eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wavegen.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914
  1. /***************************************************************************
  2. * Copyright (C) 2005 to 2007 by Jonathan Duddington *
  3. * email: [email protected] *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, see: *
  17. * <http://www.gnu.org/licenses/>. *
  18. ***************************************************************************/
  19. #include "StdAfx.h"
  20. // this version keeps wavemult window as a constant fraction
  21. // of the cycle length - but that spreads out the HF peaks too much
  22. #include <stdio.h>
  23. #include <string.h>
  24. #include <stdlib.h>
  25. #include <math.h>
  26. #include "speak_lib.h"
  27. #include "speech.h"
  28. #include "phoneme.h"
  29. #include "synthesize.h"
  30. #include "voice.h"
  31. //#undef INCLUDE_KLATT
  32. #ifdef USE_PORTAUDIO
  33. #include "portaudio.h"
  34. #undef USE_PORTAUDIO
  35. // determine portaudio version by looking for a #define which is not in V18
  36. #ifdef paNeverDropInput
  37. #define USE_PORTAUDIO 19
  38. #else
  39. #define USE_PORTAUDIO 18
  40. #endif
  41. #endif
  42. #define N_SINTAB 2048
  43. #include "sintab.h"
  44. #define PI 3.1415927
  45. #define PI2 6.283185307
  46. #define N_WAV_BUF 10
  47. voice_t *wvoice;
  48. FILE *f_log = NULL;
  49. int option_waveout = 0;
  50. int option_harmonic1 = 10; // 10
  51. int option_log_frames = 0;
  52. static int flutter_amp = 64;
  53. static int general_amplitude = 60;
  54. static int consonant_amp = 26; // 24
  55. int embedded_value[N_EMBEDDED_VALUES];
  56. static int PHASE_INC_FACTOR;
  57. int samplerate = 0; // this is set by Wavegeninit()
  58. int samplerate_native=0;
  59. extern int option_device_number;
  60. extern int option_quiet;
  61. static wavegen_peaks_t peaks[N_PEAKS];
  62. static int peak_harmonic[N_PEAKS];
  63. static int peak_height[N_PEAKS];
  64. #define N_ECHO_BUF 5500 // max of 250mS at 22050 Hz
  65. static int echo_head;
  66. static int echo_tail;
  67. static int echo_length = 0; // period (in sample\) to ensure completion of echo at the end of speech, set in WavegenSetEcho()
  68. static int echo_amp = 0;
  69. static short echo_buf[N_ECHO_BUF];
  70. static int voicing;
  71. RESONATOR rbreath[N_PEAKS];
  72. static int harm_sqrt_n = 0;
  73. #define N_LOWHARM 30
  74. static int harm_inc[N_LOWHARM]; // only for these harmonics do we interpolate amplitude between steps
  75. static int *harmspect;
  76. static int hswitch=0;
  77. static int hspect[2][MAX_HARMONIC]; // 2 copies, we interpolate between then
  78. static int max_hval=0;
  79. static int nsamples=0; // number to do
  80. static int modulation_type = 0;
  81. static int glottal_flag = 0;
  82. static int glottal_reduce = 0;
  83. WGEN_DATA wdata;
  84. static int amp_ix;
  85. static int amp_inc;
  86. static unsigned char *amplitude_env = NULL;
  87. static int samplecount=0; // number done
  88. static int samplecount_start=0; // count at start of this segment
  89. static int end_wave=0; // continue to end of wave cycle
  90. static int wavephase;
  91. static int phaseinc;
  92. static int cycle_samples; // number of samples in a cycle at current pitch
  93. static int cbytes;
  94. static int hf_factor;
  95. static double minus_pi_t;
  96. static double two_pi_t;
  97. unsigned char *out_ptr;
  98. unsigned char *out_start;
  99. unsigned char *out_end;
  100. int outbuf_size = 0;
  101. // the queue of operations passed to wavegen from sythesize
  102. long wcmdq[N_WCMDQ][4];
  103. int wcmdq_head=0;
  104. int wcmdq_tail=0;
  105. // pitch,speed,
  106. int embedded_default[N_EMBEDDED_VALUES] = {0,50,170,100,50, 0,0, 0,170,0,0,0,0,0};
  107. static int embedded_max[N_EMBEDDED_VALUES] = {0,0x7fff,600,300,99,99,99, 0,600,0,0,0,0,4};
  108. #define N_CALLBACK_IX N_WAV_BUF-2 // adjust this delay to match display with the currently spoken word
  109. int current_source_index=0;
  110. extern FILE *f_wave;
  111. #if (USE_PORTAUDIO == 18)
  112. static PortAudioStream *pa_stream=NULL;
  113. #endif
  114. #if (USE_PORTAUDIO == 19)
  115. static PaStream *pa_stream=NULL;
  116. #endif
  117. /* default pitch envelope, a steady fall */
  118. #define ENV_LEN 128
  119. /*
  120. unsigned char Pitch_env0[ENV_LEN] = {
  121. 255,253,251,249,247,245,243,241,239,237,235,233,231,229,227,225,
  122. 223,221,219,217,215,213,211,209,207,205,203,201,199,197,195,193,
  123. 191,189,187,185,183,181,179,177,175,173,171,169,167,165,163,161,
  124. 159,157,155,153,151,149,147,145,143,141,139,137,135,133,131,129,
  125. 127,125,123,121,119,117,115,113,111,109,107,105,103,101, 99, 97,
  126. 95, 93, 91, 89, 87, 85, 83, 81, 79, 77, 75, 73, 71, 69, 67, 65,
  127. 63, 61, 59, 57, 55, 53, 51, 49, 47, 45, 43, 41, 39, 37, 35, 33,
  128. 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1
  129. };
  130. */
  131. /*
  132. unsigned char Pitch_long[ENV_LEN] = {
  133. 254,249,250,251,252,253,254,254, 255,255,255,255,254,254,253,252,
  134. 251,250,249,247,244,242,238,234, 230,225,221,217,213,209,206,203,
  135. 199,195,191,187,183,179,175,172, 168,165,162,159,156,153,150,148,
  136. 145,143,140,138,136,134,132,130, 128,126,123,120,117,114,111,107,
  137. 104,100,96,91, 86,82,77,73, 70,66,63,60, 58,55,53,51,
  138. 49,47,46,45, 43,42,40,38, 36,34,31,28, 26,24,22,20,
  139. 18,16,14,12, 11,10,9,8, 8,8,8,8, 9,8,8,8,
  140. 8,8,7,7, 6,6,6,5, 4,4,3,3, 2,1,1,0
  141. };
  142. */
  143. // 1st index=roughness
  144. // 2nd index=modulation_type
  145. // value: bits 0-3 amplitude (16ths), bits 4-7 every n cycles
  146. #define N_ROUGHNESS 8
  147. static unsigned char modulation_tab[N_ROUGHNESS][8] = {
  148. {0, 0x00, 0x00, 0x00, 0, 0x46, 0xf2, 0x29},
  149. {0, 0x2f, 0x00, 0x2f, 0, 0x45, 0xf2, 0x29},
  150. {0, 0x2f, 0x00, 0x2e, 0, 0x45, 0xf2, 0x28},
  151. {0, 0x2e, 0x00, 0x2d, 0, 0x34, 0xf2, 0x28},
  152. {0, 0x2d, 0x2d, 0x2c, 0, 0x34, 0xf2, 0x28},
  153. {0, 0x2b, 0x2b, 0x2b, 0, 0x34, 0xf2, 0x28},
  154. {0, 0x2a, 0x2a, 0x2a, 0, 0x34, 0xf2, 0x28},
  155. {0, 0x29, 0x29, 0x29, 0, 0x34, 0xf2, 0x28},
  156. };
  157. // Flutter table, to add natural variations to the pitch
  158. #define N_FLUTTER 0x170
  159. static int Flutter_inc;
