eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wave.cpp 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257
  1. /***************************************************************************
  2. * Copyright (C) 2007, Gilles Casse <[email protected]> *
  3. * based on AudioIO.cc (Audacity-1.2.4b) and wavegen.cpp *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #include "speech.h"
  21. #ifdef USE_ASYNC
  22. // This source file is only used for asynchronious modes
  23. #include <stdio.h>
  24. #include <string.h>
  25. #include <stdlib.h>
  26. #include <math.h>
  27. #include <assert.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include "portaudio.h"
  31. #ifndef PLATFORM_WINDOWS
  32. #include <unistd.h>
  33. #endif
  34. #include "wave.h"
  35. #include "debug.h"
  36. //<Definitions
  37. enum {ONE_BILLION=1000000000};
  38. #ifdef USE_PORTAUDIO
  39. #undef USE_PORTAUDIO
  40. // determine portaudio version by looking for a #define which is not in V18
  41. #ifdef paNeverDropInput
  42. #define USE_PORTAUDIO 19
  43. #else
  44. #define USE_PORTAUDIO 18
  45. #endif
  46. #ifdef USE_PULSEAUDIO
  47. // create some wrappers for runtime detection
  48. // checked on wave_init
  49. static int pulse_running;
  50. // wave.cpp (this file)
  51. int wave_port_init(int);
  52. void* wave_port_open(const char* the_api);
  53. size_t wave_port_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  54. int wave_port_close(void* theHandler);
  55. int wave_port_is_busy(void* theHandler);
  56. void wave_port_terminate();
  57. uint32_t wave_port_get_read_position(void* theHandler);
  58. uint32_t wave_port_get_write_position(void* theHandler);
  59. void wave_port_flush(void* theHandler);
  60. void wave_port_set_callback_is_output_enabled(t_wave_callback* cb);
  61. void* wave_port_test_get_write_buffer();
  62. int wave_port_get_remaining_time(uint32_t sample, uint32_t* time);
  63. // wave_pulse.cpp
  64. int is_pulse_running();
  65. int wave_pulse_init(int);
  66. void* wave_pulse_open(const char* the_api);
  67. size_t wave_pulse_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  68. int wave_pulse_close(void* theHandler);
  69. int wave_pulse_is_busy(void* theHandler);
  70. void wave_pulse_terminate();
  71. uint32_t wave_pulse_get_read_position(void* theHandler);
  72. uint32_t wave_pulse_get_write_position(void* theHandler);
  73. void wave_pulse_flush(void* theHandler);
  74. void wave_pulse_set_callback_is_output_enabled(t_wave_callback* cb);
  75. void* wave_pulse_test_get_write_buffer();
  76. int wave_pulse_get_remaining_time(uint32_t sample, uint32_t* time);
  77. // wrappers
  78. int wave_init(int srate) {
  79. pulse_running = is_pulse_running();
  80. if (pulse_running)
  81. return wave_pulse_init(srate);
  82. else
  83. return wave_port_init(srate);
  84. }
  85. void* wave_open(const char* the_api) {
  86. if (pulse_running)
  87. return wave_pulse_open(the_api);
  88. else
  89. return wave_port_open(the_api);
  90. }
  91. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {
  92. if (pulse_running)
  93. return wave_pulse_write(theHandler, theMono16BitsWaveBuffer, theSize);
  94. else
  95. return wave_port_write(theHandler, theMono16BitsWaveBuffer, theSize);
  96. }
  97. int wave_close(void* theHandler) {
  98. if (pulse_running)
  99. return wave_pulse_close(theHandler);
  100. else
  101. return wave_port_close(theHandler);
  102. }
  103. int wave_is_busy(void* theHandler) {
  104. if (pulse_running)
  105. return wave_pulse_is_busy(theHandler);
  106. else
  107. return wave_port_is_busy(theHandler);
  108. }
  109. void wave_terminate() {
  110. if (pulse_running)
  111. wave_pulse_terminate();
  112. else
  113. wave_port_terminate();
  114. }
  115. uint32_t wave_get_read_position(void* theHandler) {
  116. if (pulse_running)
  117. return wave_pulse_get_read_position(theHandler);
  118. else
  119. return wave_port_get_read_position(theHandler);
  120. }
  121. uint32_t wave_get_write_position(void* theHandler) {
  122. if (pulse_running)
  123. return wave_pulse_get_write_position(theHandler);
  124. else
  125. return wave_port_get_write_position(theHandler);
  126. }
  127. void wave_flush(void* theHandler) {
  128. if (pulse_running)
  129. wave_pulse_flush(theHandler);
  130. else
  131. wave_port_flush(theHandler);
  132. }
  133. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {
  134. if (pulse_running)
  135. wave_pulse_set_callback_is_output_enabled(cb);
  136. else
