eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wave.c 28KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. * Copyright (C) 2007, Gilles Casse <[email protected]>
  3. * Copyright (C) 2015 Reece H. Dunn
  4. * based on AudioIO.cc (Audacity-1.2.4b) and wavegen.cpp
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see: <http://www.gnu.org/licenses/>.
  18. */
  19. #include "config.h"
  20. #include "speech.h"
  21. #ifdef USE_ASYNC
  22. // This source file is only used for asynchronious modes
  23. #include <stdbool.h>
  24. #include <stdio.h>
  25. #include <string.h>
  26. #include <stdlib.h>
  27. #include <math.h>
  28. #include <assert.h>
  29. #include <sys/time.h>
  30. #include <time.h>
  31. #include "portaudio.h"
  32. #ifdef PLATFORM_WINDOWS
  33. #include <windows.h>
  34. #else
  35. #include <unistd.h>
  36. #endif
  37. #include "wave.h"
  38. #include "debug.h"
  39. #ifdef NEED_STRUCT_TIMESPEC
  40. #define HAVE_STRUCT_TIMESPEC 1
  41. struct timespec {
  42. long tv_sec;
  43. long tv_nsec;
  44. };
  45. #endif /* HAVE_STRUCT_TIMESPEC */
  46. enum { ONE_BILLION = 1000000000 };
  47. #ifdef USE_PORTAUDIO
  48. #include "portaudio.h"
  49. #undef USE_PORTAUDIO
  50. // determine portaudio version by looking for a #define which is not in V18
  51. #ifdef paNeverDropInput
  52. #define USE_PORTAUDIO 19
  53. #else
  54. #define USE_PORTAUDIO 18
  55. #endif
  56. #ifdef USE_PULSEAUDIO
  57. // create some wrappers for runtime detection
  58. // checked on wave_init
  59. static int pulse_running;
  60. // wave.cpp (this file)
  61. int wave_port_init(int);
  62. void *wave_port_open(const char *the_api);
  63. size_t wave_port_write(void *theHandler, char *theMono16BitsWaveBuffer, size_t theSize);
  64. int wave_port_close(void *theHandler);
  65. int wave_port_is_busy(void *theHandler);
  66. void wave_port_terminate();
  67. uint32_t wave_port_get_read_position(void *theHandler);
  68. uint32_t wave_port_get_write_position(void *theHandler);
  69. void wave_port_flush(void *theHandler);
  70. void wave_port_set_callback_is_output_enabled(t_wave_callback *cb);
  71. void *wave_port_test_get_write_buffer();
  72. int wave_port_get_remaining_time(uint32_t sample, uint32_t *time);
  73. // wave_pulse.cpp
  74. int is_pulse_running();
  75. int wave_pulse_init(int);
  76. void *wave_pulse_open(const char *the_api);
  77. size_t wave_pulse_write(void *theHandler, char *theMono16BitsWaveBuffer, size_t theSize);
  78. int wave_pulse_close(void *theHandler);
  79. int wave_pulse_is_busy(void *theHandler);
  80. void wave_pulse_terminate();
  81. uint32_t wave_pulse_get_read_position(void *theHandler);
  82. uint32_t wave_pulse_get_write_position(void *theHandler);
  83. void wave_pulse_flush(void *theHandler);
  84. void wave_pulse_set_callback_is_output_enabled(t_wave_callback *cb);
  85. void *wave_pulse_test_get_write_buffer();
  86. int wave_pulse_get_remaining_time(uint32_t sample, uint32_t *time);
  87. // wrappers
  88. int wave_init(int srate) {
  89. pulse_running = is_pulse_running();
  90. if (pulse_running)
  91. return wave_pulse_init(srate);
  92. else
  93. return wave_port_init(srate);
  94. }
  95. void *wave_open(const char *the_api) {
  96. if (pulse_running)
  97. return wave_pulse_open(the_api);
  98. else
  99. return wave_port_open(the_api);
  100. }
  101. size_t wave_write(void *theHandler, char *theMono16BitsWaveBuffer, size_t theSize) {
  102. if (pulse_running)
  103. return wave_pulse_write(theHandler, theMono16BitsWaveBuffer, theSize);
  104. else
  105. return wave_port_write(theHandler, theMono16BitsWaveBuffer, theSize);
  106. }