  160. static const unsigned char Flutter_tab[N_FLUTTER] = {
  161. 0x80, 0x9b, 0xb5, 0xcb, 0xdc, 0xe8, 0xed, 0xec,
  162. 0xe6, 0xdc, 0xce, 0xbf, 0xb0, 0xa3, 0x98, 0x90,
  163. 0x8c, 0x8b, 0x8c, 0x8f, 0x92, 0x94, 0x95, 0x92,
  164. 0x8c, 0x83, 0x78, 0x69, 0x59, 0x49, 0x3c, 0x31,
  165. 0x2a, 0x29, 0x2d, 0x36, 0x44, 0x56, 0x69, 0x7d,
  166. 0x8f, 0x9f, 0xaa, 0xb1, 0xb2, 0xad, 0xa4, 0x96,
  167. 0x87, 0x78, 0x69, 0x5c, 0x53, 0x4f, 0x4f, 0x55,
  168. 0x5e, 0x6b, 0x7a, 0x88, 0x96, 0xa2, 0xab, 0xb0,
  169. 0xb1, 0xae, 0xa8, 0xa0, 0x98, 0x91, 0x8b, 0x88,
  170. 0x89, 0x8d, 0x94, 0x9d, 0xa8, 0xb2, 0xbb, 0xc0,
  171. 0xc1, 0xbd, 0xb4, 0xa5, 0x92, 0x7c, 0x63, 0x4a,
  172. 0x32, 0x1e, 0x0e, 0x05, 0x02, 0x05, 0x0f, 0x1e,
  173. 0x30, 0x44, 0x59, 0x6d, 0x7f, 0x8c, 0x96, 0x9c,
  174. 0x9f, 0x9f, 0x9d, 0x9b, 0x99, 0x99, 0x9c, 0xa1,
  175. 0xa9, 0xb3, 0xbf, 0xca, 0xd5, 0xdc, 0xe0, 0xde,
  176. 0xd8, 0xcc, 0xbb, 0xa6, 0x8f, 0x77, 0x60, 0x4b,
  177. 0x3a, 0x2e, 0x28, 0x29, 0x2f, 0x3a, 0x48, 0x59,
  178. 0x6a, 0x7a, 0x86, 0x90, 0x94, 0x95, 0x91, 0x89,
  179. 0x80, 0x75, 0x6b, 0x62, 0x5c, 0x5a, 0x5c, 0x61,
  180. 0x69, 0x74, 0x80, 0x8a, 0x94, 0x9a, 0x9e, 0x9d,
  181. 0x98, 0x90, 0x86, 0x7c, 0x71, 0x68, 0x62, 0x60,
  182. 0x63, 0x6b, 0x78, 0x88, 0x9b, 0xaf, 0xc2, 0xd2,
  183. 0xdf, 0xe6, 0xe7, 0xe2, 0xd7, 0xc6, 0xb2, 0x9c,
  184. 0x84, 0x6f, 0x5b, 0x4b, 0x40, 0x39, 0x37, 0x38,
  185. 0x3d, 0x43, 0x4a, 0x50, 0x54, 0x56, 0x55, 0x52,
  186. 0x4d, 0x48, 0x42, 0x3f, 0x3e, 0x41, 0x49, 0x56,
  187. 0x67, 0x7c, 0x93, 0xab, 0xc3, 0xd9, 0xea, 0xf6,
  188. 0xfc, 0xfb, 0xf4, 0xe7, 0xd5, 0xc0, 0xaa, 0x94,
  189. 0x80, 0x71, 0x64, 0x5d, 0x5a, 0x5c, 0x61, 0x68,
  190. 0x70, 0x77, 0x7d, 0x7f, 0x7f, 0x7b, 0x74, 0x6b,
  191. 0x61, 0x57, 0x4e, 0x48, 0x46, 0x48, 0x4e, 0x59,
  192. 0x66, 0x75, 0x84, 0x93, 0x9f, 0xa7, 0xab, 0xaa,
  193. 0xa4, 0x99, 0x8b, 0x7b, 0x6a, 0x5b, 0x4e, 0x46,
  194. 0x43, 0x45, 0x4d, 0x5a, 0x6b, 0x7f, 0x92, 0xa6,
  195. 0xb8, 0xc5, 0xcf, 0xd3, 0xd2, 0xcd, 0xc4, 0xb9,
  196. 0xad, 0xa1, 0x96, 0x8e, 0x89, 0x87, 0x87, 0x8a,
  197. 0x8d, 0x91, 0x92, 0x91, 0x8c, 0x84, 0x78, 0x68,
  198. 0x55, 0x41, 0x2e, 0x1c, 0x0e, 0x05, 0x01, 0x05,
  199. 0x0f, 0x1f, 0x34, 0x4d, 0x68, 0x81, 0x9a, 0xb0,
  200. 0xc1, 0xcd, 0xd3, 0xd3, 0xd0, 0xc8, 0xbf, 0xb5,
  201. 0xab, 0xa4, 0x9f, 0x9c, 0x9d, 0xa0, 0xa5, 0xaa,
  202. 0xae, 0xb1, 0xb0, 0xab, 0xa3, 0x96, 0x87, 0x76,
  203. 0x63, 0x51, 0x42, 0x36, 0x2f, 0x2d, 0x31, 0x3a,
  204. 0x48, 0x59, 0x6b, 0x7e, 0x8e, 0x9c, 0xa6, 0xaa,
  205. 0xa9, 0xa3, 0x98, 0x8a, 0x7b, 0x6c, 0x5d, 0x52,
  206. 0x4a, 0x48, 0x4a, 0x50, 0x5a, 0x67, 0x75, 0x82
  207. };
  208. // waveform shape table for HF peaks, formants 6,7,8
  209. #define N_WAVEMULT 128
  210. static int wavemult_offset=0;
  211. static int wavemult_max=0;
  212. // the presets are for 22050 Hz sample rate.
  213. // A different rate will need to recalculate the presets in WavegenInit()
  214. static unsigned char wavemult[N_WAVEMULT] = {
  215. 0, 0, 0, 2, 3, 5, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49,
  216. 55, 62, 69, 76, 83, 90, 98,105,113,121,128,136,144,152,159,166,
  217. 174,181,188,194,201,207,213,218,224,228,233,237,240,244,246,249,
  218. 251,252,253,253,253,253,252,251,249,246,244,240,237,233,228,224,
  219. 218,213,207,201,194,188,181,174,166,159,152,144,136,128,121,113,
  220. 105, 98, 90, 83, 76, 69, 62, 55, 49, 43, 37, 32, 27, 22, 18, 14,
  221. 11, 8, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  222. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  223. // set from y = pow(2,x) * 128, x=-1 to 1
  224. unsigned char pitch_adjust_tab[MAX_PITCH_VALUE+1] = {
  225. 64, 65, 66, 67, 68, 69, 70, 71,
  226. 72, 73, 74, 75, 76, 77, 78, 79,
  227. 80, 81, 82, 83, 84, 86, 87, 88,
  228. 89, 91, 92, 93, 94, 96, 97, 98,
  229. 100,101,103,104,105,107,108,110,
  230. 111,113,115,116,118,119,121,123,
  231. 124,126,128,130,132,133,135,137,
  232. 139,141,143,145,147,149,151,153,
  233. 155,158,160,162,164,167,169,171,
  234. 174,176,179,181,184,186,189,191,
  235. 194,197,199,202,205,208,211,214,
  236. 217,220,223,226,229,232,236,239,
  237. 242,246,249,252, 254,255 };
  238. int WavegenFill(int fill_zeros);
  239. #ifdef LOG_FRAMES
  240. static void LogMarker(int type, int value)
  241. {//=======================================
  242. if(option_log_frames == 0)
  243. return;
  244. if((type == espeakEVENT_PHONEME) || (type == espeakEVENT_SENTENCE))
  245. {
  246. f_log=fopen("log-espeakedit","a");
  247. if(f_log)
  248. {
  249. if(type == espeakEVENT_PHONEME)
  250. fprintf(f_log,"Phoneme [%s]\n",WordToString(value));
  251. else
  252. fprintf(f_log,"\n");
  253. fclose(f_log);
  254. f_log = NULL;
  255. }
  256. }
  257. }
  258. #endif
  259. void WcmdqStop()
  260. {//=============
  261. wcmdq_head = 0;
  262. wcmdq_tail = 0;
  263. #ifdef USE_PORTAUDIO
  264. Pa_AbortStream(pa_stream);
  265. #endif
  266. }
  267. int WcmdqFree()
  268. {//============
  269. int i;
  270. i = wcmdq_head - wcmdq_tail;
  271. if(i <= 0) i += N_WCMDQ;
  272. return(i);
  273. }
  274. int WcmdqUsed()
  275. {//============
  276. return(N_WCMDQ - WcmdqFree());
  277. }
  278. void WcmdqInc()
  279. {//============
  280. wcmdq_tail++;
  281. if(wcmdq_tail >= N_WCMDQ) wcmdq_tail=0;
  282. }
  283. static void WcmdqIncHead()
  284. {//=======================
  285. wcmdq_head++;
  286. if(wcmdq_head >= N_WCMDQ) wcmdq_head=0;
  287. }
  288. // data points from which to make the presets for pk_shape1 and pk_shape2
  289. #define PEAKSHAPEW 256
  290. static const float pk_shape_x[2][8] = {
  291. {0,-0.6f, 0.0f, 0.6f, 1.4f, 2.5f, 4.5f, 5.5f},
  292. {0,-0.6f, 0.0f, 0.6f, 1.4f, 2.0f, 4.5f, 5.5f }};
  293. static const float pk_shape_y[2][8] = {
  294. {0, 67, 81, 67, 31, 14, 0, -6} ,
  295. {0, 77, 81, 77, 31, 7, 0, -6 }};
  296. unsigned char pk_shape1[PEAKSHAPEW+1] = {
  297. 255,254,254,254,254,254,253,253,252,251,251,250,249,248,247,246,
  298. 245,244,242,241,239,238,236,234,233,231,229,227,225,223,220,218,
  299. 216,213,211,209,207,205,203,201,199,197,195,193,191,189,187,185,
  300. 183,180,178,176,173,171,169,166,164,161,159,156,154,151,148,146,
  301. 143,140,138,135,132,129,126,123,120,118,115,112,108,105,102, 99,
  302. 96, 95, 93, 91, 90, 88, 86, 85, 83, 82, 80, 79, 77, 76, 74, 73,
  303. 72, 70, 69, 68, 67, 66, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