  137. wave_port_set_callback_is_output_enabled(cb);
  138. }
  139. void* wave_test_get_write_buffer() {
  140. if (pulse_running)
  141. return wave_pulse_test_get_write_buffer();
  142. else
  143. return wave_port_test_get_write_buffer();
  144. }
  145. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  146. {
  147. if (pulse_running)
  148. return wave_pulse_get_remaining_time(sample, time);
  149. else
  150. return wave_port_get_remaining_time(sample, time);
  151. }
  152. // rename functions to be wrapped
  153. #define wave_init wave_port_init
  154. #define wave_open wave_port_open
  155. #define wave_write wave_port_write
  156. #define wave_close wave_port_close
  157. #define wave_is_busy wave_port_is_busy
  158. #define wave_terminate wave_port_terminate
  159. #define wave_get_read_position wave_port_get_read_position
  160. #define wave_get_write_position wave_port_get_write_position
  161. #define wave_flush wave_port_flush
  162. #define wave_set_callback_is_output_enabled wave_port_set_callback_is_output_enabled
  163. #define wave_test_get_write_buffer wave_port_test_get_write_buffer
  164. #define wave_get_remaining_time wave_port_get_remaining_time
  165. #endif // USE_PULSEAUDIO
  166. static t_wave_callback* my_callback_is_output_enabled=NULL;
  167. #define N_WAV_BUF 10
  168. #define MAX_SAMPLE_RATE 22050
  169. #define FRAMES_PER_BUFFER 512
  170. #define BUFFER_LENGTH (MAX_SAMPLE_RATE*2*sizeof(uint16_t))
  171. //#define THRESHOLD (BUFFER_LENGTH/5)
  172. static char myBuffer[BUFFER_LENGTH];
  173. static char* myRead=NULL;
  174. static char* myWrite=NULL;
  175. static int out_channels=1;
  176. static int my_stream_could_start=0;
  177. static int wave_samplerate;
  178. static int mInCallbackFinishedState = false;
  179. #if (USE_PORTAUDIO == 18)
  180. static PortAudioStream *pa_stream=NULL;
  181. #endif
  182. #if (USE_PORTAUDIO == 19)
  183. static struct PaStreamParameters myOutputParameters;
  184. static PaStream *pa_stream=NULL;
  185. #endif
  186. static int userdata[4];
  187. static PaError pa_init_err=0;
  188. // time measurement
  189. // The read and write position audio stream in the audio stream are measured in ms.
  190. //
  191. // * When the stream is opened, myReadPosition and myWritePosition are cleared.
  192. // * myWritePosition is updated in wave_write.
  193. // * myReadPosition is updated in pa_callback (+ sample delay).
  194. static uint32_t myReadPosition = 0; // in ms
  195. static uint32_t myWritePosition = 0;
  196. //>
  197. //<init_buffer, get_used_mem
  198. static void init_buffer()
  199. {
  200. myWrite = myBuffer;
  201. myRead = myBuffer;
  202. memset(myBuffer,0,BUFFER_LENGTH);
  203. myReadPosition = myWritePosition = 0;
  204. SHOW("init_buffer > myRead=0x%x, myWrite=0x%x, BUFFER_LENGTH=0x%x, myReadPosition = myWritePosition = 0\n", (int)myRead, (int)myWrite, BUFFER_LENGTH);
  205. }
  206. static unsigned int get_used_mem()
  207. {
  208. char* aRead = myRead;
  209. char* aWrite = myWrite;
  210. unsigned int used = 0;
  211. assert ((aRead >= myBuffer)
  212. && (aRead <= myBuffer + BUFFER_LENGTH)
  213. && (aWrite >= myBuffer)
  214. && (aWrite <= myBuffer + BUFFER_LENGTH));
  215. if (aRead < aWrite)
  216. {
  217. used = aWrite - aRead;
  218. }
  219. else
  220. {
  221. used = aWrite + BUFFER_LENGTH - aRead;
  222. }
  223. SHOW("get_used_mem > %d\n", used);
  224. return used;
  225. }
  226. //>
  227. //<start stream
  228. static void start_stream()
  229. {
  230. PaError err;
  231. SHOW_TIME("start_stream");
  232. my_stream_could_start=0;
  233. mInCallbackFinishedState = false;
  234. err = Pa_StartStream(pa_stream);
  235. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  236. #if USE_PORTAUDIO == 19
  237. if(err == paStreamIsNotStopped)
  238. {
  239. SHOW_TIME("start_stream > restart stream (begin)");
  240. // not sure why we need this, but PA v19 seems to need it
  241. err = Pa_StopStream(pa_stream);
  242. SHOW("start_stream > Pa_StopStream=%d (%s)\n", err, Pa_GetErrorText(err));
  243. err = Pa_StartStream(pa_stream);
  244. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  245. SHOW_TIME("start_stream > restart stream (end)");
  246. }
  247. #endif
  248. }
  249. //>
  250. //<pa_callback
  251. /* This routine will be called by the PortAudio engine when audio is needed.
  252. ** It may called at interrupt level on some machines so don't do anything
  253. ** that could mess up the system like calling malloc() or free().
