eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wave.cpp 32KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /***************************************************************************
  2. * Copyright (C) 2007, Gilles Casse <[email protected]> *
  3. * based on AudioIO.cc (Audacity-1.2.4b) and wavegen.cpp *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #include "speech.h"
  21. #ifdef USE_ASYNC
  22. // This source file is only used for asynchronious modes
  23. #include <stdio.h>
  24. #include <string.h>
  25. #include <stdlib.h>
  26. #include <math.h>
  27. #include <assert.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include "portaudio.h"
  31. #ifdef PLATFORM_WINDOWS
  32. #include <windows.h>
  33. #else
  34. #include <unistd.h>
  35. #endif
  36. #include "wave.h"
  37. #include "debug.h"
  38. //<Definitions
  39. #ifdef NEED_STRUCT_TIMESPEC
  40. #define HAVE_STRUCT_TIMESPEC 1
  41. struct timespec {
  42. long tv_sec;
  43. long tv_nsec;
  44. };
  45. #endif /* HAVE_STRUCT_TIMESPEC */
  46. enum {ONE_BILLION=1000000000};
  47. #ifdef USE_PORTAUDIO
  48. #undef USE_PORTAUDIO
  49. // determine portaudio version by looking for a #define which is not in V18
  50. #ifdef paNeverDropInput
  51. #define USE_PORTAUDIO 19
  52. #else
  53. #define USE_PORTAUDIO 18
  54. #endif
  55. #ifdef USE_PULSEAUDIO
  56. // create some wrappers for runtime detection
  57. // checked on wave_init
  58. static int pulse_running;
  59. // wave.cpp (this file)
  60. int wave_port_init(int);
  61. void* wave_port_open(const char* the_api);
  62. size_t wave_port_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  63. int wave_port_close(void* theHandler);
  64. int wave_port_is_busy(void* theHandler);
  65. void wave_port_terminate();
  66. uint32_t wave_port_get_read_position(void* theHandler);
  67. uint32_t wave_port_get_write_position(void* theHandler);
  68. void wave_port_flush(void* theHandler);
  69. void wave_port_set_callback_is_output_enabled(t_wave_callback* cb);
  70. void* wave_port_test_get_write_buffer();
  71. int wave_port_get_remaining_time(uint32_t sample, uint32_t* time);
  72. // wave_pulse.cpp
  73. int is_pulse_running();
  74. int wave_pulse_init(int);
  75. void* wave_pulse_open(const char* the_api);
  76. size_t wave_pulse_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  77. int wave_pulse_close(void* theHandler);
  78. int wave_pulse_is_busy(void* theHandler);
  79. void wave_pulse_terminate();
  80. uint32_t wave_pulse_get_read_position(void* theHandler);
  81. uint32_t wave_pulse_get_write_position(void* theHandler);
  82. void wave_pulse_flush(void* theHandler);
  83. void wave_pulse_set_callback_is_output_enabled(t_wave_callback* cb);
  84. void* wave_pulse_test_get_write_buffer();
  85. int wave_pulse_get_remaining_time(uint32_t sample, uint32_t* time);
  86. // wrappers
  87. int wave_init(int srate) {
  88. pulse_running = is_pulse_running();
  89. if (pulse_running)
  90. return wave_pulse_init(srate);
  91. else
  92. return wave_port_init(srate);
  93. }
  94. void* wave_open(const char* the_api) {
  95. if (pulse_running)
  96. return wave_pulse_open(the_api);
  97. else
  98. return wave_port_open(the_api);
  99. }
  100. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {
  101. if (pulse_running)
  102. return wave_pulse_write(theHandler, theMono16BitsWaveBuffer, theSize);
  103. else
  104. return wave_port_write(theHandler, theMono16BitsWaveBuffer, theSize);
  105. }
  106. int wave_close(void* theHandler) {
  107. if (pulse_running)
  108. return wave_pulse_close(theHandler);
  109. else
  110. return wave_port_close(theHandler);
  111. }
  112. int wave_is_busy(void* theHandler) {
  113. if (pulse_running)
  114. return wave_pulse_is_busy(theHandler);
  115. else
  116. return wave_port_is_busy(theHandler);
  117. }
  118. void wave_terminate() {
  119. if (pulse_running)
  120. wave_pulse_terminate();
  121. else
  122. wave_port_terminate();
  123. }
  124. uint32_t wave_get_read_position(void* theHandler) {
  125. if (pulse_running)
  126. return wave_pulse_get_read_position(theHandler);
  127. else
  128. return wave_port_get_read_position(theHandler);
  129. }
  130. uint32_t wave_get_write_position(void* theHandler) {
  131. if (pulse_running)
  132. return wave_pulse_get_write_position(theHandler);
  133. else
  134. return wave_port_get_write_position(theHandler);
  135. }
  136. void wave_flush(void* theHandler) {
  137. if (pulse_running)
  138. wave_pulse_flush(theHandler);
  139. else
  140. wave_port_flush(theHandler);
  141. }
  142. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {
  143. if (pulse_running)
  144. wave_pulse_set_callback_is_output_enabled(cb);
  145. else
  146. wave_port_set_callback_is_output_enabled(cb);
  147. }
  148. void* wave_test_get_write_buffer() {
  149. if (pulse_running)
  150. return wave_pulse_test_get_write_buffer();
  151. else
  152. return wave_port_test_get_write_buffer();
  153. }
  154. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  155. {
  156. if (pulse_running)
  157. return wave_pulse_get_remaining_time(sample, time);
  158. else
  159. return wave_port_get_remaining_time(sample, time);
  160. }
  161. // rename functions to be wrapped
  162. #define wave_init wave_port_init
  163. #define wave_open wave_port_open
  164. #define wave_write wave_port_write
  165. #define wave_close wave_port_close
  166. #define wave_is_busy wave_port_is_busy
  167. #define wave_terminate wave_port_terminate
  168. #define wave_get_read_position wave_port_get_read_position
  169. #define wave_get_write_position wave_port_get_write_position
  170. #define wave_flush wave_port_flush
  171. #define wave_set_callback_is_output_enabled wave_port_set_callback_is_output_enabled
  172. #define wave_test_get_write_buffer wave_port_test_get_write_buffer
  173. #define wave_get_remaining_time wave_port_get_remaining_time
  174. #endif // USE_PULSEAUDIO
  175. static t_wave_callback* my_callback_is_output_enabled=NULL;
  176. #define N_WAV_BUF 10
  177. #define MAX_SAMPLE_RATE 22050
  178. #define FRAMES_PER_BUFFER 512
  179. #define BUFFER_LENGTH (MAX_SAMPLE_RATE*2*sizeof(uint16_t))
  180. //#define THRESHOLD (BUFFER_LENGTH/5)
  181. static char myBuffer[BUFFER_LENGTH];
  182. static char* myRead=NULL;
  183. static char* myWrite=NULL;
  184. static int out_channels=1;
  185. static int my_stream_could_start=0;
  186. static int wave_samplerate;
  187. static int mInCallbackFinishedState = false;
  188. #if (USE_PORTAUDIO == 18)
  189. static PortAudioStream *pa_stream=NULL;
  190. #endif
  191. #if (USE_PORTAUDIO == 19)
  192. static struct PaStreamParameters myOutputParameters;
  193. static PaStream *pa_stream=NULL;
  194. #endif
  195. static int userdata[4];
  196. static PaError pa_init_err=0;
  197. // time measurement
  198. // The read and write position audio stream in the audio stream are measured in ms.
  199. //
  200. // * When the stream is opened, myReadPosition and myWritePosition are cleared.
  201. // * myWritePosition is updated in wave_write.
  202. // * myReadPosition is updated in pa_callback (+ sample delay).
  203. static uint32_t myReadPosition = 0; // in ms
  204. static uint32_t myWritePosition = 0;
  205. //>
  206. //<init_buffer, get_used_mem
  207. static void init_buffer()
  208. {
  209. myWrite = myBuffer;
  210. myRead = myBuffer;
  211. memset(myBuffer,0,BUFFER_LENGTH);
  212. myReadPosition = myWritePosition = 0;
  213. SHOW("init_buffer > myRead=0x%x, myWrite=0x%x, BUFFER_LENGTH=0x%x, myReadPosition = myWritePosition = 0\n", (int)myRead, (int)myWrite, BUFFER_LENGTH);
  214. }
  215. static unsigned int get_used_mem()
  216. {
  217. char* aRead = myRead;
  218. char* aWrite = myWrite;
  219. unsigned int used = 0;
  220. assert ((aRead >= myBuffer)
  221. && (aRead <= myBuffer + BUFFER_LENGTH)
  222. && (aWrite >= myBuffer)
  223. && (aWrite <= myBuffer + BUFFER_LENGTH));
  224. if (aRead < aWrite)
  225. {
  226. used = aWrite - aRead;
  227. }
  228. else
  229. {
  230. used = aWrite + BUFFER_LENGTH - aRead;
  231. }
  232. SHOW("get_used_mem > %d\n", used);
  233. return used;
  234. }
  235. //>
  236. //<start stream
  237. static void start_stream()
  238. {
  239. PaError err;
  240. SHOW_TIME("start_stream");
  241. my_stream_could_start=0;
  242. mInCallbackFinishedState = false;
  243. err = Pa_StartStream(pa_stream);
  244. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  245. #if USE_PORTAUDIO == 19
  246. if(err == paStreamIsNotStopped)
  247. {
  248. SHOW_TIME("start_stream > restart stream (begin)");
  249. // not sure why we need this, but PA v19 seems to need it
  250. err = Pa_StopStream(pa_stream);
  251. SHOW("start_stream > Pa_StopStream=%d (%s)\n", err, Pa_GetErrorText(err));
  252. err = Pa_StartStream(pa_stream);
  253. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  254. SHOW_TIME("start_stream > restart stream (end)");
  255. }
  256. #endif
  257. }
  258. //>
  259. //<pa_callback
  260. /* This routine will be called by the PortAudio engine when audio is needed.
  261. ** It may called at interrupt level on some machines so don't do anything
  262. ** that could mess up the system like calling malloc() or free().