  304. 55, 54, 53, 52, 52, 51, 50, 50, 49, 48, 48, 47, 47, 46, 46, 46,
  305. 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 44, 43,
  306. 42, 42, 41, 40, 40, 39, 38, 38, 37, 36, 36, 35, 35, 34, 33, 33,
  307. 32, 32, 31, 30, 30, 29, 29, 28, 28, 27, 26, 26, 25, 25, 24, 24,
  308. 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16,
  309. 16, 15, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10,
  310. 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5,
  311. 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2,
  312. 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  313. 0 };
  314. static unsigned char pk_shape2[PEAKSHAPEW+1] = {
  315. 255,254,254,254,254,254,254,254,254,254,253,253,253,253,252,252,
  316. 252,251,251,251,250,250,249,249,248,248,247,247,246,245,245,244,
  317. 243,243,242,241,239,237,235,233,231,229,227,225,223,221,218,216,
  318. 213,211,208,205,203,200,197,194,191,187,184,181,178,174,171,167,
  319. 163,160,156,152,148,144,140,136,132,127,123,119,114,110,105,100,
  320. 96, 94, 91, 88, 86, 83, 81, 78, 76, 74, 71, 69, 66, 64, 62, 60,
  321. 57, 55, 53, 51, 49, 47, 44, 42, 40, 38, 36, 34, 32, 30, 29, 27,
  322. 25, 23, 21, 19, 18, 16, 14, 12, 11, 9, 7, 6, 4, 3, 1, 0,
  323. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  324. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  325. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  326. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  327. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  328. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  329. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  330. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  331. 0 };
  332. static unsigned char *pk_shape;
  333. static void WavegenInitPkData(int which)
  334. {//=====================================
  335. // this is only needed to set up the presets for pk_shape1 and pk_shape2
  336. // These have already been pre-calculated and preset
  337. #ifdef deleted
  338. int ix;
  339. int p;
  340. float x;
  341. float y[PEAKSHAPEW];
  342. float maxy=0;
  343. if(which==0)
  344. pk_shape = pk_shape1;
  345. else
  346. pk_shape = pk_shape2;
  347. p = 0;
  348. for(ix=0;ix<PEAKSHAPEW;ix++)
  349. {
  350. x = (4.5*ix)/PEAKSHAPEW;
  351. if(x >= pk_shape_x[which][p+3]) p++;
  352. y[ix] = polint(&pk_shape_x[which][p],&pk_shape_y[which][p],3,x);
  353. if(y[ix] > maxy) maxy = y[ix];
  354. }
  355. for(ix=0;ix<PEAKSHAPEW;ix++)
  356. {
  357. p = (int)(y[ix]*255/maxy);
  358. pk_shape[ix] = (p >= 0) ? p : 0;
  359. }
  360. pk_shape[PEAKSHAPEW]=0;
  361. #endif
  362. } // end of WavegenInitPkData
  363. #ifdef USE_PORTAUDIO
  364. // PortAudio interface
  365. static int userdata[4];
  366. static PaError pa_init_err=0;
  367. static int out_channels=1;
  368. #if USE_PORTAUDIO == 18
  369. static int WaveCallback(void *inputBuffer, void *outputBuffer,
  370. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  371. #else
  372. static int WaveCallback(const void *inputBuffer, void *outputBuffer,
  373. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  374. PaStreamCallbackFlags flags, void *userData )
  375. #endif
  376. {
  377. int ix;
  378. int result;
  379. unsigned char *p;
  380. out_ptr = out_start = (unsigned char *)outputBuffer;
  381. out_end = out_ptr + framesPerBuffer*2;
  382. #ifdef LIBRARY
  383. event_list_ix = 0;
  384. #endif
  385. result = WavegenFill(1);
  386. #ifdef LIBRARY
  387. count_samples += framesPerBuffer;
  388. if(synth_callback)
  389. {
  390. // synchronous-playback mode, allow the calling process to abort the speech
  391. event_list[event_list_ix].type = espeakEVENT_LIST_TERMINATED; // indicates end of event list
  392. event_list[event_list_ix].user_data = 0;
  393. if(synth_callback(NULL,0,event_list) == 1)
  394. {
  395. SpeakNextClause(NULL,NULL,2); // stop speaking
  396. result = 1;
  397. }
  398. }
  399. #endif
  400. #ifdef ARCH_BIG
  401. {
  402. // swap the order of bytes in each sound sample in the portaudio buffer
  403. int c;
  404. out_ptr = (unsigned char *)outputBuffer;
  405. out_end = out_ptr + framesPerBuffer*2;
  406. while(out_ptr < out_end)
  407. {
  408. c = out_ptr[0];
  409. out_ptr[0] = out_ptr[1];
  410. out_ptr[1] = c;
  411. out_ptr += 2;
  412. }
  413. }
  414. #endif
  415. if(out_channels == 2)
  416. {
  417. // sound output can only do stereo, not mono. Duplicate each sound sample to
  418. // produce 2 channels.
  419. out_ptr = (unsigned char *)outputBuffer;
  420. for(ix=framesPerBuffer-1; ix>=0; ix--)
  421. {
  422. p = &out_ptr[ix*4];
  423. p[3] = p[1] = out_ptr[ix*2 + 1];
  424. p[2] = p[0] = out_ptr[ix*2];
  425. }
  426. }
  427. #if USE_PORTAUDIO == 18
  428. #ifdef PLATFORM_WINDOWS
  429. return(result);
  430. #endif
  431. if(result != 0)
  432. {
  433. static int end_timer = 0;
  434. if(end_timer == 0)
  435. end_timer = 4;
  436. if(end_timer > 0)
  437. {
  438. end_timer--;
  439. if(end_timer == 0)
  440. return(1);
  441. }
  442. }
  443. return(0);
  444. #else
  445. return(result);
  446. #endif
  447. } // end of WaveCallBack
  448. #if USE_PORTAUDIO == 19
  449. /* This is a fixed version of Pa_OpenDefaultStream() for use if the version in portaudio V19
  450. is broken */
  451. PaError Pa_OpenDefaultStream2( PaStream** stream,
  452. int inputChannelCount,
  453. int outputChannelCount,
  454. PaSampleFormat sampleFormat,
  455. double sampleRate,
  456. unsigned long framesPerBuffer,
  457. PaStreamCallback *streamCallback,
  458. void *userData )
  459. {
  460. PaError result;
  461. PaStreamParameters hostApiOutputParameters;
  462. if(option_device_number >= 0)
  463. hostApiOutputParameters.device = option_device_number;
  464. else
  465. hostApiOutputParameters.device = Pa_GetDefaultOutputDevice();
  466. if( hostApiOutputParameters.device == paNoDevice )
  467. return paDeviceUnavailable;
  468. hostApiOutputParameters.channelCount = outputChannelCount;
  469. hostApiOutputParameters.sampleFormat = sampleFormat;
  470. /* defaultHighOutputLatency is used below instead of
  471. defaultLowOutputLatency because it is more important for the default
  472. stream to work reliably than it is for it to work with the lowest
  473. latency.