  254. */
  255. #if USE_PORTAUDIO == 18
  256. static int pa_callback(void *inputBuffer, void *outputBuffer,
  257. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  258. #else
  259. static int pa_callback(const void *inputBuffer, void *outputBuffer,
  260. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  261. PaStreamCallbackFlags flags, void *userData )
  262. #endif
  263. {
  264. int aResult=0; // paContinue
  265. char* aWrite = myWrite;
  266. size_t n = out_channels*sizeof(uint16_t)*framesPerBuffer;
  267. myReadPosition += framesPerBuffer;
  268. SHOW("pa_callback > myReadPosition=%u, framesPerBuffer=%lu (n=0x%x) \n",(int)myReadPosition, framesPerBuffer, n);
  269. if (aWrite >= myRead)
  270. {
  271. if((size_t)(aWrite - myRead) >= n)
  272. {
  273. memcpy(outputBuffer, myRead, n);
  274. myRead += n;
  275. }
  276. else
  277. {
  278. SHOW_TIME("pa_callback > underflow");
  279. aResult=1; // paComplete;
  280. mInCallbackFinishedState = true;
  281. size_t aUsedMem=0;
  282. aUsedMem = (size_t)(aWrite - myRead);
  283. if (aUsedMem)
  284. {
  285. memcpy(outputBuffer, myRead, aUsedMem);
  286. }
  287. char* p = (char*)outputBuffer + aUsedMem;
  288. memset(p, 0, n - aUsedMem);
  289. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  290. myRead = aWrite;
  291. }
  292. }
  293. else // myRead > aWrite
  294. {
  295. if ((size_t)(myBuffer + BUFFER_LENGTH - myRead) >= n)
  296. {
  297. memcpy(outputBuffer, myRead, n);
  298. myRead += n;
  299. }
  300. else if ((size_t)(aWrite + BUFFER_LENGTH - myRead) >= n)
  301. {
  302. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  303. if (aTopMem)
  304. {
  305. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  306. memcpy(outputBuffer, myRead, aTopMem);
  307. }
  308. int aRest = n - aTopMem;
  309. if (aRest)
  310. {
  311. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  312. char* p = (char*)outputBuffer + aTopMem;
  313. memcpy(p, myBuffer, aRest);
  314. }
  315. myRead = myBuffer + aRest;
  316. }
  317. else
  318. {
  319. SHOW_TIME("pa_callback > underflow");
  320. aResult=1; // paComplete;
  321. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  322. if (aTopMem)
  323. {
  324. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  325. memcpy(outputBuffer, myRead, aTopMem);
  326. }
  327. int aRest = aWrite - myBuffer;
  328. if (aRest)
  329. {
  330. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  331. char* p = (char*)outputBuffer + aTopMem;
  332. memcpy(p, myBuffer, aRest);
  333. }
  334. size_t aUsedMem = aTopMem + aRest;
  335. char* p = (char*)outputBuffer + aUsedMem;
  336. memset(p, 0, n - aUsedMem);
  337. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  338. myRead = aWrite;
  339. }
  340. }
  341. SHOW("pa_callback > myRead=%x\n",(int)myRead);
  342. // #if USE_PORTAUDIO == 18
  343. // if(aBufferEmpty)
  344. // {
  345. // static int end_timer = 0;
  346. // if(end_timer == 0)
  347. // end_timer = 4;
  348. // if(end_timer > 0)
  349. // {
  350. // end_timer--;
  351. // if(end_timer == 0)
  352. // return(1);
  353. // }
  354. // }
  355. // return(0);
  356. // #else
  357. #ifdef ARCH_BIG
  358. {
  359. // BIG-ENDIAN, swap the order of bytes in each sound sample in the portaudio buffer
  360. int c;
  361. unsigned char *out_ptr;
  362. unsigned char *out_end;
  363. out_ptr = (unsigned char *)outputBuffer;
  364. out_end = out_ptr + framesPerBuffer*2 * out_channels;
  365. while(out_ptr < out_end)
  366. {
  367. c = out_ptr[0];
  368. out_ptr[0] = out_ptr[1];
  369. out_ptr[1] = c;
  370. out_ptr += 2;
  371. }
  372. }
  373. #endif
  374. return(aResult);
  375. //#endif
  376. } // end of WaveCallBack
  377. //>
  378. void wave_flush(void* theHandler)
  379. {
  380. ENTER("wave_flush");
  381. if (my_stream_could_start)
  382. {
  383. // #define buf 1024
  384. // static char a_buffer[buf*2];
  385. // memset(a_buffer,0,buf*2);
  386. // wave_write(theHandler, a_buffer, buf*2);
  387. start_stream();
  388. }
  389. }
  390. //<wave_open_sound
  391. static int wave_open_sound()
  392. {
  393. ENTER("wave_open_sound");
  394. PaError err=paNoError;
  395. PaError active;
  396. #if USE_PORTAUDIO == 18
  397. active = Pa_StreamActive(pa_stream);
  398. #else
  399. active = Pa_IsStreamActive(pa_stream);
  400. #endif
  401. if(active == 1)
  402. {