  263. */
  264. #if USE_PORTAUDIO == 18
  265. static int pa_callback(void *inputBuffer, void *outputBuffer,
  266. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  267. #else
  268. static int pa_callback(const void *inputBuffer, void *outputBuffer,
  269. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  270. PaStreamCallbackFlags flags, void *userData )
  271. #endif
  272. {
  273. int aResult=0; // paContinue
  274. char* aWrite = myWrite;
  275. size_t n = out_channels*sizeof(uint16_t)*framesPerBuffer;
  276. myReadPosition += framesPerBuffer;
  277. SHOW("pa_callback > myReadPosition=%u, framesPerBuffer=%lu (n=0x%x) \n",(int)myReadPosition, framesPerBuffer, n);
  278. if (aWrite >= myRead)
  279. {
  280. if((size_t)(aWrite - myRead) >= n)
  281. {
  282. memcpy(outputBuffer, myRead, n);
  283. myRead += n;
  284. }
  285. else
  286. {
  287. SHOW_TIME("pa_callback > underflow");
  288. aResult=1; // paComplete;
  289. mInCallbackFinishedState = true;
  290. size_t aUsedMem=0;
  291. aUsedMem = (size_t)(aWrite - myRead);
  292. if (aUsedMem)
  293. {
  294. memcpy(outputBuffer, myRead, aUsedMem);
  295. }
  296. char* p = (char*)outputBuffer + aUsedMem;
  297. memset(p, 0, n - aUsedMem);
  298. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  299. myRead = aWrite;
  300. }
  301. }
  302. else // myRead > aWrite
  303. {
  304. if ((size_t)(myBuffer + BUFFER_LENGTH - myRead) >= n)
  305. {
  306. memcpy(outputBuffer, myRead, n);
  307. myRead += n;
  308. }
  309. else if ((size_t)(aWrite + BUFFER_LENGTH - myRead) >= n)
  310. {
  311. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  312. if (aTopMem)
  313. {
  314. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  315. memcpy(outputBuffer, myRead, aTopMem);
  316. }
  317. int aRest = n - aTopMem;
  318. if (aRest)
  319. {
  320. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  321. char* p = (char*)outputBuffer + aTopMem;
  322. memcpy(p, myBuffer, aRest);
  323. }
  324. myRead = myBuffer + aRest;
  325. }
  326. else
  327. {
  328. SHOW_TIME("pa_callback > underflow");
  329. aResult=1; // paComplete;
  330. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  331. if (aTopMem)
  332. {
  333. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  334. memcpy(outputBuffer, myRead, aTopMem);
  335. }
  336. int aRest = aWrite - myBuffer;
  337. if (aRest)
  338. {
  339. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  340. char* p = (char*)outputBuffer + aTopMem;
  341. memcpy(p, myBuffer, aRest);
  342. }
  343. size_t aUsedMem = aTopMem + aRest;
  344. char* p = (char*)outputBuffer + aUsedMem;
  345. memset(p, 0, n - aUsedMem);
  346. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  347. myRead = aWrite;
  348. }
  349. }
  350. SHOW("pa_callback > myRead=%x\n",(int)myRead);
  351. // #if USE_PORTAUDIO == 18
  352. // if(aBufferEmpty)
  353. // {
  354. // static int end_timer = 0;
  355. // if(end_timer == 0)
  356. // end_timer = 4;
  357. // if(end_timer > 0)
  358. // {
  359. // end_timer--;
  360. // if(end_timer == 0)
  361. // return(1);
  362. // }
  363. // }
  364. // return(0);
  365. // #else
  366. #ifdef ARCH_BIG
  367. {
  368. // BIG-ENDIAN, swap the order of bytes in each sound sample in the portaudio buffer
  369. int c;
  370. unsigned char *out_ptr;
  371. unsigned char *out_end;
  372. out_ptr = (unsigned char *)outputBuffer;
  373. out_end = out_ptr + framesPerBuffer*2 * out_channels;
  374. while(out_ptr < out_end)
  375. {
  376. c = out_ptr[0];
  377. out_ptr[0] = out_ptr[1];
  378. out_ptr[1] = c;
  379. out_ptr += 2;
  380. }
  381. }
  382. #endif
  383. return(aResult);
  384. //#endif
  385. } // end of WaveCallBack
  386. //>
  387. void wave_flush(void* theHandler)
  388. {
  389. ENTER("wave_flush");
  390. if (my_stream_could_start)
  391. {
  392. // #define buf 1024
  393. // static char a_buffer[buf*2];
  394. // memset(a_buffer,0,buf*2);
  395. // wave_write(theHandler, a_buffer, buf*2);
  396. start_stream();
  397. }
  398. }
  399. //<wave_open_sound
  400. static int wave_open_sound()
  401. {
  402. ENTER("wave_open_sound");
  403. PaError err=paNoError;
  404. PaError active;
  405. #if USE_PORTAUDIO == 18
  406. active = Pa_StreamActive(pa_stream);
  407. #else
  408. active = Pa_IsStreamActive(pa_stream);
  409. #endif
  410. if(active == 1)
  411. {
