFlag,
  469. // paClipOff | paDitherOff,
  470. pa_callback,
  471. (void *)userdata);
  472. if ((err!=paNoError)
  473. && (err!=paInvalidChannelCount)) //err==paUnanticipatedHostError
  474. {
  475. fprintf(stderr, "wave_open_sound > Pa_OpenStream : err=%d (%s)\n",err,Pa_GetErrorText(err));
  476. framesPerBuffer = FRAMES_PER_BUFFER;
  477. err = Pa_OpenStream(
  478. &pa_stream,
  479. NULL, /* no input */
  480. &myOutputParameters,
  481. wave_samplerate,
  482. framesPerBuffer,
  483. paNoFlag,
  484. // paClipOff | paDitherOff,
  485. pa_callback,
  486. (void *)userdata);
  487. }
  488. if(err == paInvalidChannelCount)
  489. {
  490. SHOW_TIME("wave_open_sound > try stereo");
  491. // failed to open with mono, try stereo
  492. out_channels = 2;
  493. myOutputParameters.channelCount = out_channels;
  494. err = Pa_OpenStream(
  495. &pa_stream,
  496. NULL, /* no input */
  497. &myOutputParameters,
  498. wave_samplerate,
  499. framesPerBuffer,
  500. paNoFlag,
  501. // paClipOff | paDitherOff,
  502. pa_callback,
  503. (void *)userdata);
  504. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)wave_samplerate,FRAMES_PER_BUFFER,pa_callback,(void *)userdata);
  505. }
  506. mInCallbackFinishedState = false;
  507. #endif
  508. }
  509. SHOW("wave_open_sound > %s\n","LEAVE");
  510. return (err != paNoError);
  511. }
  512. //>
  513. //<select_device
  514. #if (USE_PORTAUDIO == 19)
  515. static void update_output_parameters(int selectedDevice, const PaDeviceInfo *deviceInfo)
  516. {
  517. // const PaDeviceInfo *pdi = Pa_GetDeviceInfo(i);
  518. myOutputParameters.device = selectedDevice;
  519. // myOutputParameters.channelCount = pdi->maxOutputChannels;
  520. myOutputParameters.channelCount = 1;
  521. myOutputParameters.sampleFormat = paInt16;
  522. // Latency greater than 100ms for avoiding glitches
  523. // (e.g. when moving a window in a graphical desktop)
  524. // deviceInfo = Pa_GetDeviceInfo(selectedDevice);
  525. if (deviceInfo)
  526. {
  527. double aLatency = deviceInfo->defaultLowOutputLatency;
  528. // double aCoeff = round(0.100 / aLatency);
  529. // myOutputParameters.suggestedLatency = aCoeff * aLatency; // to avoid glitches ?
  530. myOutputParameters.suggestedLatency = aLatency; // for faster response ?
  531. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f, aCoeff=%f\n",
  532. selectedDevice,
  533. myOutputParameters.suggestedLatency,
  534. aCoeff);
  535. }
  536. else
  537. {
  538. myOutputParameters.suggestedLatency = (double)0.1; // 100ms
  539. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f (default)\n",
  540. selectedDevice,
  541. myOutputParameters.suggestedLatency);
  542. }
  543. //pdi->defaultLowOutputLatency;
  544. myOutputParameters.hostApiSpecificStreamInfo = NULL;
  545. }
  546. #endif
  547. static void select_device(const char* the_api)
  548. {
  549. ENTER("select_device");
  550. #if (USE_PORTAUDIO == 19)
  551. int numDevices = Pa_GetDeviceCount();
  552. if( numDevices < 0 )
  553. {
  554. SHOW( "ERROR: Pa_CountDevices returned 0x%x\n", numDevices );
  555. assert(0);
  556. }
  557. PaDeviceIndex i=0, selectedIndex=0, defaultAlsaIndex=numDevices;
  558. const PaDeviceInfo *deviceInfo=NULL;
  559. const PaDeviceInfo *selectedDeviceInfo=NULL;
  560. if(option_device_number >= 0)
  561. {
  562. selectedIndex = option_device_number;
  563. selectedDeviceInfo = Pa_GetDeviceInfo(selectedIndex);
  564. }
  565. if(selectedDeviceInfo == NULL)
  566. {
  567. for( i=0; i<numDevices; i++ )
  568. {
  569. deviceInfo = Pa_GetDeviceInfo( i );
  570. if (deviceInfo == NULL)
  571. {
  572. break;
  573. }
  574. const PaHostApiInfo *hostInfo = Pa_GetHostApiInfo( deviceInfo->hostApi );