  403. SHOW_TIME("wave_open_sound > already active");
  404. return(0);
  405. }
  406. if(active < 0)
  407. {
  408. out_channels = 1;
  409. #if USE_PORTAUDIO == 18
  410. // err = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,wave_samplerate,FRAMES_PER_BUFFER,N_WAV_BUF,pa_callback,(void *)userdata);
  411. PaDeviceID playbackDevice = Pa_GetDefaultOutputDeviceID();
  412. PaError err = Pa_OpenStream( &pa_stream,
  413. /* capture parameters */
  414. paNoDevice,
  415. 0,
  416. paInt16,
  417. NULL,
  418. /* playback parameters */
  419. playbackDevice,
  420. out_channels,
  421. paInt16,
  422. NULL,
  423. /* general parameters */
  424. wave_samplerate, FRAMES_PER_BUFFER, 0,
  425. //paClipOff | paDitherOff,
  426. paNoFlag,
  427. pa_callback, (void *)userdata);
  428. SHOW("wave_open_sound > Pa_OpenDefaultStream(1): err=%d (%s)\n",err, Pa_GetErrorText(err));
  429. if(err == paInvalidChannelCount)
  430. {
  431. SHOW_TIME("wave_open_sound > try stereo");
  432. // failed to open with mono, try stereo
  433. out_channels = 2;
  434. // myOutputParameters.channelCount = out_channels;
  435. PaError err = Pa_OpenStream( &pa_stream,
  436. /* capture parameters */
  437. paNoDevice,
  438. 0,
  439. paInt16,
  440. NULL,
  441. /* playback parameters */
  442. playbackDevice,
  443. out_channels,
  444. paInt16,
  445. NULL,
  446. /* general parameters */
  447. wave_samplerate, FRAMES_PER_BUFFER, 0,
  448. //paClipOff | paDitherOff,
  449. paNoFlag,
  450. pa_callback, (void *)userdata);
  451. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,
  452. // wave_samplerate,
  453. // FRAMES_PER_BUFFER,
  454. // N_WAV_BUF,pa_callback,(void *)userdata);
  455. SHOW("wave_open_sound > Pa_OpenDefaultStream(2): err=%d (%s)\n",err, Pa_GetErrorText(err));
  456. err=0; // avoid warning
  457. }
  458. mInCallbackFinishedState = false; // v18 only
  459. #else
  460. myOutputParameters.channelCount = out_channels;
  461. unsigned long framesPerBuffer = paFramesPerBufferUnspecified;
  462. err = Pa_OpenStream(
  463. &pa_stream,
  464. NULL, /* no input */
  465. &myOutputParameters,
  466. wave_samplerate,
  467. framesPerBuffer,
  468. paNoFlag,
  469. // paClipOff | paDitherOff,
  470. pa_callback,
  471. (void *)userdata);
  472. if ((err!=paNoError)
  473. && (err!=paInvalidChannelCount)) //err==paUnanticipatedHostError
  474. {
  475. fprintf(stderr, "wave_open_sound > Pa_OpenStream : err=%d (%s)\n",err,Pa_GetErrorText(err));
  476. framesPerBuffer = FRAMES_PER_BUFFER;
  477. err = Pa_OpenStream(
  478. &pa_stream,
  479. NULL, /* no input */
  480. &myOutputParameters,
  481. wave_samplerate,
  482. framesPerBuffer,
  483. paNoFlag,
  484. // paClipOff | paDitherOff,
  485. pa_callback,
  486. (void *)userdata);
  487. }
  488. if(err == paInvalidChannelCount)
  489. {
  490. SHOW_TIME("wave_open_sound > try stereo");
  491. // failed to open with mono, try stereo
  492. out_channels = 2;
  493. myOutputParameters.channelCount = out_channels;
  494. err = Pa_OpenStream(
  495. &pa_stream,
  496. NULL, /* no input */
  497. &myOutputParameters,
  498. wave_samplerate,
  499. framesPerBuffer,
  500. paNoFlag,
  501. // paClipOff | paDitherOff,
  502. pa_callback,
  503. (void *)userdata);
  504. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)wave_samplerate,FRAMES_PER_BUFFER,pa_callback,(void *)userdata);
  505. }
  506. mInCallbackFinishedState = false;
  507. #endif
  508. }
  509. SHOW("wave_open_sound > %s\n","LEAVE");
  510. return (err != paNoError);
  511. }
  512. //>
  513. //<select_device
  514. #if (USE_PORTAUDIO == 19)
  515. static void update_output_parameters(int selectedDevice, const PaDeviceInfo *deviceInfo)
  516. {
  517. // const PaDeviceInfo *pdi = Pa_GetDeviceInfo(i);
  518. myOutputParameters.device = selectedDevice;
  519. // myOutputParameters.channelCount = pdi->maxOutputChannels;
  520. myOutputParameters.channelCount = 1;
  521. myOutputParameters.sampleFormat = paInt16;
  522. // Latency greater than 100ms for avoiding glitches
  523. // (e.g. when moving a window in a graphical desktop)
  524. // deviceInfo = Pa_GetDeviceInfo(selectedDevice);
  525. if (deviceInfo)
  526. {
  527. double aLatency = deviceInfo->defaultLowOutputLatency;
  528. // double aCoeff = round(0.100 / aLatency);
  529. // myOutputParameters.suggestedLatency = aCoeff * aLatency; // to avoid glitches ?
