eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wavegen.c 38KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. /*
  2. * Copyright (C) 2005 to 2013 by Jonathan Duddington
  3. * email: [email protected]
  4. * Copyright (C) 2015-2016 Reece H. Dunn
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see: <http://www.gnu.org/licenses/>.
  18. */
  19. // this version keeps wavemult window as a constant fraction
  20. // of the cycle length - but that spreads out the HF peaks too much
  21. #include "config.h"
  22. #include <math.h>
  23. #include <stdint.h>
  24. #include <stdio.h>
  25. #include <stdlib.h>
  26. #include <string.h>
  27. #include <espeak-ng/espeak_ng.h>
  28. #include <espeak-ng/speak_lib.h>
  29. #include "speech.h"
  30. #include "phoneme.h"
  31. #include "synthesize.h"
  32. #include "voice.h"
  33. #if HAVE_SONIC_H
  34. #include "sonic.h"
  35. #endif
  36. #include "sintab.h"
  37. #define N_WAV_BUF 10
  38. voice_t *wvoice = NULL;
  39. FILE *f_log = NULL;
  40. static int option_harmonic1 = 10;
  41. static int flutter_amp = 64;
  42. static int general_amplitude = 60;
  43. static int consonant_amp = 26;
  44. int embedded_value[N_EMBEDDED_VALUES];
  45. static int PHASE_INC_FACTOR;
  46. int samplerate = 0; // this is set by Wavegeninit()
  47. int samplerate_native = 0;
  48. static wavegen_peaks_t peaks[N_PEAKS];
  49. static int peak_harmonic[N_PEAKS];
  50. static int peak_height[N_PEAKS];
  51. int echo_head;
  52. int echo_tail;
  53. int echo_amp = 0;
  54. short echo_buf[N_ECHO_BUF];
  55. static int echo_length = 0; // period (in sample\) to ensure completion of echo at the end of speech, set in WavegenSetEcho()
  56. static int voicing;
  57. static RESONATOR rbreath[N_PEAKS];
  58. static int harm_sqrt_n = 0;
  59. #define N_LOWHARM 30
  60. static int harm_inc[N_LOWHARM]; // only for these harmonics do we interpolate amplitude between steps
  61. static int *harmspect;
  62. static int hswitch = 0;
  63. static int hspect[2][MAX_HARMONIC]; // 2 copies, we interpolate between then
  64. static int max_hval = 0;
  65. static int nsamples = 0; // number to do
  66. static int modulation_type = 0;
  67. static int glottal_flag = 0;
  68. static int glottal_reduce = 0;
  69. WGEN_DATA wdata;
  70. static int amp_ix;
  71. static int amp_inc;
  72. static unsigned char *amplitude_env = NULL;
  73. static int samplecount = 0; // number done
  74. static int samplecount_start = 0; // count at start of this segment
  75. static int end_wave = 0; // continue to end of wave cycle
  76. static int wavephase;
  77. static int phaseinc;
  78. static int cycle_samples; // number of samples in a cycle at current pitch
  79. static int cbytes;
  80. static int hf_factor;
  81. static double minus_pi_t;
  82. static double two_pi_t;
  83. unsigned char *out_ptr;
  84. unsigned char *out_start;
  85. unsigned char *out_end;
  86. int outbuf_size = 0;
  87. // the queue of operations passed to wavegen from sythesize
  88. intptr_t wcmdq[N_WCMDQ][4];
  89. int wcmdq_head = 0;
  90. int wcmdq_tail = 0;
  91. // pitch,speed,
  92. int embedded_default[N_EMBEDDED_VALUES] = { 0, 50, 175, 100, 50, 0, 0, 0, 175, 0, 0, 0, 0, 0, 0 };
  93. static int embedded_max[N_EMBEDDED_VALUES] = { 0, 0x7fff, 750, 300, 99, 99, 99, 0, 750, 0, 0, 0, 0, 4, 0 };
  94. int current_source_index = 0;
  95. extern FILE *f_wave;
  96. #if HAVE_SONIC_H
  97. static sonicStream sonicSpeedupStream = NULL;
  98. double sonicSpeed = 1.0;
  99. #endif
  100. // 1st index=roughness
  101. // 2nd index=modulation_type
  102. // value: bits 0-3 amplitude (16ths), bits 4-7 every n cycles
  103. #define N_ROUGHNESS 8
  104. static unsigned char modulation_tab[N_ROUGHNESS][8] = {
  105. { 0, 0x00, 0x00, 0x00, 0, 0x46, 0xf2, 0x29 },
  106. { 0, 0x2f, 0x00, 0x2f, 0, 0x45, 0xf2, 0x29 },
  107. { 0, 0x2f, 0x00, 0x2e, 0, 0x45, 0xf2, 0x28 },
  108. { 0, 0x2e, 0x00, 0x2d, 0, 0x34, 0xf2, 0x28 },
  109. { 0, 0x2d, 0x2d, 0x2c, 0, 0x34, 0xf2, 0x28 },
  110. { 0, 0x2b, 0x2b, 0x2b, 0, 0x34, 0xf2, 0x28 },
  111. { 0, 0x2a, 0x2a, 0x2a, 0, 0x34, 0xf2, 0x28 },
  112. { 0, 0x29, 0x29, 0x29, 0, 0x34, 0xf2, 0x28 },
  113. };
  114. // Flutter table, to add natural variations to the pitch
  115. #define N_FLUTTER 0x170
  116. static int Flutter_inc;
  117. static const unsigned char Flutter_tab[N_FLUTTER] = {
  118. 0x80, 0x9b, 0xb5, 0xcb, 0xdc, 0xe8, 0xed, 0xec,
  119. 0xe6, 0xdc, 0xce, 0xbf, 0xb0, 0xa3, 0x98, 0x90,
  120. 0x8c, 0x8b, 0x8c, 0x8f, 0x92, 0x94, 0x95, 0x92,
  121. 0x8c, 0x83, 0x78, 0x69, 0x59, 0x49, 0x3c, 0x31,
  122. 0x2a, 0x29, 0x2d, 0x36, 0x44, 0x56, 0x69, 0x7d,
  123. 0x8f, 0x9f, 0xaa, 0xb1, 0xb2, 0xad, 0xa4, 0x96,
  124. 0x87, 0x78, 0x69, 0x5c, 0x53, 0x4f, 0x4f, 0x55,
  125. 0x5e, 0x6b, 0x7a, 0x88, 0x96, 0xa2, 0xab, 0xb0,