  412. SHOW_TIME("wave_open_sound > already active");
  413. return(0);
  414. }
  415. if(active < 0)
  416. {
  417. out_channels = 1;
  418. #if USE_PORTAUDIO == 18
  419. // err = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,wave_samplerate,FRAMES_PER_BUFFER,N_WAV_BUF,pa_callback,(void *)userdata);
  420. PaDeviceID playbackDevice = Pa_GetDefaultOutputDeviceID();
  421. PaError err = Pa_OpenStream( &pa_stream,
  422. /* capture parameters */
  423. paNoDevice,
  424. 0,
  425. paInt16,
  426. NULL,
  427. /* playback parameters */
  428. playbackDevice,
  429. out_channels,
  430. paInt16,
  431. NULL,
  432. /* general parameters */
  433. wave_samplerate, FRAMES_PER_BUFFER, 0,
  434. //paClipOff | paDitherOff,
  435. paNoFlag,
  436. pa_callback, (void *)userdata);
  437. SHOW("wave_open_sound > Pa_OpenDefaultStream(1): err=%d (%s)\n",err, Pa_GetErrorText(err));
  438. if(err == paInvalidChannelCount)
  439. {
  440. SHOW_TIME("wave_open_sound > try stereo");
  441. // failed to open with mono, try stereo
  442. out_channels = 2;
  443. // myOutputParameters.channelCount = out_channels;
  444. PaError err = Pa_OpenStream( &pa_stream,
  445. /* capture parameters */
  446. paNoDevice,
  447. 0,
  448. paInt16,
  449. NULL,
  450. /* playback parameters */
  451. playbackDevice,
  452. out_channels,
  453. paInt16,
  454. NULL,
  455. /* general parameters */
  456. wave_samplerate, FRAMES_PER_BUFFER, 0,
  457. //paClipOff | paDitherOff,
  458. paNoFlag,
  459. pa_callback, (void *)userdata);
  460. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,
  461. // wave_samplerate,
  462. // FRAMES_PER_BUFFER,
  463. // N_WAV_BUF,pa_callback,(void *)userdata);
  464. SHOW("wave_open_sound > Pa_OpenDefaultStream(2): err=%d (%s)\n",err, Pa_GetErrorText(err));
  465. err=0; // avoid warning
  466. }
  467. mInCallbackFinishedState = false; // v18 only
  468. #else
  469. myOutputParameters.channelCount = out_channels;
  470. unsigned long framesPerBuffer = paFramesPerBufferUnspecified;
  471. err = Pa_OpenStream(
  472. &pa_stream,
  473. NULL, /* no input */
  474. &myOutputParameters,
  475. wave_samplerate,
  476. framesPerBuffer,
  477. paNoFlag,
  478. // paClipOff | paDitherOff,
  479. pa_callback,
  480. (void *)userdata);
  481. if ((err!=paNoError)
  482. && (err!=paInvalidChannelCount)) //err==paUnanticipatedHostError
  483. {
  484. fprintf(stderr, "wave_open_sound > Pa_OpenStream : err=%d (%s)\n",err,Pa_GetErrorText(err));
  485. framesPerBuffer = FRAMES_PER_BUFFER;
  486. err = Pa_OpenStream(
  487. &pa_stream,
  488. NULL, /* no input */
  489. &myOutputParameters,
  490. wave_samplerate,
  491. framesPerBuffer,
  492. paNoFlag,
  493. // paClipOff | paDitherOff,
  494. pa_callback,
  495. (void *)userdata);
  496. }
  497. if(err == paInvalidChannelCount)
  498. {
  499. SHOW_TIME("wave_open_sound > try stereo");
  500. // failed to open with mono, try stereo
  501. out_channels = 2;
  502. myOutputParameters.channelCount = out_channels;
  503. err = Pa_OpenStream(
  504. &pa_stream,
  505. NULL, /* no input */
  506. &myOutputParameters,
  507. wave_samplerate,
  508. framesPerBuffer,
  509. paNoFlag,
  510. // paClipOff | paDitherOff,
  511. pa_callback,
  512. (void *)userdata);
  513. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)wave_samplerate,FRAMES_PER_BUFFER,pa_callback,(void *)userdata);
  514. }
  515. mInCallbackFinishedState = false;
  516. #endif
  517. }
  518. SHOW("wave_open_sound > %s\n","LEAVE");
  519. return (err != paNoError);
  520. }
  521. //>
  522. //<select_device
  523. #if (USE_PORTAUDIO == 19)
  524. static void update_output_parameters(int selectedDevice, const PaDeviceInfo *deviceInfo)
  525. {
  526. // const PaDeviceInfo *pdi = Pa_GetDeviceInfo(i);
  527. myOutputParameters.device = selectedDevice;
  528. // myOutputParameters.channelCount = pdi->maxOutputChannels;
  529. myOutputParameters.channelCount = 1;
  530. myOutputParameters.sampleFormat = paInt16;
  531. // Latency greater than 100ms for avoiding glitches
  532. // (e.g. when moving a window in a graphical desktop)
  533. // deviceInfo = Pa_GetDeviceInfo(selectedDevice);
  534. if (deviceInfo)
  535. {
  536. double aLatency = deviceInfo->defaultLowOutputLatency;
  537. // double aCoeff = round(0.100 / aLatency);
  538. // myOutputParameters.suggestedLatency = aCoeff * aLatency; // to avoid glitches ?