  530. myOutputParameters.suggestedLatency = aLatency; // for faster response ?
  531. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f, aCoeff=%f\n",
  532. selectedDevice,
  533. myOutputParameters.suggestedLatency,
  534. aCoeff);
  535. }
  536. else
  537. {
  538. myOutputParameters.suggestedLatency = (double)0.1; // 100ms
  539. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f (default)\n",
  540. selectedDevice,
  541. myOutputParameters.suggestedLatency);
  542. }
  543. //pdi->defaultLowOutputLatency;
  544. myOutputParameters.hostApiSpecificStreamInfo = NULL;
  545. }
  546. #endif
  547. static void select_device(const char* the_api)
  548. {
  549. ENTER("select_device");
  550. #if (USE_PORTAUDIO == 19)
  551. int numDevices = Pa_GetDeviceCount();
  552. if( numDevices < 0 )
  553. {
  554. SHOW( "ERROR: Pa_CountDevices returned 0x%x\n", numDevices );
  555. assert(0);
  556. }
  557. PaDeviceIndex i=0, selectedIndex=0, defaultAlsaIndex=numDevices;
  558. const PaDeviceInfo *deviceInfo=NULL;
  559. const PaDeviceInfo *selectedDeviceInfo=NULL;
  560. if(option_device_number >= 0)
  561. {
  562. selectedIndex = option_device_number;
  563. selectedDeviceInfo = Pa_GetDeviceInfo(selectedIndex);
  564. }
  565. if(selectedDeviceInfo == NULL)
  566. {
  567. for( i=0; i<numDevices; i++ )
  568. {
  569. deviceInfo = Pa_GetDeviceInfo( i );
  570. if (deviceInfo == NULL)
  571. {
  572. break;
  573. }
  574. const PaHostApiInfo *hostInfo = Pa_GetHostApiInfo( deviceInfo->hostApi );
  575. if (hostInfo && hostInfo->type == paALSA)
  576. {
  577. // Check (once) the default output device
  578. if (defaultAlsaIndex == numDevices)
  579. {
  580. defaultAlsaIndex = hostInfo->defaultOutputDevice;
  581. const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo( defaultAlsaIndex );
  582. update_output_parameters(defaultAlsaIndex, deviceInfo);
  583. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  584. {
  585. SHOW( "select_device > ALSA (default), name=%s (#%d)\n", deviceInfo->name, defaultAlsaIndex);
  586. selectedIndex = defaultAlsaIndex;
  587. selectedDeviceInfo = deviceInfo;
  588. break;
  589. }
  590. }
  591. // if the default output device does not match,
  592. // look for the device with the highest number of output channels
  593. SHOW( "select_device > ALSA, i=%d (numDevices=%d)\n", i, numDevices);
  594. update_output_parameters(i, deviceInfo);
  595. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  596. {
  597. SHOW( "select_device > ALSA, name=%s (#%d)\n", deviceInfo->name, i);
  598. if (!selectedDeviceInfo
  599. || (selectedDeviceInfo->maxOutputChannels < deviceInfo->maxOutputChannels))
  600. {
  601. selectedIndex = i;
  602. selectedDeviceInfo = deviceInfo;
  603. }
  604. }
  605. }
  606. }
  607. }
  608. if (selectedDeviceInfo)
  609. {
  610. update_output_parameters(selectedIndex, selectedDeviceInfo);
  611. }
  612. else
  613. {
  614. i = Pa_GetDefaultOutputDevice();
  615. deviceInfo = Pa_GetDeviceInfo( i );
  616. update_output_parameters(i, deviceInfo);
  617. }
  618. #endif
  619. }
  620. //>
  621. // int wave_Close(void* theHandler)
  622. // {
  623. // SHOW_TIME("WaveCloseSound");
  624. // // PaError active;
  625. // // check whether speaking has finished, and close the stream
  626. // if(pa_stream != NULL)
  627. // {
  628. // Pa_CloseStream(pa_stream);
  629. // pa_stream = NULL;
  630. // init_buffer();
  631. // // #if USE_PORTAUDIO == 18
  632. // // active = Pa_StreamActive(pa_stream);
  633. // // #else
  634. // // active = Pa_IsStreamActive(pa_stream);
  635. // // #endif
  636. // // if(active == 0)
  637. // // {
  638. // // SHOW_TIME("WaveCloseSound > ok, not active");
  639. // // Pa_CloseStream(pa_stream);
  640. // // pa_stream = NULL;
  641. // // return(1);
  642. // // }
  643. // }
  644. // return(0);
  645. // }
  646. //<wave_set_callback_is_output_enabled
  647. void wave_set_callback_is_output_enabled(t_wave_callback* cb)
  648. {
  649. my_callback_is_output_enabled = cb;
  650. }
  651. //>
  652. //<wave_init
  653. // TBD: the arg could be "alsa", "oss",...