  126. 0xb1, 0xae, 0xa8, 0xa0, 0x98, 0x91, 0x8b, 0x88,
  127. 0x89, 0x8d, 0x94, 0x9d, 0xa8, 0xb2, 0xbb, 0xc0,
  128. 0xc1, 0xbd, 0xb4, 0xa5, 0x92, 0x7c, 0x63, 0x4a,
  129. 0x32, 0x1e, 0x0e, 0x05, 0x02, 0x05, 0x0f, 0x1e,
  130. 0x30, 0x44, 0x59, 0x6d, 0x7f, 0x8c, 0x96, 0x9c,
  131. 0x9f, 0x9f, 0x9d, 0x9b, 0x99, 0x99, 0x9c, 0xa1,
  132. 0xa9, 0xb3, 0xbf, 0xca, 0xd5, 0xdc, 0xe0, 0xde,
  133. 0xd8, 0xcc, 0xbb, 0xa6, 0x8f, 0x77, 0x60, 0x4b,
  134. 0x3a, 0x2e, 0x28, 0x29, 0x2f, 0x3a, 0x48, 0x59,
  135. 0x6a, 0x7a, 0x86, 0x90, 0x94, 0x95, 0x91, 0x89,
  136. 0x80, 0x75, 0x6b, 0x62, 0x5c, 0x5a, 0x5c, 0x61,
  137. 0x69, 0x74, 0x80, 0x8a, 0x94, 0x9a, 0x9e, 0x9d,
  138. 0x98, 0x90, 0x86, 0x7c, 0x71, 0x68, 0x62, 0x60,
  139. 0x63, 0x6b, 0x78, 0x88, 0x9b, 0xaf, 0xc2, 0xd2,
  140. 0xdf, 0xe6, 0xe7, 0xe2, 0xd7, 0xc6, 0xb2, 0x9c,
  141. 0x84, 0x6f, 0x5b, 0x4b, 0x40, 0x39, 0x37, 0x38,
  142. 0x3d, 0x43, 0x4a, 0x50, 0x54, 0x56, 0x55, 0x52,
  143. 0x4d, 0x48, 0x42, 0x3f, 0x3e, 0x41, 0x49, 0x56,
  144. 0x67, 0x7c, 0x93, 0xab, 0xc3, 0xd9, 0xea, 0xf6,
  145. 0xfc, 0xfb, 0xf4, 0xe7, 0xd5, 0xc0, 0xaa, 0x94,
  146. 0x80, 0x71, 0x64, 0x5d, 0x5a, 0x5c, 0x61, 0x68,
  147. 0x70, 0x77, 0x7d, 0x7f, 0x7f, 0x7b, 0x74, 0x6b,
  148. 0x61, 0x57, 0x4e, 0x48, 0x46, 0x48, 0x4e, 0x59,
  149. 0x66, 0x75, 0x84, 0x93, 0x9f, 0xa7, 0xab, 0xaa,
  150. 0xa4, 0x99, 0x8b, 0x7b, 0x6a, 0x5b, 0x4e, 0x46,
  151. 0x43, 0x45, 0x4d, 0x5a, 0x6b, 0x7f, 0x92, 0xa6,
  152. 0xb8, 0xc5, 0xcf, 0xd3, 0xd2, 0xcd, 0xc4, 0xb9,
  153. 0xad, 0xa1, 0x96, 0x8e, 0x89, 0x87, 0x87, 0x8a,
  154. 0x8d, 0x91, 0x92, 0x91, 0x8c, 0x84, 0x78, 0x68,
  155. 0x55, 0x41, 0x2e, 0x1c, 0x0e, 0x05, 0x01, 0x05,
  156. 0x0f, 0x1f, 0x34, 0x4d, 0x68, 0x81, 0x9a, 0xb0,
  157. 0xc1, 0xcd, 0xd3, 0xd3, 0xd0, 0xc8, 0xbf, 0xb5,
  158. 0xab, 0xa4, 0x9f, 0x9c, 0x9d, 0xa0, 0xa5, 0xaa,
  159. 0xae, 0xb1, 0xb0, 0xab, 0xa3, 0x96, 0x87, 0x76,
  160. 0x63, 0x51, 0x42, 0x36, 0x2f, 0x2d, 0x31, 0x3a,
  161. 0x48, 0x59, 0x6b, 0x7e, 0x8e, 0x9c, 0xa6, 0xaa,
  162. 0xa9, 0xa3, 0x98, 0x8a, 0x7b, 0x6c, 0x5d, 0x52,
  163. 0x4a, 0x48, 0x4a, 0x50, 0x5a, 0x67, 0x75, 0x82
  164. };
  165. // waveform shape table for HF peaks, formants 6,7,8
  166. #define N_WAVEMULT 128
  167. static int wavemult_offset = 0;
  168. static int wavemult_max = 0;
  169. // the presets are for 22050 Hz sample rate.
  170. // A different rate will need to recalculate the presets in WavegenInit()
  171. static unsigned char wavemult[N_WAVEMULT] = {
  172. 0, 0, 0, 2, 3, 5, 8, 11, 14, 18, 22, 27, 32, 37, 43, 49,
  173. 55, 62, 69, 76, 83, 90, 98, 105, 113, 121, 128, 136, 144, 152, 159, 166,
  174. 174, 181, 188, 194, 201, 207, 213, 218, 224, 228, 233, 237, 240, 244, 246, 249,
  175. 251, 252, 253, 253, 253, 253, 252, 251, 249, 246, 244, 240, 237, 233, 228, 224,
  176. 218, 213, 207, 201, 194, 188, 181, 174, 166, 159, 152, 144, 136, 128, 121, 113,
  177. 105, 98, 90, 83, 76, 69, 62, 55, 49, 43, 37, 32, 27, 22, 18, 14,
  178. 11, 8, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  179. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  180. };
  181. // set from y = pow(2,x) * 128, x=-1 to 1
  182. unsigned char pitch_adjust_tab[MAX_PITCH_VALUE+1] = {
  183. 64, 65, 66, 67, 68, 69, 70, 71,
  184. 72, 73, 74, 75, 76, 77, 78, 79,
  185. 80, 81, 82, 83, 84, 86, 87, 88,
  186. 89, 91, 92, 93, 94, 96, 97, 98,
  187. 100, 101, 103, 104, 105, 107, 108, 110,
  188. 111, 113, 115, 116, 118, 119, 121, 123,
  189. 124, 126, 128, 130, 132, 133, 135, 137,
  190. 139, 141, 143, 145, 147, 149, 151, 153,
  191. 155, 158, 160, 162, 164, 167, 169, 171,
  192. 174, 176, 179, 181, 184, 186, 189, 191,
  193. 194, 197, 199, 202, 205, 208, 211, 214,
  194. 217, 220, 223, 226, 229, 232, 236, 239,
  195. 242, 246, 249, 252, 254, 255
  196. };
  197. void WcmdqStop()
  198. {
  199. wcmdq_head = 0;
  200. wcmdq_tail = 0;
  201. #if HAVE_SONIC_H
  202. if (sonicSpeedupStream != NULL) {
  203. sonicDestroyStream(sonicSpeedupStream);
  204. sonicSpeedupStream = NULL;
  205. }
  206. #endif
  207. if (mbrola_name[0] != 0)
  208. MbrolaReset();
  209. }
  210. int WcmdqFree()
  211. {
  212. int i;
  213. i = wcmdq_head - wcmdq_tail;
  214. if (i <= 0) i += N_WCMDQ;
  215. return i;
  216. }
  217. int WcmdqUsed()
  218. {
  219. return N_WCMDQ - WcmdqFree();
  220. }
  221. void WcmdqInc()
  222. {
  223. wcmdq_tail++;
  224. if (wcmdq_tail >= N_WCMDQ) wcmdq_tail = 0;
  225. }
  226. static void WcmdqIncHead()
  227. {
  228. wcmdq_head++;
  229. if (wcmdq_head >= N_WCMDQ) wcmdq_head = 0;
  230. }
  231. #define PEAKSHAPEW 256
  232. unsigned char pk_shape1[PEAKSHAPEW+1] = {
  233. 255, 254, 254, 254, 254, 254, 253, 253, 252, 251, 251, 250, 249, 248, 247, 246,
  234. 245, 244, 242, 241, 239, 238, 236, 234, 233, 231, 229, 227, 225, 223, 220, 218,
  235. 216, 213, 211, 209, 207, 205, 203, 201, 199, 197, 195, 193, 191, 189, 187, 185,