  107. int wave_close(void *theHandler) {
  108. if (pulse_running)
  109. return wave_pulse_close(theHandler);
  110. else
  111. return wave_port_close(theHandler);
  112. }
  113. int wave_is_busy(void *theHandler) {
  114. if (pulse_running)
  115. return wave_pulse_is_busy(theHandler);
  116. else
  117. return wave_port_is_busy(theHandler);
  118. }
  119. void wave_terminate() {
  120. if (pulse_running)
  121. wave_pulse_terminate();
  122. else
  123. wave_port_terminate();
  124. }
  125. uint32_t wave_get_read_position(void *theHandler) {
  126. if (pulse_running)
  127. return wave_pulse_get_read_position(theHandler);
  128. else
  129. return wave_port_get_read_position(theHandler);
  130. }
  131. uint32_t wave_get_write_position(void *theHandler) {
  132. if (pulse_running)
  133. return wave_pulse_get_write_position(theHandler);
  134. else
  135. return wave_port_get_write_position(theHandler);
  136. }
  137. void wave_flush(void *theHandler) {
  138. if (pulse_running)
  139. wave_pulse_flush(theHandler);
  140. else
  141. wave_port_flush(theHandler);
  142. }
  143. void wave_set_callback_is_output_enabled(t_wave_callback *cb) {
  144. if (pulse_running)
  145. wave_pulse_set_callback_is_output_enabled(cb);
  146. else
  147. wave_port_set_callback_is_output_enabled(cb);
  148. }
  149. void *wave_test_get_write_buffer() {
  150. if (pulse_running)
  151. return wave_pulse_test_get_write_buffer();
  152. else
  153. return wave_port_test_get_write_buffer();
  154. }
  155. int wave_get_remaining_time(uint32_t sample, uint32_t *time)
  156. {
  157. if (pulse_running)
  158. return wave_pulse_get_remaining_time(sample, time);
  159. else
  160. return wave_port_get_remaining_time(sample, time);
  161. }
  162. // rename functions to be wrapped
  163. #define wave_init wave_port_init
  164. #define wave_open wave_port_open
  165. #define wave_write wave_port_write
  166. #define wave_close wave_port_close
  167. #define wave_is_busy wave_port_is_busy
  168. #define wave_terminate wave_port_terminate
  169. #define wave_get_read_position wave_port_get_read_position
  170. #define wave_get_write_position wave_port_get_write_position
  171. #define wave_flush wave_port_flush
  172. #define wave_set_callback_is_output_enabled wave_port_set_callback_is_output_enabled
  173. #define wave_test_get_write_buffer wave_port_test_get_write_buffer
  174. #define wave_get_remaining_time wave_port_get_remaining_time
  175. #endif // USE_PULSEAUDIO
  176. static t_wave_callback *my_callback_is_output_enabled = NULL;
  177. #define N_WAV_BUF 10
  178. #define MAX_SAMPLE_RATE 22050
  179. #define FRAMES_PER_BUFFER 512
  180. #define BUFFER_LENGTH (MAX_SAMPLE_RATE*2*sizeof(uint16_t))
  181. static char myBuffer[BUFFER_LENGTH];
  182. static char *myRead = NULL;
  183. static char *myWrite = NULL;
  184. static int out_channels = 1;
  185. static int my_stream_could_start = 0;
  186. static int wave_samplerate;
  187. static int mInCallbackFinishedState = false;
  188. #if (USE_PORTAUDIO == 18)
  189. static PortAudioStream *pa_stream = NULL;
  190. #endif
  191. #if (USE_PORTAUDIO == 19)
  192. static struct PaStreamParameters myOutputParameters;
  193. static PaStream *pa_stream = NULL;
  194. #endif
  195. static int userdata[4];
  196. static PaError pa_init_err = 0;
  197. // time measurement
  198. // The read and write position audio stream in the audio stream are measured in ms.
  199. //
  200. // * When the stream is opened, myReadPosition and myWritePosition are cleared.
  201. // * myWritePosition is updated in wave_write.
  202. // * myReadPosition is updated in pa_callback (+ sample delay).