  474. */
  475. hostApiOutputParameters.suggestedLatency =
  476. Pa_GetDeviceInfo( hostApiOutputParameters.device )->defaultHighOutputLatency;
  477. hostApiOutputParameters.hostApiSpecificStreamInfo = NULL;
  478. result = Pa_OpenStream(
  479. stream, NULL, &hostApiOutputParameters, sampleRate, framesPerBuffer, paNoFlag, streamCallback, userData );
  480. return(result);
  481. }
  482. #endif
  483. int WavegenOpenSound()
  484. {//===================
  485. PaError err, err2;
  486. PaError active;
  487. if(option_waveout || option_quiet)
  488. {
  489. // writing to WAV file, not to portaudio
  490. return(0);
  491. }
  492. #if USE_PORTAUDIO == 18
  493. active = Pa_StreamActive(pa_stream);
  494. #else
  495. active = Pa_IsStreamActive(pa_stream);
  496. #endif
  497. if(active == 1)
  498. return(0);
  499. if(active < 0)
  500. {
  501. out_channels = 1;
  502. #if USE_PORTAUDIO == 18
  503. err2 = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,samplerate,512,N_WAV_BUF,WaveCallback,(void *)userdata);
  504. if(err2 == paInvalidChannelCount)
  505. {
  506. // failed to open with mono, try stereo
  507. out_channels=2;
  508. err2 = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,samplerate,512,N_WAV_BUF,WaveCallback,(void *)userdata);
  509. }
  510. #else
  511. err2 = Pa_OpenDefaultStream2(&pa_stream,0,1,paInt16,(double)samplerate,512,WaveCallback,(void *)userdata);
  512. if(err2 == paInvalidChannelCount)
  513. {
  514. // failed to open with mono, try stereo
  515. out_channels=2;
  516. err2 = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)samplerate,512,WaveCallback,(void *)userdata);
  517. }
  518. #endif
  519. }
  520. err = Pa_StartStream(pa_stream);
  521. #if USE_PORTAUDIO == 19
  522. if(err == paStreamIsNotStopped)
  523. {
  524. // not sure why we need this, but PA v19 seems to need it
  525. err = Pa_StopStream(pa_stream);
  526. err = Pa_StartStream(pa_stream);
  527. }
  528. #endif
  529. if(err != paNoError)
  530. {
  531. // exit speak if we can't open the sound device - this is OK if speak is being run for each utterance
  532. exit(2);
  533. }
  534. return(0);
  535. }
  536. int WavegenCloseSound()
  537. {//====================
  538. PaError active;
  539. // check whether speaking has finished, and close the stream
  540. if(pa_stream != NULL)
  541. {
  542. #if USE_PORTAUDIO == 18
  543. active = Pa_StreamActive(pa_stream);
  544. #else
  545. active = Pa_IsStreamActive(pa_stream);
  546. #endif
  547. if(WcmdqUsed() == 0) // also check that the queue is empty
  548. {
  549. if(active == 0)
  550. {
  551. Pa_CloseStream(pa_stream);
  552. pa_stream = NULL;
  553. return(1);
  554. }
  555. }
  556. else
  557. {
  558. WavegenOpenSound(); // still items in the queue, shouldn't be closed
  559. }
  560. }
  561. return(0);
  562. }
  563. int WavegenInitSound()
  564. {//===================
  565. PaError err;
  566. if(option_quiet)
  567. return(0);
  568. // PortAudio sound output library
  569. err = Pa_Initialize();
  570. pa_init_err = err;
  571. if(err != paNoError)
  572. {
  573. fprintf(stderr,"Failed to initialise the PortAudio sound\n");
  574. return(1);
  575. }
  576. return(0);
  577. }
  578. #else
  579. int WavegenOpenSound()
  580. {//===================
  581. return(0);
  582. }
  583. int WavegenCloseSound()
  584. {//====================
  585. return(0);
  586. }
  587. int WavegenInitSound()
  588. {//===================
  589. return(0);
  590. }
  591. #endif
  592. void WavegenInit(int rate, int wavemult_fact)
  593. {//==========================================
  594. int ix;
  595. double x;
  596. if(wavemult_fact == 0)
  597. wavemult_fact=60; // default
  598. wvoice = NULL;
  599. samplerate = samplerate_native = rate;
  600. PHASE_INC_FACTOR = 0x8000000 / samplerate; // assumes pitch is Hz*32
  601. Flutter_inc = (64 * samplerate)/rate;
  602. samplecount = 0;
  603. nsamples = 0;
  604. wavephase = 0x7fffffff;
  605. max_hval = 0;
  606. wdata.amplitude = 32;
  607. wdata.prev_was_synth = 0;
  608. for(ix=0; ix<N_EMBEDDED_VALUES; ix++)
  609. embedded_value[ix] = embedded_default[ix];
  610. // set up window to generate a spread of harmonics from a
  611. // single peak for HF peaks
  612. wavemult_max = (samplerate * wavemult_fact)/(256 * 50);
  613. if(wavemult_max > N_WAVEMULT) wavemult_max = N_WAVEMULT;
  614. wavemult_offset = wavemult_max/2;
  615. if(samplerate != 22050)
  616. {
  617. // wavemult table has preset values for 22050 Hz, we only need to
  618. // recalculate them if we have a different sample rate
  619. for(ix=0; ix<wavemult_max; ix++)
  620. {
  621. x = 127*(1.0 - cos(PI2*ix/wavemult_max));
  622. wavemult[ix] = (int)x;
  623. }
  624. }
  625. WavegenInitPkData(1);
  626. WavegenInitPkData(0);
  627. pk_shape = pk_shape2; // pk_shape2
  628. #ifdef INCLUDE_KLATT
  629. KlattInit();
  630. #endif
  631. #ifdef LOG_FRAMES
  632. remove("log-espeakedit");
  633. #endif
  634. } // end of WavegenInit
  635. int GetAmplitude(void)
  636. {//===================
  637. int amp;
  638. // normal, none, reduced, moderate, strong
  639. static const unsigned char amp_emphasis[5] = {16, 16, 10, 16, 22};
  640. amp = (embedded_value[EMBED_A])*55/100;
  641. general_amplitude = amp * amp_emphasis[embedded_value[EMBED_F]] / 16;
  642. return(general_amplitude);
  643. }
  644. static void WavegenSetEcho(void)
  645. {//=============================
  646. int delay;
  647. int amp;
  648. voicing = wvoice->voicing;
  649. delay = wvoice->echo_delay;
  650. amp = wvoice->echo_amp;
  651. if(delay >= N_ECHO_BUF)
  652. delay = N_ECHO_BUF-1;
  653. if(amp > 100)
  654. amp = 100;
  655. memset(echo_buf,0,sizeof(echo_buf));
  656. echo_tail = 0;
  657. if(embedded_value[EMBED_H] > 0)
  658. {
  659. // set echo from an embedded command in the text
  660. amp = embedded_value[EMBED_H];
  661. delay = 130;
  662. }
  663. if(embedded_value[EMBED_T] > 0)
  664. {
  665. // announcing punctuation
  666. amp = embedded_value[EMBED_T] * 8;
  667. delay = 60;
  668. }
  669. if(delay == 0)
  670. amp = 0;
  671. echo_head = (delay * samplerate)/1000;
  672. echo_length = echo_head; // ensure completion of echo at the end of speech. Use 1 delay period?
  673. if(amp == 0)
  674. echo_length = 0;
  675. if(amp > 20)
  676. echo_length = echo_head * 2; // perhaps allow 2 echo periods if the echo is loud.
  677. // echo_amp units are 1/256ths of the amplitude of the original sound.