  236. 183, 180, 178, 176, 173, 171, 169, 166, 164, 161, 159, 156, 154, 151, 148, 146,
  237. 143, 140, 138, 135, 132, 129, 126, 123, 120, 118, 115, 112, 108, 105, 102, 99,
  238. 96, 95, 93, 91, 90, 88, 86, 85, 83, 82, 80, 79, 77, 76, 74, 73,
  239. 72, 70, 69, 68, 67, 66, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55,
  240. 55, 54, 53, 52, 52, 51, 50, 50, 49, 48, 48, 47, 47, 46, 46, 46,
  241. 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 44, 43,
  242. 42, 42, 41, 40, 40, 39, 38, 38, 37, 36, 36, 35, 35, 34, 33, 33,
  243. 32, 32, 31, 30, 30, 29, 29, 28, 28, 27, 26, 26, 25, 25, 24, 24,
  244. 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16,
  245. 16, 15, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10,
  246. 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5,
  247. 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2,
  248. 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  249. 0
  250. };
  251. static unsigned char pk_shape2[PEAKSHAPEW+1] = {
  252. 255, 254, 254, 254, 254, 254, 254, 254, 254, 254, 253, 253, 253, 253, 252, 252,
  253. 252, 251, 251, 251, 250, 250, 249, 249, 248, 248, 247, 247, 246, 245, 245, 244,
  254. 243, 243, 242, 241, 239, 237, 235, 233, 231, 229, 227, 225, 223, 221, 218, 216,
  255. 213, 211, 208, 205, 203, 200, 197, 194, 191, 187, 184, 181, 178, 174, 171, 167,
  256. 163, 160, 156, 152, 148, 144, 140, 136, 132, 127, 123, 119, 114, 110, 105, 100,
  257. 96, 94, 91, 88, 86, 83, 81, 78, 76, 74, 71, 69, 66, 64, 62, 60,
  258. 57, 55, 53, 51, 49, 47, 44, 42, 40, 38, 36, 34, 32, 30, 29, 27,
  259. 25, 23, 21, 19, 18, 16, 14, 12, 11, 9, 7, 6, 4, 3, 1, 0,
  260. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  261. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  262. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  263. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  264. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  265. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  266. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  267. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  268. 0
  269. };
  270. static unsigned char *pk_shape;
  271. void WavegenInit(int rate, int wavemult_fact)
  272. {
  273. int ix;
  274. double x;
  275. if (wavemult_fact == 0)
  276. wavemult_fact = 60; // default
  277. wvoice = NULL;
  278. samplerate = samplerate_native = rate;
  279. PHASE_INC_FACTOR = 0x8000000 / samplerate; // assumes pitch is Hz*32
  280. Flutter_inc = (64 * samplerate)/rate;
  281. samplecount = 0;
  282. nsamples = 0;
  283. wavephase = 0x7fffffff;
  284. max_hval = 0;
  285. wdata.amplitude = 32;
  286. wdata.amplitude_fmt = 100;
  287. for (ix = 0; ix < N_EMBEDDED_VALUES; ix++)
  288. embedded_value[ix] = embedded_default[ix];
  289. // set up window to generate a spread of harmonics from a
  290. // single peak for HF peaks
  291. wavemult_max = (samplerate * wavemult_fact)/(256 * 50);
  292. if (wavemult_max > N_WAVEMULT) wavemult_max = N_WAVEMULT;
  293. wavemult_offset = wavemult_max/2;
  294. if (samplerate != 22050) {
  295. // wavemult table has preset values for 22050 Hz, we only need to
  296. // recalculate them if we have a different sample rate
  297. for (ix = 0; ix < wavemult_max; ix++) {
  298. x = 127*(1.0 - cos((M_PI*2)*ix/wavemult_max));
  299. wavemult[ix] = (int)x;
  300. }
  301. }
  302. pk_shape = pk_shape2;
  303. #ifdef INCLUDE_KLATT
  304. KlattInit();
  305. #endif
  306. }
  307. int GetAmplitude(void)
  308. {
  309. int amp;
  310. // normal, none, reduced, moderate, strong
  311. static const unsigned char amp_emphasis[5] = { 16, 16, 10, 16, 22 };
  312. amp = (embedded_value[EMBED_A])*55/100;
  313. general_amplitude = amp * amp_emphasis[embedded_value[EMBED_F]] / 16;
  314. return general_amplitude;
  315. }
  316. static void WavegenSetEcho(void)
  317. {
  318. if (wvoice == NULL)
  319. return;
  320. int delay;
  321. int amp;
  322. voicing = wvoice->voicing;
  323. delay = wvoice->echo_delay;
  324. amp = wvoice->echo_amp;
  325. if (delay >= N_ECHO_BUF)
  326. delay = N_ECHO_BUF-1;
  327. if (amp > 100)
  328. amp = 100;
  329. memset(echo_buf, 0, sizeof(echo_buf));
  330. echo_tail = 0;
  331. if (embedded_value[EMBED_H] > 0) {
  332. // set echo from an embedded command in the text
  333. amp = embedded_value[EMBED_H];
  334. delay = 130;
  335. }
  336. if (delay == 0)
  337. amp = 0;
  338. echo_head = (delay * samplerate)/1000;
  339. echo_length = echo_head; // ensure completion of echo at the end of speech. Use 1 delay period?
  340. if (amp == 0)
  341. echo_length = 0;
  342. if (amp > 20)
  343. echo_length = echo_head * 2; // perhaps allow 2 echo periods if the echo is loud.
  344. // echo_amp units are 1/256ths of the amplitude of the original sound.