  203. static uint32_t myReadPosition = 0; // in ms
  204. static uint32_t myWritePosition = 0;
  205. static void init_buffer()
  206. {
  207. myWrite = myBuffer;
  208. myRead = myBuffer;
  209. memset(myBuffer, 0, BUFFER_LENGTH);
  210. myReadPosition = myWritePosition = 0;
  211. SHOW("init_buffer > myRead=0x%x, myWrite=0x%x, BUFFER_LENGTH=0x%x, myReadPosition = myWritePosition = 0\n", (int)myRead, (int)myWrite, BUFFER_LENGTH);
  212. }
  213. static unsigned int get_used_mem()
  214. {
  215. char *aRead = myRead;
  216. char *aWrite = myWrite;
  217. unsigned int used = 0;
  218. assert((aRead >= myBuffer)
  219. && (aRead <= myBuffer + BUFFER_LENGTH)
  220. && (aWrite >= myBuffer)
  221. && (aWrite <= myBuffer + BUFFER_LENGTH));
  222. if (aRead < aWrite) {
  223. used = aWrite - aRead;
  224. } else {
  225. used = aWrite + BUFFER_LENGTH - aRead;
  226. }
  227. SHOW("get_used_mem > %d\n", used);
  228. return used;
  229. }
  230. static void start_stream()
  231. {
  232. PaError err;
  233. SHOW_TIME("start_stream");
  234. my_stream_could_start = 0;
  235. mInCallbackFinishedState = false;
  236. err = Pa_StartStream(pa_stream);
  237. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  238. #if USE_PORTAUDIO == 19
  239. if (err == paStreamIsNotStopped) {
  240. SHOW_TIME("start_stream > restart stream (begin)");
  241. // not sure why we need this, but PA v19 seems to need it
  242. err = Pa_StopStream(pa_stream);
  243. SHOW("start_stream > Pa_StopStream=%d (%s)\n", err, Pa_GetErrorText(err));
  244. err = Pa_StartStream(pa_stream);
  245. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  246. SHOW_TIME("start_stream > restart stream (end)");
  247. }
  248. #endif
  249. }
  250. /* This routine will be called by the PortAudio engine when audio is needed.
  251. ** It may called at interrupt level on some machines so don't do anything
  252. ** that could mess up the system like calling malloc() or free().
  253. */
  254. #if USE_PORTAUDIO == 18
  255. static int pa_callback(void *inputBuffer, void *outputBuffer,
  256. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData)
  257. #else
  258. static int pa_callback(const void *inputBuffer, void *outputBuffer,
  259. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  260. PaStreamCallbackFlags flags, void *userData)
  261. #endif
  262. {
  263. int aResult = 0; // paContinue
  264. char *aWrite = myWrite;
  265. size_t n = out_channels*sizeof(uint16_t)*framesPerBuffer;
  266. myReadPosition += framesPerBuffer;
  267. SHOW("pa_callback > myReadPosition=%u, framesPerBuffer=%lu (n=0x%x) \n", (int)myReadPosition, framesPerBuffer, n);
  268. if (aWrite >= myRead) {
  269. if ((size_t)(aWrite - myRead) >= n) {
  270. memcpy(outputBuffer, myRead, n);
  271. myRead += n;
  272. } else {
  273. SHOW_TIME("pa_callback > underflow");
  274. aResult = 1; // paComplete;
  275. mInCallbackFinishedState = true;
  276. size_t aUsedMem = 0;
  277. aUsedMem = (size_t)(aWrite - myRead);
  278. if (aUsedMem) {
  279. memcpy(outputBuffer, myRead, aUsedMem);
  280. }
  281. char *p = (char *)outputBuffer + aUsedMem;
  282. memset(p, 0, n - aUsedMem);
  283. myRead = aWrite;
  284. }
  285. } else { // myRead > aWrite
  286. if ((size_t)(myBuffer + BUFFER_LENGTH - myRead) >= n) {
  287. memcpy(outputBuffer, myRead, n);
  288. myRead += n;
  289. } else if ((size_t)(aWrite + BUFFER_LENGTH - myRead) >= n) {
  290. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  291. if (aTopMem) {
  292. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n", (int)myRead, (int)aTopMem);
  293. memcpy(outputBuffer, myRead, aTopMem);
  294. }
  295. int aRest = n - aTopMem;
  296. if (aRest) {
  297. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n", (int)myRead, (int)aRest);
  298. char *p = (char *)outputBuffer + aTopMem;
  299. memcpy(p, myBuffer, aRest);
  300. }
  301. myRead = myBuffer + aRest;
  302. } else {
  303. SHOW_TIME("pa_callback > underflow");
  304. aResult = 1; // paComplete;
  305. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  306. if (aTopMem) {
  307. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n", (int)myRead, (int)aTopMem);
  308. memcpy(outputBuffer, myRead, aTopMem);
  309. }
  310. int aRest = aWrite - myBuffer;
  311. if (aRest) {
  312. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n", (int)myRead, (int)aRest);
  313. char *p = (char *)outputBuffer + aTopMem;
  314. memcpy(p, myBuffer, aRest);
  315. }
  316. size_t aUsedMem = aTopMem + aRest;
  317. char *p = (char *)outputBuffer + aUsedMem;
  318. memset(p, 0, n - aUsedMem);