  678. echo_amp = amp;
  679. // compensate (partially) for increase in amplitude due to echo
  680. general_amplitude = GetAmplitude();
  681. general_amplitude = ((general_amplitude * (500-amp))/500);
  682. } // end of WavegenSetEcho
  683. int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int *htab, int control)
  684. {//============================================================================
  685. // Calculate the amplitude of each harmonics from the formants
  686. // Only for formants 0 to 5
  687. // control 0=initial call, 1=every 64 cycles
  688. // pitch and freqs are Hz<<16
  689. int f;
  690. wavegen_peaks_t *p;
  691. int fp; // centre freq of peak
  692. int fhi; // high freq of peak
  693. int h; // harmonic number
  694. int pk;
  695. int hmax;
  696. int hmax_samplerate; // highest harmonic allowed for the samplerate
  697. int x;
  698. int ix;
  699. int h1;
  700. #ifdef SPECT_EDITOR
  701. if(harm_sqrt_n > 0)
  702. return(HarmToHarmspect(pitch,htab));
  703. #endif
  704. // initialise as much of *out as we will need
  705. if(wvoice == NULL)
  706. return(1);
  707. hmax = (peaks[wvoice->n_harmonic_peaks].freq + peaks[wvoice->n_harmonic_peaks].right)/pitch;
  708. if(hmax >= MAX_HARMONIC)
  709. hmax = MAX_HARMONIC-1;
  710. // restrict highest harmonic to half the samplerate
  711. hmax_samplerate = (((samplerate * 19)/40) << 16)/pitch; // only 95% of Nyquist freq
  712. // hmax_samplerate = (samplerate << 16)/(pitch*2);
  713. if(hmax > hmax_samplerate)
  714. hmax = hmax_samplerate;
  715. for(h=0;h<=hmax;h++)
  716. htab[h]=0;
  717. h=0;
  718. for(pk=0; pk<=wvoice->n_harmonic_peaks; pk++)
  719. {
  720. p = &peaks[pk];
  721. if((p->height == 0) || (fp = p->freq)==0)
  722. continue;
  723. fhi = p->freq + p->right;
  724. h = ((p->freq - p->left) / pitch) + 1;
  725. if(h <= 0) h = 1;
  726. for(f=pitch*h; f < fp; f+=pitch)
  727. {
  728. htab[h++] += pk_shape[(fp-f)/(p->left>>8)] * p->height;
  729. }
  730. for(; f < fhi; f+=pitch)
  731. {
  732. htab[h++] += pk_shape[(f-fp)/(p->right>>8)] * p->height;
  733. }
  734. }
  735. {
  736. int y;
  737. int h2;
  738. // increase bass
  739. y = peaks[1].height * 10; // addition as a multiple of 1/256s
  740. h2 = (1000<<16)/pitch; // decrease until 1000Hz
  741. x = y/h2;
  742. h = 1;
  743. while(y > 0)
  744. {
  745. htab[h++] += y;
  746. y -= x;
  747. }
  748. }
  749. // find the nearest harmonic for HF peaks where we don't use shape
  750. for(; pk<N_PEAKS; pk++)
  751. {
  752. x = peaks[pk].height >> 14;
  753. peak_height[pk] = (x * x * 5)/2;
  754. // find the nearest harmonic for HF peaks where we don't use shape
  755. if(control == 0)
  756. {
  757. // set this initially, but make changes only at the quiet point
  758. peak_harmonic[pk] = peaks[pk].freq / pitch;
  759. }
  760. // only use harmonics up to half the samplerate
  761. if(peak_harmonic[pk] >= hmax_samplerate)
  762. peak_height[pk] = 0;
  763. }
  764. // convert from the square-rooted values
  765. f = 0;
  766. for(h=0; h<=hmax; h++, f+=pitch)
  767. {
  768. x = htab[h] >> 15;
  769. htab[h] = (x * x) >> 8;
  770. if((ix = (f >> 19)) < N_TONE_ADJUST)
  771. {
  772. htab[h] = (htab[h] * wvoice->tone_adjust[ix]) >> 13; // index tone_adjust with Hz/8
  773. }
  774. }
  775. // adjust the amplitude of the first harmonic, affects tonal quality
  776. h1 = htab[1] * option_harmonic1;
  777. htab[1] = h1/8;
  778. // calc intermediate increments of LF harmonics
  779. if(control & 1)
  780. {
  781. for(h=1; h<N_LOWHARM; h++)
  782. {
  783. harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
  784. }
  785. }
  786. return(hmax); // highest harmonic number
  787. } // end of PeaksToHarmspect
  788. static void AdvanceParameters()
  789. {//============================
  790. // Called every 64 samples to increment the formant freq, height, and widths
  791. int x;
  792. int ix;
  793. static int Flutter_ix = 0;
  794. // advance the pitch
  795. wdata.pitch_ix += wdata.pitch_inc;
  796. if((ix = wdata.pitch_ix>>8) > 127) ix = 127;
  797. x = wdata.pitch_env[ix] * wdata.pitch_range;
  798. wdata.pitch = (x>>8) + wdata.pitch_base;
  799. amp_ix += amp_inc;
  800. /* add pitch flutter */
  801. if(Flutter_ix >= (N_FLUTTER*64))
  802. Flutter_ix = 0;
  803. x = ((int)(Flutter_tab[Flutter_ix >> 6])-0x80) * flutter_amp;
  804. Flutter_ix += Flutter_inc;
  805. wdata.pitch += x;
  806. if(wdata.pitch < 102400)
  807. wdata.pitch = 102400; // min pitch, 25 Hz (25 << 12)
  808. if(samplecount == samplecount_start)
  809. return;
  810. for(ix=0; ix <= wvoice->n_harmonic_peaks; ix++)
  811. {
  812. peaks[ix].freq1 += peaks[ix].freq_inc;
  813. peaks[ix].freq = int(peaks[ix].freq1);
  814. peaks[ix].height1 += peaks[ix].height_inc;
  815. if((peaks[ix].height = int(peaks[ix].height1)) < 0)
  816. peaks[ix].height = 0;
  817. peaks[ix].left1 += peaks[ix].left_inc;
  818. peaks[ix].left = int(peaks[ix].left1);
  819. peaks[ix].right1 += peaks[ix].right_inc;
  820. peaks[ix].right = int(peaks[ix].right1);
  821. }
  822. for(;ix < N_PEAKS; ix++)
  823. {
  824. // formants 6,7,8 don't have a width parameter
  825. peaks[ix].freq1 += peaks[ix].freq_inc;
  826. peaks[ix].freq = int(peaks[ix].freq1);
  827. peaks[ix].height1 += peaks[ix].height_inc;
  828. if((peaks[ix].height = int(peaks[ix].height1)) < 0)
  829. peaks[ix].height = 0;
  830. }
  831. #ifdef SPECT_EDITOR
  832. if(harm_sqrt_n != 0)
  833. {
  834. // We are generating from a harmonic spectrum at a given pitch, not from formant peaks
  835. for(ix=0; ix<harm_sqrt_n; ix++)
  836. harm_sqrt[ix] += harm_sqrt_inc[ix];
  837. }
  838. #endif
  839. } // end of AdvanceParameters
  840. #ifndef PLATFORM_RISCOS
  841. static double resonator(RESONATOR *r, double input)
  842. {//================================================
  843. double x;
  844. x = r->a * input + r->b * r->x1 + r->c * r->x2;
  845. r->x2 = r->x1;
  846. r->x1 = x;
  847. return x;
  848. }
  849. static void setresonator(RESONATOR *rp, int freq, int bwidth, int init)
  850. {//====================================================================
  851. // freq Frequency of resonator in Hz
  852. // bwidth Bandwidth of resonator in Hz
  853. // init Initialize internal data
  854. double x;
  855. double arg;
  856. if(init)
  857. {
  858. rp->x1 = 0;
  859. rp->x2 = 0;
  860. }
  861. // x = exp(-pi * bwidth * t)
  862. arg = minus_pi_t * bwidth;
  863. x = exp(arg);
  864. // c = -(x*x)
  865. rp->c = -(x * x);
  866. // b = x * 2*cos(2 pi * freq * t)
  867. arg = two_pi_t * freq;
  868. rp->b = x * cos(arg) * 2.0;
  869. // a = 1.0 - b - c
  870. rp->a = 1.0 - rp->b - rp->c;
  871. } // end if setresonator
  872. #endif
  873. void InitBreath(void)
  874. {//==================
  875. #ifndef PLATFORM_RISCOS
  876. int ix;
  877. minus_pi_t = -PI / samplerate;
  878. two_pi_t = -2.0 * minus_pi_t;
  879. for(ix=0; ix<N_PEAKS; ix++)
  880. {
  881. setresonator(&rbreath[ix],2000,200,1);
  882. }
  883. #endif
  884. } // end of InitBreath
  885. void SetBreath()
  886. {//=============
  887. #ifndef PLATFORM_RISCOS
  888. int pk;
  889. if(wvoice->breath[0] == 0)
  890. return;
  891. for(pk=1; pk<N_PEAKS; pk++)
  892. {
  893. if(wvoice->breath[pk] != 0)
  894. {
  895. // breath[0] indicates that some breath formants are needed
  896. // set the freq from the current ynthesis formant and the width from the voice data
  897. setresonator(&rbreath[pk], peaks[pk].freq >> 16, wvoice->breathw[pk],0);
  898. }
  899. }
  900. #endif
  901. } // end of SetBreath
  902. int ApplyBreath(void)
  903. {//==================
  904. int value = 0;
  905. #ifndef PLATFORM_RISCOS
  906. int noise;
  907. int ix;
  908. int amp;
  909. // use two random numbers, for alternate formants
  910. noise = (rand() & 0x3fff) - 0x2000;
  911. for(ix=1; ix < N_PEAKS; ix++)
  912. {
  913. if((amp = wvoice->breath[ix]) != 0)
  914. {
  915. amp *= (peaks[ix].height >> 14);
  916. value += int(resonator(&rbreath[ix],noise) * amp);
  917. }
  918. }
  919. #endif
  920. return (value);
  921. }
  922. int Wavegen()
  923. {//==========
  924. unsigned short waveph;
  925. unsigned short theta;
  926. int total;
  927. int h;
  928. int ix;
  929. int z, z1, z2;
  930. int echo;
  931. int ov;
  932. static int maxh, maxh2;
  933. int pk;
  934. signed char c;
  935. int sample;
  936. int amp;
  937. int modn_amp, modn_period;
  938. static int agc = 256;
  939. static int h_switch_sign = 0;
  940. static int cycle_count = 0;
  941. static int amplitude2 = 0; // adjusted for pitch
  942. // continue until the output buffer is full, or
  943. // the required number of samples have been produced
  944. for(;;)
  945. {
  946. if((end_wave==0) && (samplecount==nsamples))
  947. return(0);
  948. if((samplecount & 0x3f) == 0)
  949. {
  950. // every 64 samples, adjust the parameters
  951. if(samplecount == 0)
  952. {
  953. hswitch = 0;
  954. harmspect = hspect[0];
  955. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);
  956. // adjust amplitude to compensate for fewer harmonics at higher pitch
  957. amplitude2 = (wdata.amplitude * wdata.pitch)/(100 << 11);
  958. // switch sign of harmonics above about 900Hz, to reduce max peak amplitude
  959. h_switch_sign = 890 / (wdata.pitch >> 12);
  960. }
  961. else
  962. AdvanceParameters();
  963. // pitch is Hz<<12
  964. phaseinc = (wdata.pitch>>7) * PHASE_INC_FACTOR;
  965. cycle_samples = samplerate/(wdata.pitch >> 12); // sr/(pitch*2)
  966. hf_factor = wdata.pitch >> 11;
  967. maxh = maxh2;
  968. harmspect = hspect[hswitch];
  969. hswitch ^= 1;
  970. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[hswitch], 1);
  971. SetBreath();
  972. }
  973. else
  974. if((samplecount & 0x07) == 0)
  975. {
  976. for(h=1; h<N_LOWHARM && h<=maxh2 && h<=maxh; h++)
  977. {
  978. harmspect[h] += harm_inc[h];
  979. }
  980. // bring automctic gain control back towards unity
  981. if(agc < 256) agc++;
  982. }
  983. samplecount++;
  984. if(wavephase > 0)
  985. {
  986. wavephase += phaseinc;
  987. if(wavephase < 0)
  988. {
  989. // sign has changed, reached a quiet point in the waveform
  990. cbytes = wavemult_offset - (cycle_samples)/2;
  991. if(samplecount > nsamples)
  992. return(0);
  993. cycle_count++;
  994. for(pk=wvoice->n_harmonic_peaks+1; pk<N_PEAKS; pk++)
  995. {
  996. // find the nearest harmonic for HF peaks where we don't use shape
  997. peak_harmonic[pk] = peaks[pk].freq / (wdata.pitch*16);
  998. }
  999. // adjust amplitude to compensate for fewer harmonics at higher pitch
  1000. amplitude2 = (wdata.amplitude * wdata.pitch)/(100 << 11);
  1001. if(glottal_flag > 0)
  1002. {
  1003. if(glottal_flag == 3)
  1004. {
  1005. if((nsamples-samplecount) < (cycle_samples*2))
  1006. {
  1007. // Vowel before glottal-stop.