  345. echo_amp = amp;
  346. // compensate (partially) for increase in amplitude due to echo
  347. general_amplitude = GetAmplitude();
  348. general_amplitude = ((general_amplitude * (500-amp))/500);
  349. }
  350. int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int *htab, int control)
  351. {
  352. if (wvoice == NULL)
  353. return 1;
  354. // Calculate the amplitude of each harmonics from the formants
  355. // Only for formants 0 to 5
  356. // control 0=initial call, 1=every 64 cycles
  357. // pitch and freqs are Hz<<16
  358. int f;
  359. wavegen_peaks_t *p;
  360. int fp; // centre freq of peak
  361. int fhi; // high freq of peak
  362. int h; // harmonic number
  363. int pk;
  364. int hmax;
  365. int hmax_samplerate; // highest harmonic allowed for the samplerate
  366. int x;
  367. int ix;
  368. int h1;
  369. // initialise as much of *out as we will need
  370. hmax = (peaks[wvoice->n_harmonic_peaks].freq + peaks[wvoice->n_harmonic_peaks].right)/pitch;
  371. if (hmax >= MAX_HARMONIC)
  372. hmax = MAX_HARMONIC-1;
  373. // restrict highest harmonic to half the samplerate
  374. hmax_samplerate = (((samplerate * 19)/40) << 16)/pitch; // only 95% of Nyquist freq
  375. if (hmax > hmax_samplerate)
  376. hmax = hmax_samplerate;
  377. for (h = 0; h <= hmax; h++)
  378. htab[h] = 0;
  379. for (pk = 0; pk <= wvoice->n_harmonic_peaks; pk++) {
  380. p = &peaks[pk];
  381. if ((p->height == 0) || (fp = p->freq) == 0)
  382. continue;
  383. fhi = p->freq + p->right;
  384. h = ((p->freq - p->left) / pitch) + 1;
  385. if (h <= 0) h = 1;
  386. for (f = pitch*h; f < fp; f += pitch)
  387. htab[h++] += pk_shape[(fp-f)/(p->left>>8)] * p->height;
  388. for (; f < fhi; f += pitch)
  389. htab[h++] += pk_shape[(f-fp)/(p->right>>8)] * p->height;
  390. }
  391. int y;
  392. int h2;
  393. // increase bass
  394. y = peaks[1].height * 10; // addition as a multiple of 1/256s
  395. h2 = (1000<<16)/pitch; // decrease until 1000Hz
  396. if (h2 > 0) {
  397. x = y/h2;
  398. h = 1;
  399. while (y > 0) {
  400. htab[h++] += y;
  401. y -= x;
  402. }
  403. }
  404. // find the nearest harmonic for HF peaks where we don't use shape
  405. for (; pk < N_PEAKS; pk++) {
  406. x = peaks[pk].height >> 14;
  407. peak_height[pk] = (x * x * 5)/2;
  408. // find the nearest harmonic for HF peaks where we don't use shape
  409. if (control == 0) {
  410. // set this initially, but make changes only at the quiet point
  411. peak_harmonic[pk] = peaks[pk].freq / pitch;
  412. }
  413. // only use harmonics up to half the samplerate
  414. if (peak_harmonic[pk] >= hmax_samplerate)
  415. peak_height[pk] = 0;
  416. }
  417. // convert from the square-rooted values
  418. f = 0;
  419. for (h = 0; h <= hmax; h++, f += pitch) {
  420. x = htab[h] >> 15;
  421. htab[h] = (x * x) >> 8;
  422. if ((ix = (f >> 19)) < N_TONE_ADJUST)
  423. htab[h] = (htab[h] * wvoice->tone_adjust[ix]) >> 13; // index tone_adjust with Hz/8
  424. }
  425. // adjust the amplitude of the first harmonic, affects tonal quality
  426. h1 = htab[1] * option_harmonic1;
  427. htab[1] = h1/8;
  428. // calc intermediate increments of LF harmonics
  429. if (control & 1) {
  430. for (h = 1; h < N_LOWHARM; h++)
  431. harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
  432. }
  433. return hmax; // highest harmonic number
  434. }
  435. static void AdvanceParameters()
  436. {
  437. // Called every 64 samples to increment the formant freq, height, and widths
  438. if (wvoice == NULL)
  439. return;
  440. int x;
  441. int ix;
  442. static int Flutter_ix = 0;
  443. // advance the pitch
  444. wdata.pitch_ix += wdata.pitch_inc;
  445. if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
  446. x = wdata.pitch_env[ix] * wdata.pitch_range;
  447. wdata.pitch = (x>>8) + wdata.pitch_base;
  448. amp_ix += amp_inc;
  449. /* add pitch flutter */
  450. if (Flutter_ix >= (N_FLUTTER*64))
  451. Flutter_ix = 0;
  452. x = ((int)(Flutter_tab[Flutter_ix >> 6])-0x80) * flutter_amp;
  453. Flutter_ix += Flutter_inc;
  454. wdata.pitch += x;
  455. if (wdata.pitch < 102400)
  456. wdata.pitch = 102400; // min pitch, 25 Hz (25 << 12)
  457. if (samplecount == samplecount_start)
  458. return;
  459. for (ix = 0; ix <= wvoice->n_harmonic_peaks; ix++) {
  460. peaks[ix].freq1 += peaks[ix].freq_inc;
  461. peaks[ix].freq = (int)peaks[ix].freq1;
  462. peaks[ix].height1 += peaks[ix].height_inc;
  463. if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
  464. peaks[ix].height = 0;
  465. peaks[ix].left1 += peaks[ix].left_inc;
  466. peaks[ix].left = (int)peaks[ix].left1;
  467. if (ix < 3) {
  468. peaks[ix].right1 += peaks[ix].right_inc;
  469. peaks[ix].right = (int)peaks[ix].right1;
  470. } else
  471. peaks[ix].right = peaks[ix].left;
  472. }
  473. for (; ix < 8; ix++) {
  474. // formants 6,7,8 don't have a width parameter
  475. if (ix < 7) {
  476. peaks[ix].freq1 += peaks[ix].freq_inc;
  477. peaks[ix].freq = (int)peaks[ix].freq1;
  478. }
  479. peaks[ix].height1 += peaks[ix].height_inc;
  480. if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
  481. peaks[ix].height = 0;
  482. }
  483. }
  484. static double resonator(RESONATOR *r, double input)
  485. {
  486. double x;
  487. x = r->a * input + r->b * r->x1 + r->c * r->x2;
  488. r->x2 = r->x1;
  489. r->x1 = x;
  490. return x;
  491. }
  492. static void setresonator(RESONATOR *rp, int freq, int bwidth, int init)
  493. {
  494. // freq Frequency of resonator in Hz
  495. // bwidth Bandwidth of resonator in Hz
  496. // init Initialize internal data
  497. double x;
  498. double arg;
  499. if (init) {
  500. rp->x1 = 0;
  501. rp->x2 = 0;
  502. }
  503. arg = minus_pi_t * bwidth;