  575. if (hostInfo && hostInfo->type == paALSA)
  576. {
  577. // Check (once) the default output device
  578. if (defaultAlsaIndex == numDevices)
  579. {
  580. defaultAlsaIndex = hostInfo->defaultOutputDevice;
  581. const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo( defaultAlsaIndex );
  582. update_output_parameters(defaultAlsaIndex, deviceInfo);
  583. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  584. {
  585. SHOW( "select_device > ALSA (default), name=%s (#%d)\n", deviceInfo->name, defaultAlsaIndex);
  586. selectedIndex = defaultAlsaIndex;
  587. selectedDeviceInfo = deviceInfo;
  588. break;
  589. }
  590. }
  591. // if the default output device does not match,
  592. // look for the device with the highest number of output channels
  593. SHOW( "select_device > ALSA, i=%d (numDevices=%d)\n", i, numDevices);
  594. update_output_parameters(i, deviceInfo);
  595. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  596. {
  597. SHOW( "select_device > ALSA, name=%s (#%d)\n", deviceInfo->name, i);
  598. if (!selectedDeviceInfo
  599. || (selectedDeviceInfo->maxOutputChannels < deviceInfo->maxOutputChannels))
  600. {
  601. selectedIndex = i;
  602. selectedDeviceInfo = deviceInfo;
  603. }
  604. }
  605. }
  606. }
  607. }
  608. if (selectedDeviceInfo)
  609. {
  610. update_output_parameters(selectedIndex, selectedDeviceInfo);
  611. }
  612. else
  613. {
  614. i = Pa_GetDefaultOutputDevice();
  615. deviceInfo = Pa_GetDeviceInfo( i );
  616. update_output_parameters(i, deviceInfo);
  617. }
  618. #endif
  619. }
  620. //>
  621. // int wave_Close(void* theHandler)
  622. // {
  623. // SHOW_TIME("WaveCloseSound");
  624. // // PaError active;
  625. // // check whether speaking has finished, and close the stream
  626. // if(pa_stream != NULL)
  627. // {
  628. // Pa_CloseStream(pa_stream);
  629. // pa_stream = NULL;
  630. // init_buffer();
  631. // // #if USE_PORTAUDIO == 18
  632. // // active = Pa_StreamActive(pa_stream);
  633. // // #else
  634. // // active = Pa_IsStreamActive(pa_stream);
  635. // // #endif
  636. // // if(active == 0)
  637. // // {
  638. // // SHOW_TIME("WaveCloseSound > ok, not active");
  639. // // Pa_CloseStream(pa_stream);
  640. // // pa_stream = NULL;
  641. // // return(1);
  642. // // }
  643. // }
  644. // return(0);
  645. // }
  646. //<wave_set_callback_is_output_enabled
  647. void wave_set_callback_is_output_enabled(t_wave_callback* cb)
  648. {
  649. my_callback_is_output_enabled = cb;
  650. }
  651. //>
  652. //<wave_init
  653. // TBD: the arg could be "alsa", "oss",...
  654. void wave_init(int srate)
  655. {
  656. ENTER("wave_init");
  657. PaError err;
  658. pa_stream = NULL;
  659. wave_samplerate = srate;
  660. mInCallbackFinishedState = false;
  661. init_buffer();
  662. // PortAudio sound output library
  663. err = Pa_Initialize();
  664. pa_init_err = err;
  665. if(err != paNoError)
  666. {
  667. SHOW_TIME("wave_init > Failed to initialise the PortAudio sound");
  668. }
  669. }
  670. //>
  671. //<wave_open
  672. void* wave_open(const char* the_api)
  673. {
  674. ENTER("wave_open");
  675. static int once=0;
  676. // TBD: the_api (e.g. "alsa") is not used at the moment
  677. // select_device is called once
  678. if (!once)
  679. {
  680. select_device("alsa");
  681. once=1;
  682. }
  683. return((void*)1);
  684. }
  685. //>
  686. //<copyBuffer
  687. static size_t copyBuffer(char* dest, char* src, const size_t theSizeInBytes)
  688. {
  689. size_t bytes_written = 0;
  690. unsigned int i = 0;
  691. uint16_t* a_dest = NULL;
  692. uint16_t* a_src = NULL;
  693. if ((src != NULL) && dest != NULL)
  694. {
  695. // copy for one channel (mono)?