  539. myOutputParameters.suggestedLatency = aLatency; // for faster response ?
  540. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f, aCoeff=%f\n",
  541. selectedDevice,
  542. myOutputParameters.suggestedLatency,
  543. aCoeff);
  544. }
  545. else
  546. {
  547. myOutputParameters.suggestedLatency = (double)0.1; // 100ms
  548. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f (default)\n",
  549. selectedDevice,
  550. myOutputParameters.suggestedLatency);
  551. }
  552. //pdi->defaultLowOutputLatency;
  553. myOutputParameters.hostApiSpecificStreamInfo = NULL;
  554. }
  555. #endif
  556. static void select_device(const char* the_api)
  557. {
  558. ENTER("select_device");
  559. #if (USE_PORTAUDIO == 19)
  560. int numDevices = Pa_GetDeviceCount();
  561. if( numDevices < 0 )
  562. {
  563. SHOW( "ERROR: Pa_CountDevices returned 0x%x\n", numDevices );
  564. assert(0);
  565. }
  566. PaDeviceIndex i=0, selectedIndex=0, defaultAlsaIndex=numDevices;
  567. const PaDeviceInfo *deviceInfo=NULL;
  568. const PaDeviceInfo *selectedDeviceInfo=NULL;
  569. if(option_device_number >= 0)
  570. {
  571. selectedIndex = option_device_number;
  572. selectedDeviceInfo = Pa_GetDeviceInfo(selectedIndex);
  573. }
  574. if(selectedDeviceInfo == NULL)
  575. {
  576. for( i=0; i<numDevices; i++ )
  577. {
  578. deviceInfo = Pa_GetDeviceInfo( i );
  579. if (deviceInfo == NULL)
  580. {
  581. break;
  582. }
  583. const PaHostApiInfo *hostInfo = Pa_GetHostApiInfo( deviceInfo->hostApi );
  584. if (hostInfo && hostInfo->type == paALSA)
  585. {
  586. // Check (once) the default output device
  587. if (defaultAlsaIndex == numDevices)
  588. {
  589. defaultAlsaIndex = hostInfo->defaultOutputDevice;
  590. const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo( defaultAlsaIndex );
  591. update_output_parameters(defaultAlsaIndex, deviceInfo);
  592. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  593. {
  594. SHOW( "select_device > ALSA (default), name=%s (#%d)\n", deviceInfo->name, defaultAlsaIndex);
  595. selectedIndex = defaultAlsaIndex;
  596. selectedDeviceInfo = deviceInfo;
  597. break;
  598. }
  599. }
  600. // if the default output device does not match,
  601. // look for the device with the highest number of output channels
  602. SHOW( "select_device > ALSA, i=%d (numDevices=%d)\n", i, numDevices);
  603. update_output_parameters(i, deviceInfo);
  604. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  605. {
  606. SHOW( "select_device > ALSA, name=%s (#%d)\n", deviceInfo->name, i);
  607. if (!selectedDeviceInfo
  608. || (selectedDeviceInfo->maxOutputChannels < deviceInfo->maxOutputChannels))
  609. {
  610. selectedIndex = i;
  611. selectedDeviceInfo = deviceInfo;
  612. }
  613. }
  614. }
  615. }
  616. }
  617. if (selectedDeviceInfo)
  618. {
  619. update_output_parameters(selectedIndex, selectedDeviceInfo);
  620. }
  621. else
  622. {
  623. i = Pa_GetDefaultOutputDevice();
  624. deviceInfo = Pa_GetDeviceInfo( i );
  625. update_output_parameters(i, deviceInfo);
  626. }
  627. #endif
  628. }
  629. //>
  630. // int wave_Close(void* theHandler)
  631. // {
  632. // SHOW_TIME("WaveCloseSound");
  633. // // PaError active;
  634. // // check whether speaking has finished, and close the stream
  635. // if(pa_stream != NULL)
  636. // {
  637. // Pa_CloseStream(pa_stream);
  638. // pa_stream = NULL;
  639. // init_buffer();
  640. // // #if USE_PORTAUDIO == 18
  641. // // active = Pa_StreamActive(pa_stream);
  642. // // #else
  643. // // active = Pa_IsStreamActive(pa_stream);
  644. // // #endif
  645. // // if(active == 0)
  646. // // {
  647. // // SHOW_TIME("WaveCloseSound > ok, not active");
  648. // // Pa_CloseStream(pa_stream);
  649. // // pa_stream = NULL;
  650. // // return(1);
  651. // // }
  652. // }
  653. // return(0);
  654. // }
  655. //<wave_set_callback_is_output_enabled
  656. void wave_set_callback_is_output_enabled(t_wave_callback* cb)
  657. {
  658. my_callback_is_output_enabled = cb;
  659. }
  660. //>
  661. //<wave_init
  662. // TBD: the arg could be "alsa", "oss",...