  504. x = exp(arg);
  505. rp->c = -(x * x);
  506. arg = two_pi_t * freq;
  507. rp->b = x * cos(arg) * 2.0;
  508. rp->a = 1.0 - rp->b - rp->c;
  509. }
  510. void InitBreath(void)
  511. {
  512. int ix;
  513. minus_pi_t = -M_PI / samplerate;
  514. two_pi_t = -2.0 * minus_pi_t;
  515. for (ix = 0; ix < N_PEAKS; ix++)
  516. setresonator(&rbreath[ix], 2000, 200, 1);
  517. }
  518. static void SetBreath()
  519. {
  520. int pk;
  521. if (wvoice == NULL || wvoice->breath[0] == 0)
  522. return;
  523. for (pk = 1; pk < N_PEAKS; pk++) {
  524. if (wvoice->breath[pk] != 0) {
  525. // breath[0] indicates that some breath formants are needed
  526. // set the freq from the current ynthesis formant and the width from the voice data
  527. setresonator(&rbreath[pk], peaks[pk].freq >> 16, wvoice->breathw[pk], 0);
  528. }
  529. }
  530. }
  531. static int ApplyBreath(void)
  532. {
  533. if (wvoice == NULL)
  534. return 0;
  535. int value = 0;
  536. int noise;
  537. int ix;
  538. int amp;
  539. // use two random numbers, for alternate formants
  540. noise = (rand() & 0x3fff) - 0x2000;
  541. for (ix = 1; ix < N_PEAKS; ix++) {
  542. if ((amp = wvoice->breath[ix]) != 0) {
  543. amp *= (peaks[ix].height >> 14);
  544. value += (int)resonator(&rbreath[ix], noise) * amp;
  545. }
  546. }
  547. return value;
  548. }
  549. int Wavegen()
  550. {
  551. if (wvoice == NULL)
  552. return 0;
  553. unsigned short waveph;
  554. unsigned short theta;
  555. int total;
  556. int h;
  557. int ix;
  558. int z, z1, z2;
  559. int echo;
  560. int ov;
  561. static int maxh, maxh2;
  562. int pk;
  563. signed char c;
  564. int sample;
  565. int amp;
  566. int modn_amp = 1, modn_period;
  567. static int agc = 256;
  568. static int h_switch_sign = 0;
  569. static int cycle_count = 0;
  570. static int amplitude2 = 0; // adjusted for pitch
  571. // continue until the output buffer is full, or
  572. // the required number of samples have been produced
  573. for (;;) {
  574. if ((end_wave == 0) && (samplecount == nsamples))
  575. return 0;
  576. if ((samplecount & 0x3f) == 0) {
  577. // every 64 samples, adjust the parameters
  578. if (samplecount == 0) {
  579. hswitch = 0;
  580. harmspect = hspect[0];
  581. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);
  582. // adjust amplitude to compensate for fewer harmonics at higher pitch
  583. amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);
  584. // switch sign of harmonics above about 900Hz, to reduce max peak amplitude
  585. h_switch_sign = 890 / (wdata.pitch >> 12);
  586. } else
  587. AdvanceParameters();
  588. // pitch is Hz<<12
  589. phaseinc = (wdata.pitch>>7) * PHASE_INC_FACTOR;
  590. cycle_samples = samplerate/(wdata.pitch >> 12); // sr/(pitch*2)
  591. hf_factor = wdata.pitch >> 11;
  592. maxh = maxh2;
  593. harmspect = hspect[hswitch];
  594. hswitch ^= 1;
  595. maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[hswitch], 1);
  596. SetBreath();
  597. } else if ((samplecount & 0x07) == 0) {
  598. for (h = 1; h < N_LOWHARM && h <= maxh2 && h <= maxh; h++)
  599. harmspect[h] += harm_inc[h];
  600. // bring automctic gain control back towards unity
  601. if (agc < 256) agc++;
  602. }
  603. samplecount++;
  604. if (wavephase > 0) {
  605. wavephase += phaseinc;
  606. if (wavephase < 0) {
  607. // sign has changed, reached a quiet point in the waveform
  608. cbytes = wavemult_offset - (cycle_samples)/2;
  609. if (samplecount > nsamples)
  610. return 0;
  611. cycle_count++;
  612. for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
  613. // find the nearest harmonic for HF peaks where we don't use shape
  614. peak_harmonic[pk] = ((peaks[pk].freq / (wdata.pitch*8)) + 1) / 2;
  615. }
  616. // adjust amplitude to compensate for fewer harmonics at higher pitch
  617. amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);
  618. if (glottal_flag > 0) {
  619. if (glottal_flag == 3) {
  620. if ((nsamples-samplecount) < (cycle_samples*2)) {
  621. // Vowel before glottal-stop.
  622. // This is the start of the penultimate cycle, reduce its amplitude
  623. glottal_flag = 2;
  624. amplitude2 = (amplitude2 * glottal_reduce)/256;
  625. }
  626. } else if (glottal_flag == 4) {
  627. // Vowel following a glottal-stop.
  628. // This is the start of the second cycle, reduce its amplitude
  629. glottal_flag = 2;
  630. amplitude2 = (amplitude2 * glottal_reduce)/256;
  631. } else
  632. glottal_flag--;
  633. }
  634. if (amplitude_env != NULL) {
  635. // amplitude envelope is only used for creaky voice effect on certain vowels/tones
  636. if ((ix = amp_ix>>8) > 127) ix = 127;
  637. amp = amplitude_env[ix];
  638. amplitude2 = (amplitude2 * amp)/128;
  639. }
  640. // introduce roughness into the sound by reducing the amplitude of
  641. modn_period = 0;
  642. if (voice->roughness < N_ROUGHNESS) {
  643. modn_period = modulation_tab[voice->roughness][modulation_type];
  644. modn_amp = modn_period & 0xf;
  645. modn_period = modn_period >> 4;
  646. }
  647. if (modn_period != 0) {
  648. if (modn_period == 0xf) {
  649. // just once */
  650. amplitude2 = (amplitude2 * modn_amp)/16;
  651. modulation_type = 0;
  652. } else {
  653. // reduce amplitude every [modn_period} cycles
  654. if ((cycle_count % modn_period) == 0)
  655. amplitude2 = (amplitude2 * modn_amp)/16;
  656. }
  657. }
  658. }
  659. } else
  660. wavephase += phaseinc;
  661. waveph = (unsigned short)(wavephase >> 16);
  662. total = 0;
  663. // apply HF peaks, formants 6,7,8
  664. // add a single harmonic and then spread this my multiplying by a
  665. // window. This is to reduce the processing power needed to add the
  666. // higher frequence harmonics.