  319. myRead = aWrite;
  320. }
  321. }
  322. SHOW("pa_callback > myRead=%x\n", (int)myRead);
  323. #ifdef ARCH_BIG
  324. {
  325. // BIG-ENDIAN, swap the order of bytes in each sound sample in the portaudio buffer
  326. int c;
  327. unsigned char *out_ptr;
  328. unsigned char *out_end;
  329. out_ptr = (unsigned char *)outputBuffer;
  330. out_end = out_ptr + framesPerBuffer*2 * out_channels;
  331. while (out_ptr < out_end) {
  332. c = out_ptr[0];
  333. out_ptr[0] = out_ptr[1];
  334. out_ptr[1] = c;
  335. out_ptr += 2;
  336. }
  337. }
  338. #endif
  339. return aResult;
  340. }
  341. void wave_flush(void *theHandler)
  342. {
  343. ENTER("wave_flush");
  344. if (my_stream_could_start) {
  345. start_stream();
  346. }
  347. }
  348. static int wave_open_sound()
  349. {
  350. ENTER("wave_open_sound");
  351. PaError err = paNoError;
  352. PaError active;
  353. #if USE_PORTAUDIO == 18
  354. active = Pa_StreamActive(pa_stream);
  355. #else
  356. active = Pa_IsStreamActive(pa_stream);
  357. #endif
  358. if (active == 1) {
  359. SHOW_TIME("wave_open_sound > already active");
  360. return 0;
  361. }
  362. if (active < 0) {
  363. out_channels = 1;
  364. #if USE_PORTAUDIO == 18
  365. PaDeviceID playbackDevice = Pa_GetDefaultOutputDeviceID();
  366. PaError err = Pa_OpenStream(&pa_stream,
  367. /* capture parameters */
  368. paNoDevice,
  369. 0,
  370. paInt16,
  371. NULL,
  372. /* playback parameters */
  373. playbackDevice,
  374. out_channels,
  375. paInt16,
  376. NULL,
  377. /* general parameters */
  378. wave_samplerate, FRAMES_PER_BUFFER, 0,
  379. paNoFlag,
  380. pa_callback, (void *)userdata);
  381. SHOW("wave_open_sound > Pa_OpenDefaultStream(1): err=%d (%s)\n", err, Pa_GetErrorText(err));
  382. if (err == paInvalidChannelCount) {
  383. SHOW_TIME("wave_open_sound > try stereo");
  384. // failed to open with mono, try stereo
  385. out_channels = 2;
  386. PaError err = Pa_OpenStream(&pa_stream,
  387. /* capture parameters */
  388. paNoDevice,
  389. 0,
  390. paInt16,
  391. NULL,
  392. /* playback parameters */
  393. playbackDevice,
  394. out_channels,
  395. paInt16,
  396. NULL,
  397. /* general parameters */
  398. wave_samplerate, FRAMES_PER_BUFFER, 0,
  399. paNoFlag,
  400. pa_callback, (void *)userdata);
  401. SHOW("wave_open_sound > Pa_OpenDefaultStream(2): err=%d (%s)\n", err, Pa_GetErrorText(err));
  402. err = 0; // avoid warning
  403. }
  404. mInCallbackFinishedState = false; // v18 only
  405. #else
  406. myOutputParameters.channelCount = out_channels;
  407. unsigned long framesPerBuffer = paFramesPerBufferUnspecified;
  408. err = Pa_OpenStream(
  409. &pa_stream,
  410. NULL, /* no input */
  411. &myOutputParameters,
  412. wave_samplerate,
  413. framesPerBuffer,
  414. paNoFlag,
  415. pa_callback,
  416. (void *)userdata);
  417. if ((err != paNoError)
  418. && (err != paInvalidChannelCount)) { // err==paUnanticipatedHostError
  419. fprintf(stderr, "wave_open_sound > Pa_OpenStream : err=%d (%s)\n", err, Pa_GetErrorText(err));
  420. framesPerBuffer = FRAMES_PER_BUFFER;
  421. err = Pa_OpenStream(
  422. &pa_stream,
  423. NULL, /* no input */
  424. &myOutputParameters,
  425. wave_samplerate,
  426. framesPerBuffer,
  427. paNoFlag,
  428. // paClipOff | paDitherOff,
  429. pa_callback,
  430. (void *)userdata);
  431. }
  432. if (err == paInvalidChannelCount) {
  433. SHOW_TIME("wave_open_sound > try stereo");
  434. // failed to open with mono, try stereo
  435. out_channels = 2;
  436. myOutputParameters.channelCount = out_channels;
  437. err = Pa_OpenStream(
  438. &pa_stream,
  439. NULL, /* no input */
  440. &myOutputParameters,
  441. wave_samplerate,
  442. framesPerBuffer,
  443. paNoFlag,
  444. // paClipOff | paDitherOff,
  445. pa_callback,
  446. (void *)userdata);
  447. }
  448. mInCallbackFinishedState = false;
  449. #endif
  450. }
  451. SHOW("wave_open_sound > %s\n", "LEAVE");
  452. return err != paNoError;
  453. }
  454. #if (USE_PORTAUDIO == 19)
  455. static void update_output_parameters(int selectedDevice, const PaDeviceInfo *deviceInfo)
  456. {
  457. myOutputParameters.device = selectedDevice;
  458. myOutputParameters.channelCount = 1;
  459. myOutputParameters.sampleFormat = paInt16;
  460. // Latency greater than 100ms for avoiding glitches
  461. // (e.g. when moving a window in a graphical desktop)
  462. // deviceInfo = Pa_GetDeviceInfo(selectedDevice);
  463. if (deviceInfo) {
  464. double aLatency = deviceInfo->defaultLowOutputLatency;
  465. myOutputParameters.suggestedLatency = aLatency; // for faster response ?