  696. if(out_channels==1)
  697. {
  698. SHOW("copyBuffer > 1 channel > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  699. memcpy(dest, src, theSizeInBytes);
  700. bytes_written = theSizeInBytes;
  701. }
  702. else // copy for 2 channels (stereo)
  703. {
  704. SHOW("copyBuffer > 2 channels > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  705. i = 0;
  706. a_dest = (uint16_t* )dest;
  707. a_src = (uint16_t* )src;
  708. for(i=0; i<theSizeInBytes/2; i++)
  709. {
  710. a_dest[2*i] = a_src[i];
  711. a_dest[2*i+1] = a_src[i];
  712. }
  713. bytes_written = 2*theSizeInBytes;
  714. } // end if(out_channels==1)
  715. } // end if ((src != NULL) && dest != NULL)
  716. return bytes_written;
  717. }
  718. //>
  719. //<wave_write
  720. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize)
  721. {
  722. ENTER("wave_write");
  723. size_t bytes_written = 0;
  724. // space in ringbuffer for the sample needed: 1x mono channel but 2x for 1 stereo channel
  725. size_t bytes_to_write = (out_channels==1) ? theSize : theSize*2;
  726. my_stream_could_start = 0;
  727. if(pa_stream == NULL)
  728. {
  729. SHOW_TIME("wave_write > wave_open_sound\n");
  730. if (0 != wave_open_sound())
  731. {
  732. SHOW_TIME("wave_write > wave_open_sound fails!");
  733. return 0;
  734. }
  735. my_stream_could_start=1;
  736. }
  737. else if (!wave_is_busy(NULL))
  738. {
  739. my_stream_could_start = 1;
  740. }
  741. assert(BUFFER_LENGTH >= bytes_to_write);
  742. if (myWrite >= myBuffer + BUFFER_LENGTH)
  743. {
  744. myWrite = myBuffer;
  745. } // end if (myWrite >= myBuffer + BUFFER_LENGTH)
  746. size_t aTotalFreeMem=0;
  747. char* aRead = myRead;
  748. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  749. while (1)
  750. {
  751. if (my_callback_is_output_enabled && (0==my_callback_is_output_enabled()))
  752. {
  753. SHOW_TIME("wave_write > my_callback_is_output_enabled: no!");
  754. return 0;
  755. }
  756. aRead = myRead;
  757. // write pointer is before read pointer?
  758. if (myWrite >= aRead)
  759. {
  760. aTotalFreeMem = aRead + BUFFER_LENGTH - myWrite;
  761. }
  762. else // read pointer is before write pointer!
  763. {
  764. aTotalFreeMem = aRead - myWrite;
  765. } // end if (myWrite >= aRead)
  766. if (aTotalFreeMem>1)
  767. {
  768. // -1 because myWrite must be different of aRead
  769. // otherwise buffer would be considered as empty
  770. aTotalFreeMem -= 1;
  771. } // end if (aTotalFreeMem>1)
  772. if (aTotalFreeMem >= bytes_to_write)
  773. {
  774. break;
  775. } // end if (aTotalFreeMem >= bytes_to_write)
  776. //SHOW_TIME("wave_write > wait");
  777. SHOW("wave_write > wait: aTotalFreeMem=%d\n", aTotalFreeMem);
  778. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  779. usleep(10000);
  780. } // end while (1)
  781. aRead = myRead;
  782. // write pointer is ahead the read pointer?
  783. if (myWrite >= aRead)
  784. {
  785. SHOW_TIME("wave_write > myWrite >= aRead");
  786. // determine remaining free memory to the end of the ringbuffer
  787. size_t aFreeMem = myBuffer + BUFFER_LENGTH - myWrite;
  788. // is enough linear space available (regardless 1 or 2 channels)?
  789. if (aFreeMem >= bytes_to_write)
  790. {
  791. // copy direct - no wrap around at end of ringbuffer needed
  792. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  793. }
  794. else // not enough linear space available
  795. {
  796. // 2 channels (stereo)?