  654. int wave_init(int srate)
  655. {
  656. ENTER("wave_init");
  657. PaError err;
  658. pa_stream = NULL;
  659. wave_samplerate = srate;
  660. mInCallbackFinishedState = false;
  661. init_buffer();
  662. // PortAudio sound output library
  663. err = Pa_Initialize();
  664. pa_init_err = err;
  665. if(err != paNoError)
  666. {
  667. SHOW_TIME("wave_init > Failed to initialise the PortAudio sound");
  668. }
  669. return err == paNoError;
  670. }
  671. //>
  672. //<wave_open
  673. void* wave_open(const char* the_api)
  674. {
  675. ENTER("wave_open");
  676. static int once=0;
  677. // TBD: the_api (e.g. "alsa") is not used at the moment
  678. // select_device is called once
  679. if (!once)
  680. {
  681. select_device("alsa");
  682. once=1;
  683. }
  684. return((void*)1);
  685. }
  686. //>
  687. //<copyBuffer
  688. static size_t copyBuffer(char* dest, char* src, const size_t theSizeInBytes)
  689. {
  690. size_t bytes_written = 0;
  691. unsigned int i = 0;
  692. uint16_t* a_dest = NULL;
  693. uint16_t* a_src = NULL;
  694. if ((src != NULL) && dest != NULL)
  695. {
  696. // copy for one channel (mono)?
  697. if(out_channels==1)
  698. {
  699. SHOW("copyBuffer > 1 channel > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  700. memcpy(dest, src, theSizeInBytes);
  701. bytes_written = theSizeInBytes;
  702. }
  703. else // copy for 2 channels (stereo)
  704. {
  705. SHOW("copyBuffer > 2 channels > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  706. i = 0;
  707. a_dest = (uint16_t* )dest;
  708. a_src = (uint16_t* )src;
  709. for(i=0; i<theSizeInBytes/2; i++)
  710. {
  711. a_dest[2*i] = a_src[i];
  712. a_dest[2*i+1] = a_src[i];
  713. }
  714. bytes_written = 2*theSizeInBytes;
  715. } // end if(out_channels==1)
  716. } // end if ((src != NULL) && dest != NULL)
  717. return bytes_written;
  718. }
  719. //>
  720. //<wave_write
  721. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize)
  722. {
  723. ENTER("wave_write");
  724. size_t bytes_written = 0;
  725. // space in ringbuffer for the sample needed: 1x mono channel but 2x for 1 stereo channel
  726. size_t bytes_to_write = (out_channels==1) ? theSize : theSize*2;
  727. my_stream_could_start = 0;
  728. if(pa_stream == NULL)
  729. {
  730. SHOW_TIME("wave_write > wave_open_sound\n");
  731. if (0 != wave_open_sound())
  732. {
  733. SHOW_TIME("wave_write > wave_open_sound fails!");
  734. return 0;
  735. }
  736. my_stream_could_start=1;
  737. }
  738. else if (!wave_is_busy(NULL))
  739. {
  740. my_stream_could_start = 1;
  741. }
  742. assert(BUFFER_LENGTH >= bytes_to_write);
  743. if (myWrite >= myBuffer + BUFFER_LENGTH)
  744. {
  745. myWrite = myBuffer;
  746. } // end if (myWrite >= myBuffer + BUFFER_LENGTH)
  747. size_t aTotalFreeMem=0;
  748. char* aRead = myRead;
  749. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  750. while (1)
  751. {
  752. if (my_callback_is_output_enabled && (0==my_callback_is_output_enabled()))
  753. {
  754. SHOW_TIME("wave_write > my_callback_is_output_enabled: no!");
  755. return 0;
  756. }
  757. aRead = myRead;
  758. // write pointer is before read pointer?
  759. if (myWrite >= aRead)
  760. {
  761. aTotalFreeMem = aRead + BUFFER_LENGTH - myWrite;
  762. }
  763. else // read pointer is before write pointer!
  764. {
  765. aTotalFreeMem = aRead - myWrite;
  766. } // end if (myWrite >= aRead)
  767. if (aTotalFreeMem>1)
  768. {
  769. // -1 because myWrite must be different of aRead
  770. // otherwise buffer would be considered as empty
  771. aTotalFreeMem -= 1;
  772. } // end if (aTotalFreeMem>1)
  773. if (aTotalFreeMem >= bytes_to_write)
  774. {
  775. break;
  776. } // end if (aTotalFreeMem >= bytes_to_write)
  777. //SHOW_TIME("wave_write > wait");
  778. SHOW("wave_write > wait: aTotalFreeMem=%d\n", aTotalFreeMem);
  779. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  780. usleep(10000);
  781. } // end while (1)
  782. aRead = myRead;
  783. // write pointer is ahead the read pointer?
  784. if (myWrite >= aRead)
  785. {
  786. SHOW_TIME("wave_write > myWrite >= aRead");
  787. // determine remaining free memory to the end of the ringbuffer
  788. size_t aFreeMem = myBuffer + BUFFER_LENGTH - myWrite;
  789. // is enough linear space available (regardless 1 or 2 channels)?
  790. if (aFreeMem >= bytes_to_write)
  791. {
  792. // copy direct - no wrap around at end of ringbuffer needed
  793. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  794. }
  795. else // not enough linear space available
  796. {
  797. // 2 channels (stereo)?