  466. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f, aCoeff=%f\n",
  467. selectedDevice,
  468. myOutputParameters.suggestedLatency,
  469. aCoeff);
  470. } else {
  471. myOutputParameters.suggestedLatency = (double)0.1; // 100ms
  472. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f (default)\n",
  473. selectedDevice,
  474. myOutputParameters.suggestedLatency);
  475. }
  476. myOutputParameters.hostApiSpecificStreamInfo = NULL;
  477. }
  478. #endif
  479. static void select_device(const char *the_api)
  480. {
  481. ENTER("select_device");
  482. #if (USE_PORTAUDIO == 19)
  483. int numDevices = Pa_GetDeviceCount();
  484. if (numDevices < 0) {
  485. SHOW("ERROR: Pa_CountDevices returned 0x%x\n", numDevices);
  486. assert(0);
  487. }
  488. PaDeviceIndex i = 0, selectedIndex = 0, defaultAlsaIndex = numDevices;
  489. const PaDeviceInfo *deviceInfo = NULL;
  490. const PaDeviceInfo *selectedDeviceInfo = NULL;
  491. if (option_device_number >= 0) {
  492. selectedIndex = option_device_number;
  493. selectedDeviceInfo = Pa_GetDeviceInfo(selectedIndex);
  494. }
  495. if (selectedDeviceInfo == NULL) {
  496. for (i = 0; i < numDevices; i++) {
  497. deviceInfo = Pa_GetDeviceInfo(i);
  498. if (deviceInfo == NULL) {
  499. break;
  500. }
  501. const PaHostApiInfo *hostInfo = Pa_GetHostApiInfo(deviceInfo->hostApi);
  502. if (hostInfo && hostInfo->type == paALSA) {
  503. // Check (once) the default output device
  504. if (defaultAlsaIndex == numDevices) {
  505. defaultAlsaIndex = hostInfo->defaultOutputDevice;
  506. const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo(defaultAlsaIndex);
  507. update_output_parameters(defaultAlsaIndex, deviceInfo);
  508. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0) {
  509. SHOW("select_device > ALSA (default), name=%s (#%d)\n", deviceInfo->name, defaultAlsaIndex);
  510. selectedIndex = defaultAlsaIndex;
  511. selectedDeviceInfo = deviceInfo;
  512. break;
  513. }
  514. }
  515. // if the default output device does not match,
  516. // look for the device with the highest number of output channels
  517. SHOW("select_device > ALSA, i=%d (numDevices=%d)\n", i, numDevices);
  518. update_output_parameters(i, deviceInfo);
  519. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0) {
  520. SHOW("select_device > ALSA, name=%s (#%d)\n", deviceInfo->name, i);
  521. if (!selectedDeviceInfo
  522. || (selectedDeviceInfo->maxOutputChannels < deviceInfo->maxOutputChannels)) {
  523. selectedIndex = i;
  524. selectedDeviceInfo = deviceInfo;
  525. }
  526. }
  527. }
  528. }
  529. }
  530. if (selectedDeviceInfo) {
  531. update_output_parameters(selectedIndex, selectedDeviceInfo);
  532. } else {
  533. i = Pa_GetDefaultOutputDevice();
  534. deviceInfo = Pa_GetDeviceInfo(i);
  535. update_output_parameters(i, deviceInfo);
  536. }
  537. #endif
  538. }
  539. void wave_set_callback_is_output_enabled(t_wave_callback *cb)
  540. {
  541. my_callback_is_output_enabled = cb;
  542. }
  543. int wave_init(int srate)
  544. {
  545. ENTER("wave_init");
  546. PaError err;
  547. pa_stream = NULL;
  548. wave_samplerate = srate;
  549. mInCallbackFinishedState = false;
  550. init_buffer();
  551. // PortAudio sound output library
  552. err = Pa_Initialize();
  553. pa_init_err = err;
  554. if (err != paNoError) {
  555. SHOW_TIME("wave_init > Failed to initialise the PortAudio sound");
  556. }
  557. return err == paNoError;
  558. }
  559. void *wave_open(const char *the_api)
  560. {
  561. ENTER("wave_open");
  562. static int once = 0;
  563. if (!once) {
  564. select_device("alsa");
  565. once = 1;
  566. }
  567. return (void *)1;
  568. }
  569. static size_t copyBuffer(char *dest, char *src, const size_t theSizeInBytes)
  570. {
  571. size_t bytes_written = 0;
  572. unsigned int i = 0;
  573. uint16_t *a_dest = NULL;
  574. uint16_t *a_src = NULL;
  575. if ((src != NULL) && dest != NULL) {
  576. // copy for one channel (mono)?