  667. cbytes++;
  668. if (cbytes >= 0 && cbytes < wavemult_max) {
  669. for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
  670. theta = peak_harmonic[pk] * waveph;
  671. total += (long)sin_tab[theta >> 5] * peak_height[pk];
  672. }
  673. // spread the peaks by multiplying by a window
  674. total = (long)(total / hf_factor) * wavemult[cbytes];
  675. }
  676. // apply main peaks, formants 0 to 5
  677. #ifdef USE_ASSEMBLER_1
  678. // use an optimised routine for this loop, if available
  679. total += AddSineWaves(waveph, h_switch_sign, maxh, harmspect); // call an assembler code routine
  680. #else
  681. theta = waveph;
  682. for (h = 1; h <= h_switch_sign; h++) {
  683. total += ((int)sin_tab[theta >> 5] * harmspect[h]);
  684. theta += waveph;
  685. }
  686. while (h <= maxh) {
  687. total -= ((int)sin_tab[theta >> 5] * harmspect[h]);
  688. theta += waveph;
  689. h++;
  690. }
  691. #endif
  692. if (voicing != 64)
  693. total = (total >> 6) * voicing;
  694. if (wvoice->breath[0])
  695. total += ApplyBreath();
  696. // mix with sampled wave if required
  697. z2 = 0;
  698. if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
  699. if (wdata.mix_wave_scale == 0) {
  700. // a 16 bit sample
  701. c = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset+1];
  702. sample = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset] + (c * 256);
  703. wdata.mix_wavefile_ix += 2;
  704. } else {
  705. // a 8 bit sample, scaled
  706. sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_offset+wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
  707. }
  708. z2 = (sample * wdata.amplitude_v) >> 10;
  709. z2 = (z2 * wdata.mix_wave_amp)/32;
  710. if ((wdata.mix_wavefile_ix + wdata.mix_wavefile_offset) >= wdata.mix_wavefile_max) // reached the end of available WAV data
  711. wdata.mix_wavefile_offset -= (wdata.mix_wavefile_max*3)/4;
  712. }
  713. z1 = z2 + (((total>>8) * amplitude2) >> 13);
  714. echo = (echo_buf[echo_tail++] * echo_amp);
  715. z1 += echo >> 8;
  716. if (echo_tail >= N_ECHO_BUF)
  717. echo_tail = 0;
  718. z = (z1 * agc) >> 8;
  719. // check for overflow, 16bit signed samples
  720. if (z >= 32768) {
  721. ov = 8388608/z1 - 1; // 8388608 is 2^23, i.e. max value * 256
  722. if (ov < agc) agc = ov; // set agc to number of 1/256ths to multiply the sample by
  723. z = (z1 * agc) >> 8; // reduce sample by agc value to prevent overflow
  724. } else if (z <= -32768) {
  725. ov = -8388608/z1 - 1;
  726. if (ov < agc) agc = ov;
  727. z = (z1 * agc) >> 8;
  728. }
  729. *out_ptr++ = z;
  730. *out_ptr++ = z >> 8;
  731. echo_buf[echo_head++] = z;
  732. if (echo_head >= N_ECHO_BUF)
  733. echo_head = 0;
  734. if (out_ptr >= out_end)
  735. return 1;
  736. }
  737. }
  738. static int PlaySilence(int length, int resume)
  739. {
  740. static int n_samples;
  741. int value = 0;
  742. nsamples = 0;
  743. samplecount = 0;
  744. wavephase = 0x7fffffff;
  745. if (length == 0)
  746. return 0;
  747. if (resume == 0)
  748. n_samples = length;
  749. while (n_samples-- > 0) {
  750. value = (echo_buf[echo_tail++] * echo_amp) >> 8;
  751. if (echo_tail >= N_ECHO_BUF)
  752. echo_tail = 0;
  753. *out_ptr++ = value;
  754. *out_ptr++ = value >> 8;
  755. echo_buf[echo_head++] = value;
  756. if (echo_head >= N_ECHO_BUF)
  757. echo_head = 0;
  758. if (out_ptr >= out_end)
  759. return 1;
  760. }
  761. return 0;
  762. }
  763. static int PlayWave(int length, int resume, unsigned char *data, int scale, int amp)
  764. {
  765. static int n_samples;
  766. static int ix = 0;
  767. int value;
  768. signed char c;
  769. if (resume == 0) {
  770. n_samples = length;
  771. ix = 0;
  772. }
  773. nsamples = 0;
  774. samplecount = 0;
  775. while (n_samples-- > 0) {
  776. if (scale == 0) {
  777. // 16 bits data
  778. c = data[ix+1];
  779. value = data[ix] + (c * 256);
  780. ix += 2;
  781. } else {
  782. // 8 bit data, shift by the specified scale factor
  783. value = (signed char)data[ix++] * scale;
  784. }
  785. value *= (consonant_amp * general_amplitude); // reduce strength of consonant
  786. value = value >> 10;
  787. value = (value * amp)/32;
  788. value += ((echo_buf[echo_tail++] * echo_amp) >> 8);
  789. if (value > 32767)
  790. value = 32768;
  791. else if (value < -32768)
  792. value = -32768;
  793. if (echo_tail >= N_ECHO_BUF)
  794. echo_tail = 0;
  795. out_ptr[0] = value;
  796. out_ptr[1] = value >> 8;
  797. out_ptr += 2;
  798. echo_buf[echo_head++] = (value*3)/4;
  799. if (echo_head >= N_ECHO_BUF)
  800. echo_head = 0;
  801. if (out_ptr >= out_end)
  802. return 1;
  803. }
  804. return 0;
  805. }
  806. static int SetWithRange0(int value, int max)
  807. {
  808. if (value < 0)
  809. return 0;
  810. if (value > max)
  811. return max;
  812. return value;
  813. }
  814. static void SetPitchFormants()
  815. {
  816. if (wvoice == NULL)
  817. return;
  818. int ix;
  819. int factor = 256;
  820. int pitch_value;
  821. // adjust formants to give better results for a different voice pitch
  822. if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  823. pitch_value = MAX_PITCH_VALUE;
  824. if (pitch_value > 50) {
  825. // only adjust if the pitch is higher than normal
  826. factor = 256 + (25 * (pitch_value - 50))/50;
  827. }
  828. for (ix = 0; ix <= 5; ix++)
  829. wvoice->freq[ix] = (wvoice->freq2[ix] * factor)/256;
  830. factor = embedded_value[EMBED_T]*3;
  831. wvoice->height[0] = (wvoice->height2[0] * (256 - factor*2))/256;
  832. wvoice->height[1] = (wvoice->height2[1] * (256 - factor))/256;
  833. }
  834. void SetEmbedded(int control, int value)
  835. {
  836. // there was an embedded command in the text at this point
  837. int sign = 0;
  838. int command;
  839. command = control & 0x1f;
  840. if ((control & 0x60) == 0x60)
  841. sign = -1;
  842. else if ((control & 0x60) == 0x40)
  843. sign = 1;
  844. if (command < N_EMBEDDED_VALUES) {
  845. if (sign == 0)