  1008. // This is the start of the penultimate cycle, reduce its amplitude
  1009. glottal_flag = 2;
  1010. amplitude2 = (amplitude2 * glottal_reduce)/256;
  1011. }
  1012. }
  1013. else
  1014. if(glottal_flag == 4)
  1015. {
  1016. // Vowel following a glottal-stop.
  1017. // This is the start of the second cycle, reduce its amplitude
  1018. glottal_flag = 2;
  1019. amplitude2 = (amplitude2 * glottal_reduce)/256;
  1020. }
  1021. else
  1022. {
  1023. glottal_flag--;
  1024. }
  1025. }
  1026. if(amplitude_env != NULL)
  1027. {
  1028. // amplitude envelope is only used for creaky voice effect on certain vowels/tones
  1029. if((ix = amp_ix>>8) > 127) ix = 127;
  1030. amp = amplitude_env[ix];
  1031. amplitude2 = (amplitude2 * amp)/128;
  1032. // if(amp < 255)
  1033. // modulation_type = 7;
  1034. }
  1035. // introduce roughness into the sound by reducing the amplitude of
  1036. modn_period = 0;
  1037. if(voice->roughness < N_ROUGHNESS)
  1038. {
  1039. modn_period = modulation_tab[voice->roughness][modulation_type];
  1040. modn_amp = modn_period & 0xf;
  1041. modn_period = modn_period >> 4;
  1042. }
  1043. if(modn_period != 0)
  1044. {
  1045. if(modn_period==0xf)
  1046. {
  1047. // just once */
  1048. amplitude2 = (amplitude2 * modn_amp)/16;
  1049. modulation_type = 0;
  1050. }
  1051. else
  1052. {
  1053. // reduce amplitude every [modn_period} cycles
  1054. if((cycle_count % modn_period)==0)
  1055. amplitude2 = (amplitude2 * modn_amp)/16;
  1056. }
  1057. }
  1058. }
  1059. }
  1060. else
  1061. {
  1062. wavephase += phaseinc;
  1063. }
  1064. waveph = (unsigned short)(wavephase >> 16);
  1065. total = 0;
  1066. // apply HF peaks, formants 6,7,8
  1067. // add a single harmonic and then spread this my multiplying by a
  1068. // window. This is to reduce the processing power needed to add the
  1069. // higher frequence harmonics.
  1070. cbytes++;
  1071. if(cbytes >=0 && cbytes<wavemult_max)
  1072. {
  1073. for(pk=wvoice->n_harmonic_peaks+1; pk<N_PEAKS; pk++)
  1074. {
  1075. theta = peak_harmonic[pk] * waveph;
  1076. total += (long)sin_tab[theta >> 5] * peak_height[pk];
  1077. }
  1078. // spread the peaks by multiplying by a window
  1079. total = (long)(total / hf_factor) * wavemult[cbytes];
  1080. }
  1081. // apply main peaks, formants 0 to 5
  1082. #ifdef USE_ASSEMBLER_1
  1083. // use an optimised routine for this loop, if available
  1084. total += AddSineWaves(waveph, h_switch_sign, maxh, harmspect); // call an assembler code routine
  1085. #else
  1086. theta = waveph;
  1087. for(h=1; h<=h_switch_sign; h++)
  1088. {
  1089. total += (int(sin_tab[theta >> 5]) * harmspect[h]);
  1090. theta += waveph;
  1091. }
  1092. while(h<=maxh)
  1093. {
  1094. total -= (int(sin_tab[theta >> 5]) * harmspect[h]);
  1095. theta += waveph;
  1096. h++;
  1097. }
  1098. #endif
  1099. if(voicing != 64)
  1100. {
  1101. total = (total >> 6) * voicing;
  1102. }
  1103. #ifndef PLATFORM_RISCOS
  1104. if(wvoice->breath[0])
  1105. {
  1106. total += ApplyBreath();
  1107. }
  1108. #endif
  1109. // mix with sampled wave if required
  1110. z2 = 0;
  1111. if(wdata.mix_wavefile_ix < wdata.n_mix_wavefile)
  1112. {
  1113. if(wdata.mix_wave_scale == 0)
  1114. {
  1115. // a 16 bit sample
  1116. c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1];
  1117. sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256);
  1118. wdata.mix_wavefile_ix += 2;
  1119. }
  1120. else
  1121. {
  1122. // a 8 bit sample, scaled
  1123. sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
  1124. }
  1125. z2 = (sample * wdata.amplitude_v) >> 10;
  1126. z2 = (z2 * wdata.mix_wave_amp)/32;
  1127. }
  1128. z1 = z2 + (((total>>8) * amplitude2) >> 13);
  1129. echo = (echo_buf[echo_tail++] * echo_amp);
  1130. z1 += echo >> 8;
  1131. if(echo_tail >= N_ECHO_BUF)
  1132. echo_tail=0;
  1133. z = (z1 * agc) >> 8;
  1134. // check for overflow, 16bit signed samples
  1135. if(z >= 32768)
  1136. {
  1137. ov = 8388608/z1 - 1; // 8388608 is 2^23, i.e. max value * 256
  1138. if(ov < agc) agc = ov; // set agc to number of 1/256ths to multiply the sample by
  1139. z = (z1 * agc) >> 8; // reduce sample by agc value to prevent overflow
  1140. }
  1141. else
  1142. if(z <= -32768)
  1143. {
  1144. ov = -8388608/z1 - 1;
  1145. if(ov < agc) agc = ov;
  1146. z = (z1 * agc) >> 8;
  1147. }
  1148. *out_ptr++ = z;
  1149. *out_ptr++ = z >> 8;
  1150. echo_buf[echo_head++] = z;
  1151. if(echo_head >= N_ECHO_BUF)
  1152. echo_head = 0;
  1153. if(out_ptr >= out_end)
  1154. return(1);
  1155. }
  1156. return(0);
  1157. } // end of Wavegen
  1158. static int PlaySilence(int length, int resume)
  1159. {//===========================================
  1160. static int n_samples;
  1161. int value=0;
  1162. if(length == 0)
  1163. return(0);
  1164. nsamples = 0;
  1165. samplecount = 0;
  1166. if(resume==0)
  1167. n_samples = length;
  1168. while(n_samples-- > 0)
  1169. {
  1170. value = (echo_buf[echo_tail++] * echo_amp) >> 8;
  1171. if(echo_tail >= N_ECHO_BUF)
  1172. echo_tail = 0;
  1173. *out_ptr++ = value;
  1174. *out_ptr++ = value >> 8;
  1175. echo_buf[echo_head++] = value;
  1176. if(echo_head >= N_ECHO_BUF)
  1177. echo_head = 0;
  1178. if(out_ptr >= out_end)
  1179. return(1);
  1180. }
  1181. return(0);
  1182. } // end of PlaySilence
  1183. static int PlayWave(int length, int resume, unsigned char *data, int scale, int amp)
  1184. {//=================================================================================
  1185. static int n_samples;
  1186. static int ix=0;
  1187. int value;
  1188. signed char c;
  1189. if(resume==0)
  1190. {
  1191. n_samples = length;
  1192. ix = 0;
  1193. }
  1194. nsamples = 0;
  1195. samplecount = 0;
  1196. while(n_samples-- > 0)
  1197. {
  1198. if(scale == 0)
  1199. {
  1200. // 16 bits data
  1201. c = data[ix+1];
  1202. value = data[ix] + (c * 256);
  1203. ix+=2;
  1204. }
  1205. else
  1206. {
  1207. // 8 bit data, shift by the specified scale factor
  1208. value = (signed char)data[ix++] * scale;
  1209. }
  1210. value *= (consonant_amp * general_amplitude); // reduce strength of consonant
  1211. value = value >> 10;
  1212. value = (value * amp)/32;
  1213. value += ((echo_buf[echo_tail++] * echo_amp) >> 8);
  1214. if(value > 32767)
  1215. value = 32768;
  1216. else
  1217. if(value < -32768)
  1218. value = -32768;
  1219. if(echo_tail >= N_ECHO_BUF)
  1220. echo_tail = 0;