  797. if (out_channels == 2)
  798. {
  799. // copy with wrap around at the end of ringbuffer
  800. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem/2);
  801. myWrite = myBuffer;
  802. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem/2, theSize - aFreeMem/2);
  803. }
  804. else // 1 channel (mono)
  805. {
  806. // copy with wrap around at the end of ringbuffer
  807. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem);
  808. myWrite = myBuffer;
  809. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem, theSize - aFreeMem);
  810. } // end if (out_channels == 2)
  811. } // end if (aFreeMem >= bytes_to_write)
  812. } // if (myWrite >= aRead)
  813. else // read pointer is ahead the write pointer
  814. {
  815. SHOW_TIME("wave_write > myWrite <= aRead");
  816. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  817. } // end if (myWrite >= aRead)
  818. bytes_written = bytes_to_write;
  819. myWritePosition += theSize/sizeof(uint16_t); // add number of samples
  820. if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  821. {
  822. start_stream();
  823. } // end if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  824. SHOW_TIME("wave_write > LEAVE");
  825. return bytes_written;
  826. }
  827. //>
  828. //<wave_close
  829. int wave_close(void* theHandler)
  830. {
  831. SHOW_TIME("wave_close > ENTER");
  832. static int aStopStreamCount = 0;
  833. #if (USE_PORTAUDIO == 19)
  834. if( pa_stream == NULL )
  835. {
  836. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  837. return 0;
  838. }
  839. if( Pa_IsStreamStopped( pa_stream ) )
  840. {
  841. SHOW_TIME("wave_close > LEAVE (stopped)");
  842. return 0;
  843. }
  844. #else
  845. if( pa_stream == NULL )
  846. {
  847. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  848. return 0;
  849. }
  850. if( Pa_StreamActive( pa_stream ) == false && mInCallbackFinishedState == false )
  851. {
  852. SHOW_TIME("wave_close > LEAVE (not active)");
  853. return 0;
  854. }
  855. #endif
  856. // Avoid race condition by making sure this function only
  857. // gets called once at a time
  858. aStopStreamCount++;
  859. if (aStopStreamCount != 1)
  860. {
  861. SHOW_TIME("wave_close > LEAVE (stopStreamCount)");
  862. return 0;
  863. }
  864. // Comment from Audacity-1.2.4b adapted to the eSpeak context.
  865. //
  866. // We got here in one of two ways:
  867. //
  868. // 1. The calling program calls the espeak_Cancel function and we
  869. // therefore want to stop as quickly as possible.
  870. // So we use AbortStream(). If this is
  871. // the case the portaudio stream is still in the Running state
  872. // (see PortAudio state machine docs).
  873. //
  874. // 2. The callback told PortAudio to stop the stream since it had
  875. // reached the end of the selection.
  876. // The event polling thread discovered this by noticing that
  877. // wave_is_busy() returned false.
  878. // wave_is_busy() (which calls Pa_GetStreamActive()) will not return
  879. // false until all buffers have finished playing, so we can call
  880. // AbortStream without losing any samples. If this is the case
  881. // we are in the "callback finished state" (see PortAudio state
  882. // machine docs).
  883. //
  884. // The moral of the story: We can call AbortStream safely, without
  885. // losing samples.
  886. //
  887. // DMM: This doesn't seem to be true; it seems to be necessary to
  888. // call StopStream if the callback brought us here, and AbortStream
  889. // if the user brought us here.
  890. //
  891. #if (USE_PORTAUDIO == 19)
  892. if (pa_stream)
  893. {
  894. Pa_AbortStream( pa_stream );
  895. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  896. Pa_CloseStream( pa_stream );
  897. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  898. pa_stream = NULL;
  899. mInCallbackFinishedState = false;
  900. }
  901. #else
  902. if (pa_stream)
  903. {
  904. if (mInCallbackFinishedState)
  905. {
  906. Pa_StopStream( pa_stream );
  907. SHOW_TIME("wave_close > Pa_StopStream (end)");
  908. }
  909. else
  910. {
  911. Pa_AbortStream( pa_stream );
  912. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  913. }
  914. Pa_CloseStream( pa_stream );
  915. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  916. pa_stream = NULL;
  917. mInCallbackFinishedState = false;
  918. }
  919. #endif
  920. init_buffer();
  921. aStopStreamCount = 0; // last action
  922. SHOW_TIME("wave_close > LEAVE");
  923. return 0;
  924. }
  925. // int wave_close(void* theHandler)