  577. if (out_channels == 1) {
  578. SHOW("copyBuffer > 1 channel > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  579. memcpy(dest, src, theSizeInBytes);
  580. bytes_written = theSizeInBytes;
  581. } else { // copy for 2 channels (stereo)
  582. SHOW("copyBuffer > 2 channels > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  583. i = 0;
  584. a_dest = (uint16_t *)dest;
  585. a_src = (uint16_t *)src;
  586. for (i = 0; i < theSizeInBytes/2; i++) {
  587. a_dest[2*i] = a_src[i];
  588. a_dest[2*i+1] = a_src[i];
  589. }
  590. bytes_written = 2*theSizeInBytes;
  591. } // end if(out_channels==1)
  592. } // end if ((src != NULL) && dest != NULL)
  593. return bytes_written;
  594. }
  595. size_t wave_write(void *theHandler, char *theMono16BitsWaveBuffer, size_t theSize)
  596. {
  597. ENTER("wave_write");
  598. size_t bytes_written = 0;
  599. // space in ringbuffer for the sample needed: 1x mono channel but 2x for 1 stereo channel
  600. size_t bytes_to_write = (out_channels == 1) ? theSize : theSize*2;
  601. my_stream_could_start = 0;
  602. if (pa_stream == NULL) {
  603. SHOW_TIME("wave_write > wave_open_sound\n");
  604. if (0 != wave_open_sound()) {
  605. SHOW_TIME("wave_write > wave_open_sound fails!");
  606. return 0;
  607. }
  608. my_stream_could_start = 1;
  609. } else if (!wave_is_busy(NULL)) {
  610. my_stream_could_start = 1;
  611. }
  612. assert(BUFFER_LENGTH >= bytes_to_write);
  613. if (myWrite >= myBuffer + BUFFER_LENGTH) {
  614. myWrite = myBuffer;
  615. } // end if (myWrite >= myBuffer + BUFFER_LENGTH)
  616. size_t aTotalFreeMem = 0;
  617. char *aRead = myRead;
  618. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  619. while (1) {
  620. if (my_callback_is_output_enabled && (0 == my_callback_is_output_enabled())) {
  621. SHOW_TIME("wave_write > my_callback_is_output_enabled: no!");
  622. return 0;
  623. }
  624. aRead = myRead;
  625. // write pointer is before read pointer?
  626. if (myWrite >= aRead) {
  627. aTotalFreeMem = aRead + BUFFER_LENGTH - myWrite;
  628. } else { // read pointer is before write pointer!
  629. aTotalFreeMem = aRead - myWrite;
  630. } // end if (myWrite >= aRead)
  631. if (aTotalFreeMem > 1) {
  632. // -1 because myWrite must be different of aRead
  633. // otherwise buffer would be considered as empty
  634. aTotalFreeMem -= 1;
  635. } // end if (aTotalFreeMem>1)
  636. if (aTotalFreeMem >= bytes_to_write) {
  637. break;
  638. } // end if (aTotalFreeMem >= bytes_to_write)
  639. SHOW("wave_write > wait: aTotalFreeMem=%d\n", aTotalFreeMem);
  640. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  641. usleep(10000);
  642. } // end while (1)
  643. aRead = myRead;
  644. // write pointer is ahead the read pointer?