  663. int wave_init(int srate)
  664. {
  665. ENTER("wave_init");
  666. PaError err;
  667. pa_stream = NULL;
  668. wave_samplerate = srate;
  669. mInCallbackFinishedState = false;
  670. init_buffer();
  671. // PortAudio sound output library
  672. err = Pa_Initialize();
  673. pa_init_err = err;
  674. if(err != paNoError)
  675. {
  676. SHOW_TIME("wave_init > Failed to initialise the PortAudio sound");
  677. }
  678. return err == paNoError;
  679. }
  680. //>
  681. //<wave_open
  682. void* wave_open(const char* the_api)
  683. {
  684. ENTER("wave_open");
  685. static int once=0;
  686. // TBD: the_api (e.g. "alsa") is not used at the moment
  687. // select_device is called once
  688. if (!once)
  689. {
  690. select_device("alsa");
  691. once=1;
  692. }
  693. return((void*)1);
  694. }
  695. //>
  696. //<copyBuffer
  697. static size_t copyBuffer(char* dest, char* src, const size_t theSizeInBytes)
  698. {
  699. size_t bytes_written = 0;
  700. unsigned int i = 0;
  701. uint16_t* a_dest = NULL;
  702. uint16_t* a_src = NULL;
  703. if ((src != NULL) && dest != NULL)
  704. {
  705. // copy for one channel (mono)?
  706. if(out_channels==1)
  707. {
  708. SHOW("copyBuffer > 1 channel > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  709. memcpy(dest, src, theSizeInBytes);
  710. bytes_written = theSizeInBytes;
  711. }
  712. else // copy for 2 channels (stereo)
  713. {
  714. SHOW("copyBuffer > 2 channels > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  715. i = 0;
  716. a_dest = (uint16_t* )dest;
  717. a_src = (uint16_t* )src;
  718. for(i=0; i<theSizeInBytes/2; i++)
  719. {
  720. a_dest[2*i] = a_src[i];
  721. a_dest[2*i+1] = a_src[i];
  722. }
  723. bytes_written = 2*theSizeInBytes;
  724. } // end if(out_channels==1)
  725. } // end if ((src != NULL) && dest != NULL)
  726. return bytes_written;
  727. }
  728. //>
  729. //<wave_write
  730. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize)
  731. {
  732. ENTER("wave_write");
  733. size_t bytes_written = 0;
  734. // space in ringbuffer for the sample needed: 1x mono channel but 2x for 1 stereo channel
  735. size_t bytes_to_write = (out_channels==1) ? theSize : theSize*2;
  736. my_stream_could_start = 0;
  737. if(pa_stream == NULL)
  738. {
  739. SHOW_TIME("wave_write > wave_open_sound\n");
  740. if (0 != wave_open_sound())
  741. {
  742. SHOW_TIME("wave_write > wave_open_sound fails!");
  743. return 0;
  744. }
  745. my_stream_could_start=1;
  746. }
  747. else if (!wave_is_busy(NULL))
  748. {
  749. my_stream_could_start = 1;
  750. }
  751. assert(BUFFER_LENGTH >= bytes_to_write);
  752. if (myWrite >= myBuffer + BUFFER_LENGTH)
  753. {
  754. myWrite = myBuffer;
  755. } // end if (myWrite >= myBuffer + BUFFER_LENGTH)
  756. size_t aTotalFreeMem=0;
  757. char* aRead = myRead;
  758. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  759. while (1)
  760. {
  761. if (my_callback_is_output_enabled && (0==my_callback_is_output_enabled()))
  762. {
  763. SHOW_TIME("wave_write > my_callback_is_output_enabled: no!");
  764. return 0;
  765. }
  766. aRead = myRead;
  767. // write pointer is before read pointer?
  768. if (myWrite >= aRead)
  769. {
  770. aTotalFreeMem = aRead + BUFFER_LENGTH - myWrite;
  771. }
  772. else // read pointer is before write pointer!
  773. {
  774. aTotalFreeMem = aRead - myWrite;
  775. } // end if (myWrite >= aRead)
  776. if (aTotalFreeMem>1)
  777. {
  778. // -1 because myWrite must be different of aRead
  779. // otherwise buffer would be considered as empty
  780. aTotalFreeMem -= 1;
  781. } // end if (aTotalFreeMem>1)
  782. if (aTotalFreeMem >= bytes_to_write)
  783. {
  784. break;
  785. } // end if (aTotalFreeMem >= bytes_to_write)
  786. //SHOW_TIME("wave_write > wait");
  787. SHOW("wave_write > wait: aTotalFreeMem=%d\n", aTotalFreeMem);
  788. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  789. usleep(10000);
  790. } // end while (1)
  791. aRead = myRead;
  792. // write pointer is ahead the read pointer?
  793. if (myWrite >= aRead)
  794. {
  795. SHOW_TIME("wave_write > myWrite >= aRead");
  796. // determine remaining free memory to the end of the ringbuffer
  797. size_t aFreeMem = myBuffer + BUFFER_LENGTH - myWrite;
  798. // is enough linear space available (regardless 1 or 2 channels)?