  846. embedded_value[command] = value;
  847. else
  848. embedded_value[command] += (value * sign);
  849. embedded_value[command] = SetWithRange0(embedded_value[command], embedded_max[command]);
  850. }
  851. switch (command)
  852. {
  853. case EMBED_T:
  854. WavegenSetEcho(); // and drop through to case P
  855. case EMBED_P:
  856. SetPitchFormants();
  857. break;
  858. case EMBED_A: // amplitude
  859. general_amplitude = GetAmplitude();
  860. break;
  861. case EMBED_F: // emphasis
  862. general_amplitude = GetAmplitude();
  863. break;
  864. case EMBED_H:
  865. WavegenSetEcho();
  866. break;
  867. }
  868. }
  869. void WavegenSetVoice(voice_t *v)
  870. {
  871. static voice_t v2;
  872. memcpy(&v2, v, sizeof(v2));
  873. wvoice = &v2;
  874. if (v->peak_shape == 0)
  875. pk_shape = pk_shape1;
  876. else
  877. pk_shape = pk_shape2;
  878. consonant_amp = (v->consonant_amp * 26) /100;
  879. if (samplerate <= 11000) {
  880. consonant_amp = consonant_amp*2; // emphasize consonants at low sample rates
  881. option_harmonic1 = 6;
  882. }
  883. WavegenSetEcho();
  884. SetPitchFormants();
  885. MarkerEvent(espeakEVENT_SAMPLERATE, 0, wvoice->samplerate, 0, out_ptr);
  886. }
  887. static void SetAmplitude(int length, unsigned char *amp_env, int value)
  888. {
  889. if (wvoice == NULL)
  890. return;
  891. amp_ix = 0;
  892. if (length == 0)
  893. amp_inc = 0;
  894. else
  895. amp_inc = (256 * ENV_LEN * STEPSIZE)/length;
  896. wdata.amplitude = (value * general_amplitude)/16;
  897. wdata.amplitude_v = (wdata.amplitude * wvoice->consonant_ampv * 15)/100; // for wave mixed with voiced sounds
  898. amplitude_env = amp_env;
  899. }
  900. void SetPitch2(voice_t *voice, int pitch1, int pitch2, int *pitch_base, int *pitch_range)
  901. {
  902. int x;
  903. int base;
  904. int range;
  905. int pitch_value;
  906. if (pitch1 > pitch2) {
  907. x = pitch1; // swap values
  908. pitch1 = pitch2;
  909. pitch2 = x;
  910. }
  911. if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
  912. pitch_value = MAX_PITCH_VALUE;
  913. pitch_value -= embedded_value[EMBED_T]; // adjust tone for announcing punctuation
  914. if (pitch_value < 0)
  915. pitch_value = 0;
  916. base = (voice->pitch_base * pitch_adjust_tab[pitch_value])/128;
  917. range = (voice->pitch_range * embedded_value[EMBED_R])/50;
  918. // compensate for change in pitch when the range is narrowed or widened
  919. base -= (range - voice->pitch_range)*18;
  920. *pitch_base = base + (pitch1 * range)/2;
  921. *pitch_range = base + (pitch2 * range)/2 - *pitch_base;
  922. }
  923. void SetPitch(int length, unsigned char *env, int pitch1, int pitch2)
  924. {
  925. if (wvoice == NULL)
  926. return;
  927. // length in samples
  928. if ((wdata.pitch_env = env) == NULL)
  929. wdata.pitch_env = env_fall; // default
  930. wdata.pitch_ix = 0;
  931. if (length == 0)
  932. wdata.pitch_inc = 0;
  933. else
  934. wdata.pitch_inc = (256 * ENV_LEN * STEPSIZE)/length;
  935. SetPitch2(wvoice, pitch1, pitch2, &wdata.pitch_base, &wdata.pitch_range);
  936. // set initial pitch
  937. wdata.pitch = ((wdata.pitch_env[0] * wdata.pitch_range) >>8) + wdata.pitch_base; // Hz << 12
  938. flutter_amp = wvoice->flutter;
  939. }
  940. void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v)
  941. {
  942. if (wvoice == NULL || v == NULL)
  943. return;
  944. int ix;
  945. DOUBLEX next;
  946. int length2;
  947. int length4;
  948. int qix;
  949. int cmd;
  950. static int glottal_reduce_tab1[4] = { 0x30, 0x30, 0x40, 0x50 }; // vowel before [?], amp * 1/256
  951. static int glottal_reduce_tab2[4] = { 0x90, 0xa0, 0xb0, 0xc0 }; // vowel after [?], amp * 1/256
  952. harm_sqrt_n = 0;
  953. end_wave = 1;
  954. // any additional information in the param1 ?
  955. modulation_type = modn & 0xff;
  956. glottal_flag = 0;
  957. if (modn & 0x400) {
  958. glottal_flag = 3; // before a glottal stop
  959. glottal_reduce = glottal_reduce_tab1[(modn >> 8) & 3];
  960. }
  961. if (modn & 0x800) {
  962. glottal_flag = 4; // after a glottal stop
  963. glottal_reduce = glottal_reduce_tab2[(modn >> 8) & 3];
  964. }
  965. for (qix = wcmdq_head+1;; qix++) {
  966. if (qix >= N_WCMDQ) qix = 0;
  967. if (qix == wcmdq_tail) break;
  968. cmd = wcmdq[qix][0];
  969. if (cmd == WCMD_SPECT) {
  970. end_wave = 0; // next wave generation is from another spectrum
  971. break;
  972. }
  973. if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
  974. break; // next is not from spectrum, so continue until end of wave cycle
  975. }
  976. // round the length to a multiple of the stepsize
  977. length2 = (length + STEPSIZE/2) & ~0x3f;
  978. if (length2 == 0)
  979. length2 = STEPSIZE;
  980. // add this length to any left over from the previous synth
  981. samplecount_start = samplecount;
  982. nsamples += length2;
  983. length4 = length2/4;
  984. peaks[7].freq = (7800 * v->freq[7] + v->freqadd[7]*256) << 8;
  985. peaks[8].freq = (9000 * v->freq[8] + v->freqadd[8]*256) << 8;
  986. for (ix = 0; ix < 8; ix++) {
  987. if (ix < 7) {
  988. peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  989. peaks[ix].freq = (int)peaks[ix].freq1;
  990. next = (fr2->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
  991. peaks[ix].freq_inc = ((next - peaks[ix].freq1) * (STEPSIZE/4)) / length4; // lower headroom for fixed point math
  992. }
  993. peaks[ix].height1 = (fr1->fheight[ix] * v->height[ix]) << 6;
  994. peaks[ix].height = (int)peaks[ix].height1;
  995. next = (fr2->fheight[ix] * v->height[ix]) << 6;
  996. peaks[ix].height_inc = ((next - peaks[ix].height1) * STEPSIZE) / length2;
  997. if ((ix <= 5) && (ix <= wvoice->n_harmonic_peaks)) {
  998. peaks[ix].left1 = (fr1->fwidth[ix] * v->width[ix]) << 10;
  999. peaks[ix].left = (int)peaks[ix].left1;
  1000. next = (fr2->fwidth[ix] * v->width[ix]) << 10;
  1001. peaks[ix].left_inc = ((next - peaks[ix].left1) * STEPSIZE) / length2;
  1002. if (ix < 3) {