  645. if (myWrite >= aRead) {
  646. SHOW_TIME("wave_write > myWrite >= aRead");
  647. // determine remaining free memory to the end of the ringbuffer
  648. size_t aFreeMem = myBuffer + BUFFER_LENGTH - myWrite;
  649. // is enough linear space available (regardless 1 or 2 channels)?
  650. if (aFreeMem >= bytes_to_write) {
  651. // copy direct - no wrap around at end of ringbuffer needed
  652. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  653. } else { // not enough linear space available
  654. // 2 channels (stereo)?
  655. if (out_channels == 2) {
  656. // copy with wrap around at the end of ringbuffer
  657. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem/2);
  658. myWrite = myBuffer;
  659. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem/2, theSize - aFreeMem/2);
  660. } else { // 1 channel (mono)
  661. // copy with wrap around at the end of ringbuffer
  662. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem);
  663. myWrite = myBuffer;
  664. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem, theSize - aFreeMem);
  665. } // end if (out_channels == 2)
  666. } // end if (aFreeMem >= bytes_to_write)
  667. } // if (myWrite >= aRead)
  668. else { // read pointer is ahead the write pointer
  669. SHOW_TIME("wave_write > myWrite <= aRead");
  670. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  671. } // end if (myWrite >= aRead)
  672. bytes_written = bytes_to_write;
  673. myWritePosition += theSize/sizeof(uint16_t); // add number of samples
  674. if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER)) {
  675. start_stream();
  676. } // end if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  677. SHOW_TIME("wave_write > LEAVE");
  678. return bytes_written;
  679. }
  680. int wave_close(void *theHandler)
  681. {
  682. SHOW_TIME("wave_close > ENTER");
  683. static int aStopStreamCount = 0;
  684. #if (USE_PORTAUDIO == 19)
  685. if (pa_stream == NULL) {
  686. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  687. return 0;
  688. }
  689. if (Pa_IsStreamStopped(pa_stream)) {
  690. SHOW_TIME("wave_close > LEAVE (stopped)");
  691. return 0;
  692. }
  693. #else
  694. if (pa_stream == NULL) {
  695. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  696. return 0;
  697. }
  698. if (Pa_StreamActive(pa_stream) == false && mInCallbackFinishedState == false) {
  699. SHOW_TIME("wave_close > LEAVE (not active)");
  700. return 0;
  701. }
  702. #endif
  703. // Avoid race condition by making sure this function only
  704. // gets called once at a time
  705. aStopStreamCount++;
  706. if (aStopStreamCount != 1) {
  707. SHOW_TIME("wave_close > LEAVE (stopStreamCount)");
  708. return 0;
  709. }
  710. // Comment from Audacity-1.2.4b adapted to the eSpeak context.
  711. //
  712. // We got here in one of two ways:
  713. //
  714. // 1. The calling program calls the espeak_Cancel function and we
  715. // therefore want to stop as quickly as possible.
  716. // So we use AbortStream(). If this is
  717. // the case the portaudio stream is still in the Running state
  718. // (see PortAudio state machine docs).
  719. //
  720. // 2. The callback told PortAudio to stop the stream since it had
  721. // reached the end of the selection.
  722. // The event polling thread discovered this by noticing that
  723. // wave_is_busy() returned false.
  724. // wave_is_busy() (which calls Pa_GetStreamActive()) will not return
  725. // false until all buffers have finished playing, so we can call
  726. // AbortStream without losing any samples. If this is the case
  727. // we are in the "callback finished state" (see PortAudio state
  728. // machine docs).
  729. //
  730. // The moral of the story: We can call AbortStream safely, without
  731. // losing samples.
  732. //
  733. // DMM: This doesn't seem to be true; it seems to be necessary to
  734. // call StopStream if the callback brought us here, and AbortStream
  735. // if the user brought us here.