  799. if (aFreeMem >= bytes_to_write)
  800. {
  801. // copy direct - no wrap around at end of ringbuffer needed
  802. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  803. }
  804. else // not enough linear space available
  805. {
  806. // 2 channels (stereo)?
  807. if (out_channels == 2)
  808. {
  809. // copy with wrap around at the end of ringbuffer
  810. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem/2);
  811. myWrite = myBuffer;
  812. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem/2, theSize - aFreeMem/2);
  813. }
  814. else // 1 channel (mono)
  815. {
  816. // copy with wrap around at the end of ringbuffer
  817. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem);
  818. myWrite = myBuffer;
  819. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem, theSize - aFreeMem);
  820. } // end if (out_channels == 2)
  821. } // end if (aFreeMem >= bytes_to_write)
  822. } // if (myWrite >= aRead)
  823. else // read pointer is ahead the write pointer
  824. {
  825. SHOW_TIME("wave_write > myWrite <= aRead");
  826. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  827. } // end if (myWrite >= aRead)
  828. bytes_written = bytes_to_write;
  829. myWritePosition += theSize/sizeof(uint16_t); // add number of samples
  830. if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  831. {
  832. start_stream();
  833. } // end if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  834. SHOW_TIME("wave_write > LEAVE");
  835. return bytes_written;
  836. }
  837. //>
  838. //<wave_close
  839. int wave_close(void* theHandler)
  840. {
  841. SHOW_TIME("wave_close > ENTER");
  842. static int aStopStreamCount = 0;
  843. #if (USE_PORTAUDIO == 19)
  844. if( pa_stream == NULL )
  845. {
  846. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  847. return 0;
  848. }
  849. if( Pa_IsStreamStopped( pa_stream ) )
  850. {
  851. SHOW_TIME("wave_close > LEAVE (stopped)");
  852. return 0;
  853. }
  854. #else
  855. if( pa_stream == NULL )
  856. {
  857. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  858. return 0;
  859. }
  860. if( Pa_StreamActive( pa_stream ) == false && mInCallbackFinishedState == false )
  861. {
  862. SHOW_TIME("wave_close > LEAVE (not active)");
  863. return 0;
  864. }
  865. #endif
  866. // Avoid race condition by making sure this function only
  867. // gets called once at a time
  868. aStopStreamCount++;
  869. if (aStopStreamCount != 1)
  870. {
  871. SHOW_TIME("wave_close > LEAVE (stopStreamCount)");
  872. return 0;
  873. }
  874. // Comment from Audacity-1.2.4b adapted to the eSpeak context.
  875. //
  876. // We got here in one of two ways:
  877. //
  878. // 1. The calling program calls the espeak_Cancel function and we
  879. // therefore want to stop as quickly as possible.
  880. // So we use AbortStream(). If this is
  881. // the case the portaudio stream is still in the Running state
  882. // (see PortAudio state machine docs).
  883. //
  884. // 2. The callback told PortAudio to stop the stream since it had
  885. // reached the end of the selection.
  886. // The event polling thread discovered this by noticing that
  887. // wave_is_busy() returned false.
  888. // wave_is_busy() (which calls Pa_GetStreamActive()) will not return
  889. // false until all buffers have finished playing, so we can call
  890. // AbortStream without losing any samples. If this is the case
  891. // we are in the "callback finished state" (see PortAudio state
  892. // machine docs).
  893. //
  894. // The moral of the story: We can call AbortStream safely, without
  895. // losing samples.
  896. //
  897. // DMM: This doesn't seem to be true; it seems to be necessary to
  898. // call StopStream if the callback brought us here, and AbortStream
  899. // if the user brought us here.
  900. //
  901. #if (USE_PORTAUDIO == 19)
  902. if (pa_stream)
  903. {
  904. Pa_AbortStream( pa_stream );
  905. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  906. Pa_CloseStream( pa_stream );
  907. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  908. pa_stream = NULL;
  909. mInCallbackFinishedState = false;
  910. }
  911. #else
  912. if (pa_stream)
  913. {
  914. if (mInCallbackFinishedState)
  915. {
  916. Pa_StopStream( pa_stream );
  917. SHOW_TIME("wave_close > Pa_StopStream (end)");
  918. }
  919. else
  920. {
  921. Pa_AbortStream( pa_stream );
  922. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  923. }
  924. Pa_CloseStream( pa_stream );
  925. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  926. pa_stream = NULL;
  927. mInCallbackFinishedState = false;
  928. }
  929. #endif
  930. init_buffer();