  798. if (out_channels == 2)
  799. {
  800. // copy with wrap around at the end of ringbuffer
  801. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem/2);
  802. myWrite = myBuffer;
  803. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem/2, theSize - aFreeMem/2);
  804. }
  805. else // 1 channel (mono)
  806. {
  807. // copy with wrap around at the end of ringbuffer
  808. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem);
  809. myWrite = myBuffer;
  810. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem, theSize - aFreeMem);
  811. } // end if (out_channels == 2)
  812. } // end if (aFreeMem >= bytes_to_write)
  813. } // if (myWrite >= aRead)
  814. else // read pointer is ahead the write pointer
  815. {
  816. SHOW_TIME("wave_write > myWrite <= aRead");
  817. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  818. } // end if (myWrite >= aRead)
  819. bytes_written = bytes_to_write;
  820. myWritePosition += theSize/sizeof(uint16_t); // add number of samples
  821. if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  822. {
  823. start_stream();
  824. } // end if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  825. SHOW_TIME("wave_write > LEAVE");
  826. return bytes_written;
  827. }
  828. //>
  829. //<wave_close
  830. int wave_close(void* theHandler)
  831. {
  832. SHOW_TIME("wave_close > ENTER");
  833. static int aStopStreamCount = 0;
  834. #if (USE_PORTAUDIO == 19)
  835. if( pa_stream == NULL )
  836. {
  837. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  838. return 0;
  839. }
  840. if( Pa_IsStreamStopped( pa_stream ) )
  841. {
  842. SHOW_TIME("wave_close > LEAVE (stopped)");
  843. return 0;
  844. }
  845. #else
  846. if( pa_stream == NULL )
  847. {
  848. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  849. return 0;
  850. }
  851. if( Pa_StreamActive( pa_stream ) == false && mInCallbackFinishedState == false )
  852. {
  853. SHOW_TIME("wave_close > LEAVE (not active)");
  854. return 0;
  855. }
  856. #endif
  857. // Avoid race condition by making sure this function only
  858. // gets called once at a time
  859. aStopStreamCount++;
  860. if (aStopStreamCount != 1)
  861. {
  862. SHOW_TIME("wave_close > LEAVE (stopStreamCount)");
  863. return 0;
  864. }
  865. // Comment from Audacity-1.2.4b adapted to the eSpeak context.
  866. //
  867. // We got here in one of two ways:
  868. //
  869. // 1. The calling program calls the espeak_Cancel function and we
  870. // therefore want to stop as quickly as possible.
  871. // So we use AbortStream(). If this is
  872. // the case the portaudio stream is still in the Running state
  873. // (see PortAudio state machine docs).
  874. //
  875. // 2. The callback told PortAudio to stop the stream since it had
  876. // reached the end of the selection.
  877. // The event polling thread discovered this by noticing that
  878. // wave_is_busy() returned false.
  879. // wave_is_busy() (which calls Pa_GetStreamActive()) will not return
  880. // false until all buffers have finished playing, so we can call
  881. // AbortStream without losing any samples. If this is the case
  882. // we are in the "callback finished state" (see PortAudio state
  883. // machine docs).
  884. //
  885. // The moral of the story: We can call AbortStream safely, without
  886. // losing samples.
  887. //
  888. // DMM: This doesn't seem to be true; it seems to be necessary to
  889. // call StopStream if the callback brought us here, and AbortStream
  890. // if the user brought us here.
  891. //
  892. #if (USE_PORTAUDIO == 19)
  893. if (pa_stream)
  894. {
  895. Pa_AbortStream( pa_stream );
  896. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  897. Pa_CloseStream( pa_stream );
  898. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  899. pa_stream = NULL;
  900. mInCallbackFinishedState = false;
  901. }
  902. #else
  903. if (pa_stream)
  904. {
  905. if (mInCallbackFinishedState)
  906. {
  907. Pa_StopStream( pa_stream );
  908. SHOW_TIME("wave_close > Pa_StopStream (end)");
  909. }
  910. else
  911. {
  912. Pa_AbortStream( pa_stream );
  913. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  914. }
  915. Pa_CloseStream( pa_stream );
  916. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  917. pa_stream = NULL;
  918. mInCallbackFinishedState = false;
  919. }
  920. #endif
  921. init_buffer();
  922. aStopStreamCount = 0; // last action
  923. SHOW_TIME("wave_close > LEAVE");
  924. return 0;
  925. }
  926. // int wave_close(void* theHandler)