  736. //
  737. #if (USE_PORTAUDIO == 19)
  738. if (pa_stream) {
  739. Pa_AbortStream(pa_stream);
  740. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  741. Pa_CloseStream(pa_stream);
  742. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  743. pa_stream = NULL;
  744. mInCallbackFinishedState = false;
  745. }
  746. #else
  747. if (pa_stream) {
  748. if (mInCallbackFinishedState) {
  749. Pa_StopStream(pa_stream);
  750. SHOW_TIME("wave_close > Pa_StopStream (end)");
  751. } else {
  752. Pa_AbortStream(pa_stream);
  753. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  754. }
  755. Pa_CloseStream(pa_stream);
  756. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  757. pa_stream = NULL;
  758. mInCallbackFinishedState = false;
  759. }
  760. #endif
  761. init_buffer();
  762. aStopStreamCount = 0; // last action
  763. SHOW_TIME("wave_close > LEAVE");
  764. return 0;
  765. }
  766. int wave_is_busy(void *theHandler)
  767. {
  768. PaError active = 0;
  769. SHOW_TIME("wave_is_busy");
  770. if (pa_stream) {
  771. #if USE_PORTAUDIO == 18
  772. active = Pa_StreamActive(pa_stream)
  773. && (mInCallbackFinishedState == false);
  774. #else
  775. active = Pa_IsStreamActive(pa_stream)
  776. && (mInCallbackFinishedState == false);
  777. #endif
  778. }
  779. SHOW("wave_is_busy: %d\n", active);
  780. return active == 1;
  781. }
  782. void wave_terminate()
  783. {
  784. ENTER("wave_terminate");
  785. Pa_Terminate();
  786. }
  787. uint32_t wave_get_read_position(void *theHandler)
  788. {
  789. SHOW("wave_get_read_position > myReadPosition=%u\n", myReadPosition);
  790. return myReadPosition;
  791. }
  792. uint32_t wave_get_write_position(void *theHandler)
  793. {
  794. SHOW("wave_get_write_position > myWritePosition=%u\n", myWritePosition);
  795. return myWritePosition;
  796. }
  797. int wave_get_remaining_time(uint32_t sample, uint32_t *time)
  798. {
  799. double a_time = 0;
  800. if (!time || !pa_stream) {
  801. SHOW("event get_remaining_time> %s\n", "audio device not available");
  802. return -1;
  803. }
  804. if (sample > myReadPosition) {
  805. // TBD: take in account time suplied by portaudio V18 API
  806. a_time = sample - myReadPosition;
  807. a_time = 0.5 + (a_time * 1000.0) / wave_samplerate;
  808. } else {
  809. a_time = 0;
  810. }
  811. SHOW("wave_get_remaining_time > sample=%d, time=%d\n", sample, (uint32_t)a_time);
  812. *time = (uint32_t)a_time;
  813. return 0;
  814. }
  815. void *wave_test_get_write_buffer()
  816. {
  817. return myWrite;
  818. }
  819. #else
  820. int wave_init(int srate) {
  821. return 1;
  822. }
  823. void *wave_open(const char *the_api) {
  824. return (void *)1;
  825. }
  826. size_t wave_write(void *theHandler, char *theMono16BitsWaveBuffer, size_t theSize) {
  827. return theSize;
  828. }
  829. int wave_close(void *theHandler) {
  830. return 0;
  831. }
  832. int wave_is_busy(void *theHandler) {
  833. return 0;
  834. }
  835. void wave_terminate() {
  836. }
  837. uint32_t wave_get_read_position(void *theHandler) {
  838. return 0;
  839. }
  840. uint32_t wave_get_write_position(void *theHandler) {
  841. return 0;
  842. }
  843. void wave_flush(void *theHandler) {
  844. }
  845. typedef int (t_wave_callback)(void);
  846. void wave_set_callback_is_output_enabled(t_wave_callback *cb) {
  847. }
  848. extern void *wave_test_get_write_buffer() {
  849. return NULL;
  850. }
  851. int wave_get_remaining_time(uint32_t sample, uint32_t *time)
  852. {
  853. if (!time) return -1;
  854. *time = (uint32_t)0;
  855. return 0;
  856. }
  857. #endif // of USE_PORTAUDIO
  858. void clock_gettime2(struct timespec *ts)
  859. {
  860. struct timeval tv;
  861. if (!ts) {
  862. return;
  863. }
  864. assert(gettimeofday(&tv, NULL) != -1);
  865. ts->tv_sec = tv.tv_sec;
  866. ts->tv_nsec = tv.tv_usec*1000;
  867. }
  868. void add_time_in_ms(struct timespec *ts, int time_in_ms)
  869. {
  870. if (!ts) {
  871. return;
  872. }
  873. uint64_t t_ns = (uint64_t)ts->tv_nsec + 1000000 * (uint64_t)time_in_ms;
  874. while (t_ns >= ONE_BILLION) {
  875. SHOW("event > add_time_in_ms ns: %d sec %Lu nsec \n", ts->tv_sec, t_ns);
  876. ts->tv_sec += 1;
  877. t_ns -= ONE_BILLION;
  878. }
  879. ts->tv_nsec = (long int)t_ns;
  880. }
  881. #endif // USE_ASYNC