  931. aStopStreamCount = 0; // last action
  932. SHOW_TIME("wave_close > LEAVE");
  933. return 0;
  934. }
  935. // int wave_close(void* theHandler)
  936. // {
  937. // ENTER("wave_close");
  938. // if(pa_stream != NULL)
  939. // {
  940. // PaError err = Pa_AbortStream(pa_stream);
  941. // SHOW_TIME("wave_close > Pa_AbortStream (end)");
  942. // SHOW("wave_close Pa_AbortStream > err=%d\n",err);
  943. // while(1)
  944. // {
  945. // PaError active;
  946. // #if USE_PORTAUDIO == 18
  947. // active = Pa_StreamActive(pa_stream);
  948. // #else
  949. // active = Pa_IsStreamActive(pa_stream);
  950. // #endif
  951. // if (active != 1)
  952. // {
  953. // break;
  954. // }
  955. // SHOW("wave_close > active=%d\n",err);
  956. // usleep(10000); /* sleep until playback has finished */
  957. // }
  958. // err = Pa_CloseStream( pa_stream );
  959. // SHOW_TIME("wave_close > Pa_CloseStream (end)");
  960. // SHOW("wave_close Pa_CloseStream > err=%d\n",err);
  961. // pa_stream = NULL;
  962. // init_buffer();
  963. // }
  964. // return 0;
  965. // }
  966. //>
  967. //<wave_is_busy
  968. int wave_is_busy(void* theHandler)
  969. {
  970. PaError active=0;
  971. SHOW_TIME("wave_is_busy");
  972. if (pa_stream)
  973. {
  974. #if USE_PORTAUDIO == 18
  975. active = Pa_StreamActive(pa_stream)
  976. && (mInCallbackFinishedState == false);
  977. #else
  978. active = Pa_IsStreamActive(pa_stream)
  979. && (mInCallbackFinishedState == false);
  980. #endif
  981. }
  982. SHOW("wave_is_busy: %d\n",active);
  983. return (active==1);
  984. }
  985. //>
  986. //<wave_terminate
  987. void wave_terminate()
  988. {
  989. ENTER("wave_terminate");
  990. Pa_Terminate();
  991. }
  992. //>
  993. //<wave_get_read_position, wave_get_write_position, wave_get_remaining_time
  994. uint32_t wave_get_read_position(void* theHandler)
  995. {
  996. SHOW("wave_get_read_position > myReadPosition=%u\n", myReadPosition);
  997. return myReadPosition;
  998. }
  999. uint32_t wave_get_write_position(void* theHandler)
  1000. {
  1001. SHOW("wave_get_write_position > myWritePosition=%u\n", myWritePosition);
  1002. return myWritePosition;
  1003. }
  1004. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1005. {
  1006. double a_time=0;
  1007. if (!time || !pa_stream)
  1008. {
  1009. SHOW("event get_remaining_time> %s\n","audio device not available");
  1010. return -1;
  1011. }
  1012. if (sample > myReadPosition)
  1013. {
  1014. // TBD: take in account time suplied by portaudio V18 API
  1015. a_time = sample - myReadPosition;
  1016. a_time = 0.5 + (a_time * 1000.0) / wave_samplerate;
  1017. }
  1018. else
  1019. {
  1020. a_time = 0;
  1021. }
  1022. SHOW("wave_get_remaining_time > sample=%d, time=%d\n", sample, (uint32_t)a_time);
  1023. *time = (uint32_t)a_time;
  1024. return 0;
  1025. }
  1026. //>
  1027. //<wave_test_get_write_buffer
  1028. void *wave_test_get_write_buffer()
  1029. {
  1030. return myWrite;
  1031. }
  1032. #else
  1033. // notdef USE_PORTAUDIO
  1034. int wave_init(int srate) {return 1;}
  1035. void* wave_open(const char* the_api) {return (void *)1;}
  1036. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {return theSize;}
  1037. int wave_close(void* theHandler) {return 0;}
  1038. int wave_is_busy(void* theHandler) {return 0;}
  1039. void wave_terminate() {}
  1040. uint32_t wave_get_read_position(void* theHandler) {return 0;}
  1041. uint32_t wave_get_write_position(void* theHandler) {return 0;}
  1042. void wave_flush(void* theHandler) {}
  1043. typedef int (t_wave_callback)(void);
  1044. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {}
  1045. extern void* wave_test_get_write_buffer() {return NULL;}
  1046. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1047. {
  1048. if (!time) return(-1);
  1049. *time = (uint32_t)0;
  1050. return 0;
  1051. }
  1052. #endif // of USE_PORTAUDIO
  1053. //>
  1054. //<clock_gettime2, add_time_in_ms
  1055. void clock_gettime2(struct timespec *ts)
  1056. {
  1057. struct timeval tv;
  1058. if (!ts)
  1059. {
  1060. return;
  1061. }
  1062. assert (gettimeofday(&tv, NULL) != -1);
  1063. ts->tv_sec = tv.tv_sec;
  1064. ts->tv_nsec = tv.tv_usec*1000;
  1065. }
  1066. void add_time_in_ms(struct timespec *ts, int time_in_ms)
  1067. {
  1068. if (!ts)
  1069. {
  1070. return;
  1071. }
  1072. uint64_t t_ns = (uint64_t)ts->tv_nsec + 1000000 * (uint64_t)time_in_ms;
  1073. while(t_ns >= ONE_BILLION)
  1074. {
  1075. SHOW("event > add_time_in_ms ns: %d sec %Lu nsec \n", ts->tv_sec, t_ns);
  1076. ts->tv_sec += 1;
  1077. t_ns -= ONE_BILLION;
  1078. }
  1079. ts->tv_nsec = (long int)t_ns;
  1080. }
  1081. #endif // USE_ASYNC
  1082. //>