  1003. peaks[ix].right1 = (fr1->fright[ix] * v->width[ix]) << 10;
  1004. peaks[ix].right = (int)peaks[ix].right1;
  1005. next = (fr2->fright[ix] * v->width[ix]) << 10;
  1006. peaks[ix].right_inc = ((next - peaks[ix].right1) * STEPSIZE) / length2;
  1007. } else
  1008. peaks[ix].right = peaks[ix].left;
  1009. }
  1010. }
  1011. }
  1012. static int Wavegen2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2)
  1013. {
  1014. if (resume == 0)
  1015. SetSynth(length, modulation, fr1, fr2, wvoice);
  1016. return Wavegen();
  1017. }
  1018. void Write4Bytes(FILE *f, int value)
  1019. {
  1020. // Write 4 bytes to a file, least significant first
  1021. int ix;
  1022. for (ix = 0; ix < 4; ix++) {
  1023. fputc(value & 0xff, f);
  1024. value = value >> 8;
  1025. }
  1026. }
  1027. int WavegenFill2()
  1028. {
  1029. // Pick up next wavegen commands from the queue
  1030. // return: 0 output buffer has been filled
  1031. // return: 1 input command queue is now empty
  1032. intptr_t *q;
  1033. int length;
  1034. int result;
  1035. int marker_type;
  1036. static int resume = 0;
  1037. static int echo_complete = 0;
  1038. while (out_ptr < out_end) {
  1039. if (WcmdqUsed() <= 0) {
  1040. if (echo_complete > 0) {
  1041. // continue to play silence until echo is completed
  1042. resume = PlaySilence(echo_complete, resume);
  1043. if (resume == 1)
  1044. return 0; // not yet finished
  1045. }
  1046. return 1; // queue empty, close sound channel
  1047. }
  1048. result = 0;
  1049. q = wcmdq[wcmdq_head];
  1050. length = q[1];
  1051. switch (q[0] & 0xff)
  1052. {
  1053. case WCMD_PITCH:
  1054. SetPitch(length, (unsigned char *)q[2], q[3] >> 16, q[3] & 0xffff);
  1055. break;
  1056. case WCMD_PAUSE:
  1057. if (resume == 0)
  1058. echo_complete -= length;
  1059. wdata.n_mix_wavefile = 0;
  1060. wdata.amplitude_fmt = 100;
  1061. #ifdef INCLUDE_KLATT
  1062. KlattReset(1);
  1063. #endif
  1064. result = PlaySilence(length, resume);
  1065. break;
  1066. case WCMD_WAVE:
  1067. echo_complete = echo_length;
  1068. wdata.n_mix_wavefile = 0;
  1069. #ifdef INCLUDE_KLATT
  1070. KlattReset(1);
  1071. #endif
  1072. result = PlayWave(length, resume, (unsigned char *)q[2], q[3] & 0xff, q[3] >> 8);
  1073. break;
  1074. case WCMD_WAVE2:
  1075. // wave file to be played at the same time as synthesis
  1076. wdata.mix_wave_amp = q[3] >> 8;
  1077. wdata.mix_wave_scale = q[3] & 0xff;
  1078. wdata.n_mix_wavefile = (length & 0xffff);
  1079. wdata.mix_wavefile_max = (length >> 16) & 0xffff;
  1080. if (wdata.mix_wave_scale == 0) {
  1081. wdata.n_mix_wavefile *= 2;
  1082. wdata.mix_wavefile_max *= 2;
  1083. }
  1084. wdata.mix_wavefile_ix = 0;
  1085. wdata.mix_wavefile_offset = 0;
  1086. wdata.mix_wavefile = (unsigned char *)q[2];
  1087. break;
  1088. case WCMD_SPECT2: // as WCMD_SPECT but stop any concurrent wave file
  1089. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1090. case WCMD_SPECT:
  1091. echo_complete = echo_length;
  1092. result = Wavegen2(length & 0xffff, q[1] >> 16, resume, (frame_t *)q[2], (frame_t *)q[3]);
  1093. break;
  1094. #ifdef INCLUDE_KLATT
  1095. case WCMD_KLATT2: // as WCMD_SPECT but stop any concurrent wave file
  1096. wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
  1097. case WCMD_KLATT:
  1098. echo_complete = echo_length;
  1099. result = Wavegen_Klatt2(length & 0xffff, resume, (frame_t *)q[2], (frame_t *)q[3]);
  1100. break;
  1101. #endif
  1102. case WCMD_MARKER:
  1103. marker_type = q[0] >> 8;
  1104. MarkerEvent(marker_type, q[1], q[2], q[3], out_ptr);
  1105. if (marker_type == 1) // word marker
  1106. current_source_index = q[1] & 0xffffff;
  1107. break;
  1108. case WCMD_AMPLITUDE:
  1109. SetAmplitude(length, (unsigned char *)q[2], q[3]);
  1110. break;
  1111. case WCMD_VOICE:
  1112. WavegenSetVoice((voice_t *)q[2]);
  1113. free((voice_t *)q[2]);
  1114. break;
  1115. case WCMD_EMBEDDED:
  1116. SetEmbedded(q[1], q[2]);
  1117. break;
  1118. case WCMD_MBROLA_DATA:
  1119. if (wvoice != NULL)
  1120. result = MbrolaFill(length, resume, (general_amplitude * wvoice->voicing)/64);
  1121. break;
  1122. case WCMD_FMT_AMPLITUDE:
  1123. if ((wdata.amplitude_fmt = q[1]) == 0)
  1124. wdata.amplitude_fmt = 100; // percentage, but value=0 means 100%
  1125. break;
  1126. #if HAVE_SONIC_H
  1127. case WCMD_SONIC_SPEED:
  1128. sonicSpeed = (double)q[1] / 1024;
  1129. break;
  1130. #endif
  1131. }
  1132. if (result == 0) {
  1133. WcmdqIncHead();
  1134. resume = 0;
  1135. } else
  1136. resume = 1;
  1137. }
  1138. return 0;
  1139. }
  1140. #if HAVE_SONIC_H
  1141. // Speed up the audio samples with libsonic.
  1142. static int SpeedUp(short *outbuf, int length_in, int length_out, int end_of_text)
  1143. {
  1144. if (length_in > 0) {
  1145. if (sonicSpeedupStream == NULL)
  1146. sonicSpeedupStream = sonicCreateStream(22050, 1);
  1147. if (sonicGetSpeed(sonicSpeedupStream) != sonicSpeed)
  1148. sonicSetSpeed(sonicSpeedupStream, sonicSpeed);
  1149. sonicWriteShortToStream(sonicSpeedupStream, outbuf, length_in);
  1150. }
  1151. if (sonicSpeedupStream == NULL)
  1152. return 0;
  1153. if (end_of_text)
  1154. sonicFlushStream(sonicSpeedupStream);
  1155. return sonicReadShortFromStream(sonicSpeedupStream, outbuf, length_out);
  1156. }
  1157. #endif
  1158. // Call WavegenFill2, and then speed up the output samples.
  1159. int WavegenFill()
  1160. {
  1161. int finished;
  1162. unsigned char *p_start;
  1163. p_start = out_ptr;
  1164. finished = WavegenFill2();
  1165. #if HAVE_SONIC_H
  1166. if (sonicSpeed > 1.0) {
  1167. int length;
  1168. int max_length;
  1169. max_length = (out_end - p_start);
  1170. length = 2*SpeedUp((short *)p_start, (out_ptr-p_start)/2, max_length/2, finished);
  1171. out_ptr = p_start + length;
  1172. if (length >= max_length)
  1173. finished = 0; // there may be more data to flush
  1174. }
  1175. #endif
  1176. return finished;
  1177. }