  1221. out_ptr[0] = value;
  1222. out_ptr[1] = value >> 8;
  1223. out_ptr+=2;
  1224. echo_buf[echo_head++] = (value*3)/4;
  1225. if(echo_head >= N_ECHO_BUF)
  1226. echo_head = 0;
  1227. if(out_ptr >= out_end)
  1228. return(1);
  1229. }
  1230. return(0);
  1231. }
  1232. static int SetWithRange0(int value, int max)
  1233. {//=========================================
  1234. if(value < 0)
  1235. return(0);
  1236. if(value > max)
  1237. return(max);
  1238. return(value);
  1239. }
  1240. void SetEmbedded(int control, int value)
  1241. {//=====================================
  1242. // there was an embedded command in the text at this point
  1243. int sign=0;
  1244. int command;
  1245. int ix;
  1246. int factor;
  1247. int pitch_value;
  1248. command = control & 0x1f;
  1249. if((control & 0x60) == 0x60)
  1250. sign = -1;
  1251. else
  1252. if((control & 0x60) == 0x40)
  1253. sign = 1;
  1254. if(command < N_EMBEDDED_VALUES)
  1255. {
  1256. if(sign == 0)
  1257. embedded_value[command] = value;
  1258. else
  1259. embedded_value[command] += (value * sign);
  1260. embedded_value[command] = SetWithRange0(embedded_value[command],embedded_max[command]);
  1261. }
  1262. switch(command)
  1263. {
  1264. case EMBED_T:
  1265. WavegenSetEcho(); // and drop through to case P
  1266. case EMBED_P:
  1267. // adjust formants to give better results for a different voice pitch
  1268. if((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  1269. pitch_value = MAX_PITCH_VALUE;
  1270. factor = 256 + (25 * (pitch_value - 50))/50;
  1271. for(ix=0; ix<=5; ix++)
  1272. {
  1273. wvoice->freq[ix] = (wvoice->freq2[ix] * factor)/256;
  1274. }
  1275. factor = embedded_value[EMBED_T]*3;
  1276. wvoice->height[0] = (wvoice->height2[0] * (256 - factor*2))/256;
  1277. wvoice->height[1] = (wvoice->height2[1] * (256 - factor))/256;
  1278. break;
  1279. case EMBED_A: // amplitude
  1280. general_amplitude = GetAmplitude();
  1281. break;
  1282. case EMBED_F: // emphasiis
  1283. general_amplitude = GetAmplitude();
  1284. break;
  1285. case EMBED_H:
  1286. WavegenSetEcho();
  1287. break;
  1288. }
  1289. }
  1290. void WavegenSetVoice(voice_t *v)
  1291. {//=============================
  1292. static voice_t v2;
  1293. memcpy(&v2,v,sizeof(v2));
  1294. wvoice = &v2;
  1295. if(v->peak_shape==0)
  1296. pk_shape = pk_shape1;
  1297. else
  1298. pk_shape = pk_shape2;
  1299. consonant_amp = (v->consonant_amp * 26) /100;
  1300. if(samplerate <= 11000)
  1301. {
  1302. consonant_amp = consonant_amp*2; // emphasize consonants at low sample rates
  1303. option_harmonic1 = 6;
  1304. }
  1305. WavegenSetEcho();
  1306. }
  1307. static void SetAmplitude(int length, unsigned char *amp_env, int value)
  1308. {//====================================================================
  1309. amp_ix = 0;
  1310. if(length==0)
  1311. amp_inc = 0;
  1312. else
  1313. amp_inc = (256 * ENV_LEN * STEPSIZE)/length;
  1314. wdata.amplitude = (value * general_amplitude)/16;
  1315. wdata.amplitude_v = (wdata.amplitude * wvoice->consonant_ampv * 15)/100; // for wave mixed with voiced sounds
  1316. amplitude_env = amp_env;
  1317. }
  1318. void SetPitch2(voice_t *voice, int pitch1, int pitch2, int *pitch_base, int *pitch_range)
  1319. {//======================================================================================
  1320. int x;
  1321. int base;
  1322. int range;
  1323. int pitch_value;
  1324. if(pitch1 > pitch2)
  1325. {
  1326. x = pitch1; // swap values
  1327. pitch1 = pitch2;
  1328. pitch2 = x;
  1329. }
  1330. if((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  1331. pitch_value = MAX_PITCH_VALUE;
  1332. pitch_value -= embedded_value[EMBED_T]; // adjust tone for announcing punctuation
  1333. if(pitch_value < 0)
  1334. pitch_value = 0;
  1335. base = (voice->pitch_base * pitch_adjust_tab[pitch_value])/128;
  1336. range = (voice->pitch_range * embedded_value[EMBED_R])/50;
  1337. // compensate for change in pitch when the range is narrowed or widened
  1338. base -= (range - voice->pitch_range)*18;
  1339. *pitch_base = base + (pitch1 * range);
  1340. *pitch_range = base + (pitch2 * range) - *pitch_base;
  1341. }
  1342. void SetPitch(int length, unsigned char *env, int pitch1, int pitch2)
  1343. {//==================================================================
  1344. // length in samples
  1345. #ifdef LOG_FRAMES
  1346. if(option_log_frames)
  1347. {
  1348. f_log=fopen("log-espeakedit","a");
  1349. if(f_log != NULL)
  1350. {
  1351. fprintf(f_log," pitch %3d %3d %3dmS\n",pitch1,pitch2,(length*1000)/samplerate);
  1352. fclose(f_log);
  1353. f_log=NULL;
  1354. }
  1355. }
  1356. #endif
  1357. if((wdata.pitch_env = env)==NULL)
  1358. wdata.pitch_env = env_fall; // default
  1359. wdata.pitch_ix = 0;
  1360. if(length==0)
  1361. wdata.pitch_inc = 0;
  1362. else
  1363. wdata.pitch_inc = (256 * ENV_LEN * STEPSIZE)/length;
  1364. SetPitch2(wvoice, pitch1, pitch2, &wdata.pitch_base, &wdata.pitch_range);
  1365. // set initial pitch
  1366. wdata.pitch = ((wdata.pitch_env[0] * wdata.pitch_range) >>8) + wdata.pitch_base; // Hz << 12
  1367. flutter_amp = wvoice->flutter;
  1368. } // end of SetPitch
  1369. void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v)
  1370. {//========================================================================
  1371. int ix;
  1372. DOUBLEX next;
  1373. int length2;
  1374. int length4;
  1375. int qix;
  1376. int cmd;
  1377. static int glottal_reduce_tab1[4] = {0x30, 0x30, 0x40, 0x50}; // vowel before [?], amp * 1/256
  1378. // static int glottal_reduce_tab1[4] = {0x30, 0x40, 0x50, 0x60}; // vowel before [?], amp * 1/256
  1379. static int glottal_reduce_tab2[4] = {0x90, 0xa0, 0xb0, 0xc0}; // vowel after [?], amp * 1/256
  1380. #ifdef LOG_FRAMES
  1381. if(option_log_frames)
  1382. {
  1383. f_log=fopen("log-espeakedit","a");
  1384. if(f_log != NULL)
  1385. {
  1386. fprintf(f_log,"%3dmS %3d %3d %4d %4d (%3d %3d %3d %3d) to %3d %3d %4d %4d (%3d %3d %3d %3d)\n",length*1000/samplerate,
  1387. fr1->ffreq[0],fr1->ffreq[1],fr1->ffreq[2],fr1->ffreq[3], fr1->fheight[0],fr1->fheight[1],fr1->fheight[2],fr1->fheight[3],
  1388. fr2->ffreq[0],fr2->ffreq[1],fr2->ffreq[2],fr2->ffreq[3], fr2->fheight[0],fr2->fheight[1],fr2->fheight[2],fr2->fheight[3] );
  1389. fclose(f_log);
  1390. f_log=NULL;
  1391. }
  1392. }
  1393. #endif
  1394. harm_sqrt_n = 0;
  1395. end_wave = 1;
  1396. // any additional information in the param1 ?