  927. // {
  928. // ENTER("wave_close");
  929. // if(pa_stream != NULL)
  930. // {
  931. // PaError err = Pa_AbortStream(pa_stream);
  932. // SHOW_TIME("wave_close > Pa_AbortStream (end)");
  933. // SHOW("wave_close Pa_AbortStream > err=%d\n",err);
  934. // while(1)
  935. // {
  936. // PaError active;
  937. // #if USE_PORTAUDIO == 18
  938. // active = Pa_StreamActive(pa_stream);
  939. // #else
  940. // active = Pa_IsStreamActive(pa_stream);
  941. // #endif
  942. // if (active != 1)
  943. // {
  944. // break;
  945. // }
  946. // SHOW("wave_close > active=%d\n",err);
  947. // usleep(10000); /* sleep until playback has finished */
  948. // }
  949. // err = Pa_CloseStream( pa_stream );
  950. // SHOW_TIME("wave_close > Pa_CloseStream (end)");
  951. // SHOW("wave_close Pa_CloseStream > err=%d\n",err);
  952. // pa_stream = NULL;
  953. // init_buffer();
  954. // }
  955. // return 0;
  956. // }
  957. //>
  958. //<wave_is_busy
  959. int wave_is_busy(void* theHandler)
  960. {
  961. PaError active=0;
  962. SHOW_TIME("wave_is_busy");
  963. if (pa_stream)
  964. {
  965. #if USE_PORTAUDIO == 18
  966. active = Pa_StreamActive(pa_stream)
  967. && (mInCallbackFinishedState == false);
  968. #else
  969. active = Pa_IsStreamActive(pa_stream)
  970. && (mInCallbackFinishedState == false);
  971. #endif
  972. }
  973. SHOW("wave_is_busy: %d\n",active);
  974. return (active==1);
  975. }
  976. //>
  977. //<wave_terminate
  978. void wave_terminate()
  979. {
  980. ENTER("wave_terminate");
  981. Pa_Terminate();
  982. }
  983. //>
  984. //<wave_get_read_position, wave_get_write_position, wave_get_remaining_time
  985. uint32_t wave_get_read_position(void* theHandler)
  986. {
  987. SHOW("wave_get_read_position > myReadPosition=%u\n", myReadPosition);
  988. return myReadPosition;
  989. }
  990. uint32_t wave_get_write_position(void* theHandler)
  991. {
  992. SHOW("wave_get_write_position > myWritePosition=%u\n", myWritePosition);
  993. return myWritePosition;
  994. }
  995. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  996. {
  997. double a_time=0;
  998. if (!time || !pa_stream)
  999. {
  1000. SHOW("event get_remaining_time> %s\n","audio device not available");
  1001. return -1;
  1002. }
  1003. if (sample > myReadPosition)
  1004. {
  1005. // TBD: take in account time suplied by portaudio V18 API
  1006. a_time = sample - myReadPosition;
  1007. a_time = 0.5 + (a_time * 1000.0) / wave_samplerate;
  1008. }
  1009. else
  1010. {
  1011. a_time = 0;
  1012. }
  1013. SHOW("wave_get_remaining_time > sample=%d, time=%d\n", sample, (uint32_t)a_time);
  1014. *time = (uint32_t)a_time;
  1015. return 0;
  1016. }
  1017. //>
  1018. //<wave_test_get_write_buffer
  1019. void *wave_test_get_write_buffer()
  1020. {
  1021. return myWrite;
  1022. }
  1023. #else
  1024. // notdef USE_PORTAUDIO
  1025. int wave_init(int srate) {return 1;}
  1026. void* wave_open(const char* the_api) {return (void *)1;}
  1027. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {return theSize;}
  1028. int wave_close(void* theHandler) {return 0;}
  1029. int wave_is_busy(void* theHandler) {return 0;}
  1030. void wave_terminate() {}
  1031. uint32_t wave_get_read_position(void* theHandler) {return 0;}
  1032. uint32_t wave_get_write_position(void* theHandler) {return 0;}
  1033. void wave_flush(void* theHandler) {}
  1034. typedef int (t_wave_callback)(void);
  1035. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {}
  1036. extern void* wave_test_get_write_buffer() {return NULL;}
  1037. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1038. {
  1039. if (!time) return(-1);
  1040. *time = (uint32_t)0;
  1041. return 0;
  1042. }
  1043. #endif // of USE_PORTAUDIO
  1044. //>
  1045. //<clock_gettime2, add_time_in_ms
  1046. void clock_gettime2(struct timespec *ts)
  1047. {
  1048. struct timeval tv;
  1049. if (!ts)
  1050. {
  1051. return;
  1052. }
  1053. assert (gettimeofday(&tv, NULL) != -1);
  1054. ts->tv_sec = tv.tv_sec;
  1055. ts->tv_nsec = tv.tv_usec*1000;
  1056. }
  1057. void add_time_in_ms(struct timespec *ts, int time_in_ms)
  1058. {
  1059. if (!ts)
  1060. {
  1061. return;
  1062. }
  1063. uint64_t t_ns = (uint64_t)ts->tv_nsec + 1000000 * (uint64_t)time_in_ms;
  1064. while(t_ns >= ONE_BILLION)
  1065. {
  1066. SHOW("event > add_time_in_ms ns: %d sec %Lu nsec \n", ts->tv_sec, t_ns);
  1067. ts->tv_sec += 1;
  1068. t_ns -= ONE_BILLION;
  1069. }
  1070. ts->tv_nsec = (long int)t_ns;
  1071. }
  1072. #endif // USE_ASYNC
  1073. //>