  926. // {
  927. // ENTER("wave_close");
  928. // if(pa_stream != NULL)
  929. // {
  930. // PaError err = Pa_AbortStream(pa_stream);
  931. // SHOW_TIME("wave_close > Pa_AbortStream (end)");
  932. // SHOW("wave_close Pa_AbortStream > err=%d\n",err);
  933. // while(1)
  934. // {
  935. // PaError active;
  936. // #if USE_PORTAUDIO == 18
  937. // active = Pa_StreamActive(pa_stream);
  938. // #else
  939. // active = Pa_IsStreamActive(pa_stream);
  940. // #endif
  941. // if (active != 1)
  942. // {
  943. // break;
  944. // }
  945. // SHOW("wave_close > active=%d\n",err);
  946. // usleep(10000); /* sleep until playback has finished */
  947. // }
  948. // err = Pa_CloseStream( pa_stream );
  949. // SHOW_TIME("wave_close > Pa_CloseStream (end)");
  950. // SHOW("wave_close Pa_CloseStream > err=%d\n",err);
  951. // pa_stream = NULL;
  952. // init_buffer();
  953. // }
  954. // return 0;
  955. // }
  956. //>
  957. //<wave_is_busy
  958. int wave_is_busy(void* theHandler)
  959. {
  960. PaError active=0;
  961. SHOW_TIME("wave_is_busy");
  962. if (pa_stream)
  963. {
  964. #if USE_PORTAUDIO == 18
  965. active = Pa_StreamActive(pa_stream)
  966. && (mInCallbackFinishedState == false);
  967. #else
  968. active = Pa_IsStreamActive(pa_stream)
  969. && (mInCallbackFinishedState == false);
  970. #endif
  971. }
  972. SHOW("wave_is_busy: %d\n",active);
  973. return (active==1);
  974. }
  975. //>
  976. //<wave_terminate
  977. void wave_terminate()
  978. {
  979. ENTER("wave_terminate");
  980. Pa_Terminate();
  981. }
  982. //>
  983. //<wave_get_read_position, wave_get_write_position, wave_get_remaining_time
  984. uint32_t wave_get_read_position(void* theHandler)
  985. {
  986. SHOW("wave_get_read_position > myReadPosition=%u\n", myReadPosition);
  987. return myReadPosition;
  988. }
  989. uint32_t wave_get_write_position(void* theHandler)
  990. {
  991. SHOW("wave_get_write_position > myWritePosition=%u\n", myWritePosition);
  992. return myWritePosition;
  993. }
  994. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  995. {
  996. double a_time=0;
  997. if (!time || !pa_stream)
  998. {
  999. SHOW("event get_remaining_time> %s\n","audio device not available");
  1000. return -1;
  1001. }
  1002. if (sample > myReadPosition)
  1003. {
  1004. // TBD: take in account time suplied by portaudio V18 API
  1005. a_time = sample - myReadPosition;
  1006. a_time = 0.5 + (a_time * 1000.0) / wave_samplerate;
  1007. }
  1008. else
  1009. {
  1010. a_time = 0;
  1011. }
  1012. SHOW("wave_get_remaining_time > sample=%d, time=%d\n", sample, (uint32_t)a_time);
  1013. *time = (uint32_t)a_time;
  1014. return 0;
  1015. }
  1016. //>
  1017. //<wave_test_get_write_buffer
  1018. void *wave_test_get_write_buffer()
  1019. {
  1020. return myWrite;
  1021. }
  1022. #else
  1023. // notdef USE_PORTAUDIO
  1024. void wave_init(int srate) {}
  1025. void* wave_open(const char* the_api) {return (void *)1;}
  1026. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {return theSize;}
  1027. int wave_close(void* theHandler) {return 0;}
  1028. int wave_is_busy(void* theHandler) {return 0;}
  1029. void wave_terminate() {}
  1030. uint32_t wave_get_read_position(void* theHandler) {return 0;}
  1031. uint32_t wave_get_write_position(void* theHandler) {return 0;}
  1032. void wave_flush(void* theHandler) {}
  1033. typedef int (t_wave_callback)(void);
  1034. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {}
  1035. extern void* wave_test_get_write_buffer() {return NULL;}
  1036. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1037. {
  1038. if (!time) return(-1);
  1039. *time = (uint32_t)0;
  1040. return 0;
  1041. }
  1042. #endif // of USE_PORTAUDIO
  1043. //>
  1044. //<clock_gettime2, add_time_in_ms
  1045. void clock_gettime2(struct timespec *ts)
  1046. {
  1047. struct timeval tv;
  1048. if (!ts)
  1049. {
  1050. return;
  1051. }
  1052. assert (gettimeofday(&tv, NULL) != -1);
  1053. ts->tv_sec = tv.tv_sec;
  1054. ts->tv_nsec = tv.tv_usec*1000;
  1055. }
  1056. void add_time_in_ms(struct timespec *ts, int time_in_ms)
  1057. {
  1058. if (!ts)
  1059. {
  1060. return;
  1061. }
  1062. uint64_t t_ns = (uint64_t)ts->tv_nsec + 1000000 * (uint64_t)time_in_ms;
  1063. while(t_ns >= ONE_BILLION)
  1064. {
  1065. SHOW("event > add_time_in_ms ns: %d sec %Lu nsec \n", ts->tv_sec, t_ns);
  1066. ts->tv_sec += 1;
  1067. t_ns -= ONE_BILLION;
  1068. }
  1069. ts->tv_nsec = (long int)t_ns;
  1070. }
  1071. #endif // USE_ASYNC
  1072. //>