  1397. modulation_type = modn & 0xff;
  1398. glottal_flag = 0;
  1399. if(modn & 0x400)
  1400. {
  1401. glottal_flag = 3; // before a glottal stop
  1402. glottal_reduce = glottal_reduce_tab1[(modn >> 8) & 3];
  1403. }
  1404. if(modn & 0x800)
  1405. {
  1406. glottal_flag = 4; // after a glottal stop
  1407. glottal_reduce = glottal_reduce_tab2[(modn >> 8) & 3];
  1408. }
  1409. for(qix=wcmdq_head+1;;qix++)
  1410. {
  1411. if(qix >= N_WCMDQ) qix = 0;
  1412. if(qix == wcmdq_tail) break;
  1413. cmd = wcmdq[qix][0];
  1414. if(cmd==WCMD_SPECT)
  1415. {
  1416. end_wave = 0; // next wave generation is from another spectrum
  1417. break;
  1418. }
  1419. if((cmd==WCMD_WAVE) || (cmd==WCMD_PAUSE))
  1420. break; // next is not from spectrum, so continue until end of wave cycle
  1421. }
  1422. // round the length to a multiple of the stepsize
  1423. length2 = (length + STEPSIZE/2) & ~0x3f;
  1424. if(length2 == 0)
  1425. length2 = STEPSIZE;
  1426. // add this length to any left over from the previous synth
  1427. samplecount_start = samplecount;
  1428. nsamples += length2;
  1429. length4 = length2/4;
  1430. for(ix=0; ix<N_PEAKS; ix++)
  1431. {
  1432. peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  1433. peaks[ix].freq = int(peaks[ix].freq1);
  1434. next = (fr2->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  1435. peaks[ix].freq_inc = ((next - peaks[ix].freq1) * (STEPSIZE/4)) / length4; // lower headroom for fixed point math
  1436. peaks[ix].height1 = (fr1->fheight[ix] * v->height[ix]) << 6;
  1437. peaks[ix].height = int(peaks[ix].height1);
  1438. next = (fr2->fheight[ix] * v->height[ix]) << 6;
  1439. peaks[ix].height_inc = ((next - peaks[ix].height1) * STEPSIZE) / length2;
  1440. if(ix <= wvoice->n_harmonic_peaks)
  1441. {
  1442. peaks[ix].left1 = (fr1->fwidth[ix] * v->width[ix]) << 10;
  1443. peaks[ix].left = int(peaks[ix].left1);
  1444. next = (fr2->fwidth[ix] * v->width[ix]) << 10;
  1445. peaks[ix].left_inc = ((next - peaks[ix].left1) * STEPSIZE) / length2;
  1446. peaks[ix].right1 = (fr1->fright[ix] * v->width[ix]) << 10;
  1447. peaks[ix].right = int(peaks[ix].right1);
  1448. next = (fr2->fright[ix] * v->width[ix]) << 10;
  1449. peaks[ix].right_inc = ((next - peaks[ix].right1) * STEPSIZE) / length2;
  1450. }
  1451. }
  1452. } // end of SetSynth
  1453. static int Wavegen2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2)
  1454. {//====================================================================================
  1455. if(resume==0)
  1456. SetSynth(length, modulation, fr1, fr2, wvoice);
  1457. return(Wavegen());
  1458. }
  1459. void Write4Bytes(FILE *f, int value)
  1460. {//=================================
  1461. // Write 4 bytes to a file, least significant first
  1462. int ix;
  1463. for(ix=0; ix<4; ix++)
  1464. {
  1465. fputc(value & 0xff,f);
  1466. value = value >> 8;
  1467. }
  1468. }
  1469. int WavegenFill(int fill_zeros)
  1470. {//============================
  1471. // Pick up next wavegen commands from the queue
  1472. // return: 0 output buffer has been filled
  1473. // return: 1 input command queue is now empty
  1474. long *q;
  1475. int length;
  1476. int result;
  1477. static int resume=0;
  1478. static int echo_complete=0;
  1479. #ifdef TEST_MBROLA
  1480. if(mbrola_name[0] != 0)
  1481. return(MbrolaFill(fill_zeros));
  1482. #endif
  1483. while(out_ptr < out_end)
  1484. {
  1485. if(WcmdqUsed() <= 0)
  1486. {
  1487. if(echo_complete > 0)
  1488. {
  1489. // continue to play silence until echo is completed
  1490. resume = PlaySilence(echo_complete,resume);
  1491. if(resume == 1)
  1492. return(0); // not yet finished
  1493. }
  1494. if(fill_zeros)
  1495. {
  1496. while(out_ptr < out_end)
  1497. *out_ptr++ = 0;
  1498. }
  1499. return(1); // queue empty, close sound channel
  1500. }
  1501. result = 0;
  1502. q = wcmdq[wcmdq_head];
  1503. length = q[1];
  1504. switch(q[0])
  1505. {
  1506. case WCMD_PITCH:
  1507. SetPitch(length,(unsigned char *)q[2],q[3] >> 16,q[3] & 0xffff);
  1508. break;
  1509. case WCMD_PAUSE:
  1510. if(resume==0)
  1511. {
  1512. echo_complete -= length;
  1513. }
  1514. wdata.n_mix_wavefile = 0;
  1515. wdata.prev_was_synth = 0;
  1516. result = PlaySilence(length,resume);
  1517. break;
  1518. case WCMD_WAVE:
  1519. echo_complete = echo_length;
  1520. wdata.n_mix_wavefile = 0;
  1521. wdata.prev_was_synth = 0;
  1522. result = PlayWave(length,resume,(unsigned char*)q[2], q[3] & 0xff, q[3] >> 8);
  1523. break;
  1524. case WCMD_WAVE2:
  1525. // wave file to be played at the same time as synthesis
  1526. wdata.mix_wave_amp = q[3] >> 8;
  1527. wdata.mix_wave_scale = q[3] & 0xff;
  1528. if(wdata.mix_wave_scale == 0)
  1529. wdata.n_mix_wavefile = length*2;
  1530. else
  1531. wdata.n_mix_wavefile = length;
  1532. wdata.mix_wavefile_ix = 0;
  1533. wdata.mix_wavefile = (unsigned char *)q[2];
  1534. break;
  1535. case WCMD_SPECT2: // as WCMD_SPECT but stop any concurrent wave file
  1536. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1537. case WCMD_SPECT:
  1538. echo_complete = echo_length;
  1539. result = Wavegen2(length & 0xffff,q[1] >> 16,resume,(frame_t *)q[2],(frame_t *)q[3]);
  1540. break;
  1541. #ifdef INCLUDE_KLATT
  1542. case WCMD_KLATT2: // as WCMD_SPECT but stop any concurrent wave file
  1543. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1544. case WCMD_KLATT:
  1545. echo_complete = echo_length;
  1546. result = Wavegen_Klatt2(length & 0xffff,q[1] >> 16,resume,(frame_t *)q[2],(frame_t *)q[3]);
  1547. break;
  1548. #endif
  1549. case WCMD_MARKER:
  1550. MarkerEvent(q[1],q[2],q[3],out_ptr);
  1551. #ifdef LOG_FRAMES
  1552. LogMarker(q[1],q[3]);
  1553. #endif
  1554. if(q[1] == 1)
  1555. {
  1556. current_source_index = q[2] & 0xffffff;
  1557. }
  1558. break;
  1559. case WCMD_AMPLITUDE:
  1560. SetAmplitude(length,(unsigned char *)q[2],q[3]);
  1561. break;
  1562. case WCMD_VOICE:
  1563. WavegenSetVoice((voice_t *)q[1]);
  1564. free((voice_t *)q[1]);
  1565. break;
  1566. case WCMD_EMBEDDED:
  1567. SetEmbedded(q[1],q[2]);
  1568. break;
  1569. }
  1570. if(result==0)
  1571. {
  1572. WcmdqIncHead();
  1573. resume=0;
  1574. }
  1575. else
  1576. {
  1577. resume=1;
  1578. }
  1579. }
  1580. return(0);
  1581. } // end of WavegenFill