eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

wave.cpp 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /***************************************************************************
  2. * Copyright (C) 2007, Gilles Casse <[email protected]> *
  3. * based on AudioIO.cc (Audacity-1.2.4b) and wavegen.cpp *
  4. * *
  5. * This program is free software; you can redistribute it and/or modify *
  6. * it under the terms of the GNU General Public License as published by *
  7. * the Free Software Foundation; either version 3 of the License, or *
  8. * (at your option) any later version. *
  9. * *
  10. * This program is distributed in the hope that it will be useful, *
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
  13. * GNU General Public License for more details. *
  14. * *
  15. * You should have received a copy of the GNU General Public License *
  16. * along with this program; if not, write to the *
  17. * Free Software Foundation, Inc., *
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  19. ***************************************************************************/
  20. #include "speech.h"
  21. #ifdef USE_ASYNC
  22. // This source file is only used for asynchronious modes
  23. #include <stdio.h>
  24. #include <string.h>
  25. #include <stdlib.h>
  26. #include <math.h>
  27. #include <assert.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include "portaudio.h"
  31. #ifdef PLATFORM_WINDOWS
  32. #include <windows.h>
  33. #else
  34. #include <unistd.h>
  35. #endif
  36. #include "wave.h"
  37. #include "debug.h"
  38. //<Definitions
  39. #ifdef NEED_STRUCT_TIMESPEC
  40. #define HAVE_STRUCT_TIMESPEC 1
  41. struct timespec {
  42. long tv_sec;
  43. long tv_nsec;
  44. };
  45. #endif /* HAVE_STRUCT_TIMESPEC */
  46. enum {ONE_BILLION=1000000000};
  47. #ifdef USE_PORTAUDIO
  48. #include "portaudio.h"
  49. #undef USE_PORTAUDIO
  50. // determine portaudio version by looking for a #define which is not in V18
  51. #ifdef paNeverDropInput
  52. #define USE_PORTAUDIO 19
  53. #else
  54. #define USE_PORTAUDIO 18
  55. #endif
  56. #ifdef USE_PULSEAUDIO
  57. // create some wrappers for runtime detection
  58. // checked on wave_init
  59. static int pulse_running;
  60. // wave.cpp (this file)
  61. int wave_port_init(int);
  62. void* wave_port_open(const char* the_api);
  63. size_t wave_port_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  64. int wave_port_close(void* theHandler);
  65. int wave_port_is_busy(void* theHandler);
  66. void wave_port_terminate();
  67. uint32_t wave_port_get_read_position(void* theHandler);
  68. uint32_t wave_port_get_write_position(void* theHandler);
  69. void wave_port_flush(void* theHandler);
  70. void wave_port_set_callback_is_output_enabled(t_wave_callback* cb);
  71. void* wave_port_test_get_write_buffer();
  72. int wave_port_get_remaining_time(uint32_t sample, uint32_t* time);
  73. // wave_pulse.cpp
  74. int is_pulse_running();
  75. int wave_pulse_init(int);
  76. void* wave_pulse_open(const char* the_api);
  77. size_t wave_pulse_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize);
  78. int wave_pulse_close(void* theHandler);
  79. int wave_pulse_is_busy(void* theHandler);
  80. void wave_pulse_terminate();
  81. uint32_t wave_pulse_get_read_position(void* theHandler);
  82. uint32_t wave_pulse_get_write_position(void* theHandler);
  83. void wave_pulse_flush(void* theHandler);
  84. void wave_pulse_set_callback_is_output_enabled(t_wave_callback* cb);
  85. void* wave_pulse_test_get_write_buffer();
  86. int wave_pulse_get_remaining_time(uint32_t sample, uint32_t* time);
  87. // wrappers
  88. int wave_init(int srate) {
  89. pulse_running = is_pulse_running();
  90. if (pulse_running)
  91. return wave_pulse_init(srate);
  92. else
  93. return wave_port_init(srate);
  94. }
  95. void* wave_open(const char* the_api) {
  96. if (pulse_running)
  97. return wave_pulse_open(the_api);
  98. else
  99. return wave_port_open(the_api);
  100. }
  101. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {
  102. if (pulse_running)
  103. return wave_pulse_write(theHandler, theMono16BitsWaveBuffer, theSize);
  104. else
  105. return wave_port_write(theHandler, theMono16BitsWaveBuffer, theSize);
  106. }
  107. int wave_close(void* theHandler) {
  108. if (pulse_running)
  109. return wave_pulse_close(theHandler);
  110. else
  111. return wave_port_close(theHandler);
  112. }
  113. int wave_is_busy(void* theHandler) {
  114. if (pulse_running)
  115. return wave_pulse_is_busy(theHandler);
  116. else
  117. return wave_port_is_busy(theHandler);
  118. }
  119. void wave_terminate() {
  120. if (pulse_running)
  121. wave_pulse_terminate();
  122. else
  123. wave_port_terminate();
  124. }
  125. uint32_t wave_get_read_position(void* theHandler) {
  126. if (pulse_running)
  127. return wave_pulse_get_read_position(theHandler);
  128. else
  129. return wave_port_get_read_position(theHandler);
  130. }
  131. uint32_t wave_get_write_position(void* theHandler) {
  132. if (pulse_running)
  133. return wave_pulse_get_write_position(theHandler);
  134. else
  135. return wave_port_get_write_position(theHandler);
  136. }
  137. void wave_flush(void* theHandler) {
  138. if (pulse_running)
  139. wave_pulse_flush(theHandler);
  140. else
  141. wave_port_flush(theHandler);
  142. }
  143. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {
  144. if (pulse_running)
  145. wave_pulse_set_callback_is_output_enabled(cb);
  146. else
  147. wave_port_set_callback_is_output_enabled(cb);
  148. }
  149. void* wave_test_get_write_buffer() {
  150. if (pulse_running)
  151. return wave_pulse_test_get_write_buffer();
  152. else
  153. return wave_port_test_get_write_buffer();
  154. }
  155. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  156. {
  157. if (pulse_running)
  158. return wave_pulse_get_remaining_time(sample, time);
  159. else
  160. return wave_port_get_remaining_time(sample, time);
  161. }
  162. // rename functions to be wrapped
  163. #define wave_init wave_port_init
  164. #define wave_open wave_port_open
  165. #define wave_write wave_port_write
  166. #define wave_close wave_port_close
  167. #define wave_is_busy wave_port_is_busy
  168. #define wave_terminate wave_port_terminate
  169. #define wave_get_read_position wave_port_get_read_position
  170. #define wave_get_write_position wave_port_get_write_position
  171. #define wave_flush wave_port_flush
  172. #define wave_set_callback_is_output_enabled wave_port_set_callback_is_output_enabled
  173. #define wave_test_get_write_buffer wave_port_test_get_write_buffer
  174. #define wave_get_remaining_time wave_port_get_remaining_time
  175. #endif // USE_PULSEAUDIO
  176. static t_wave_callback* my_callback_is_output_enabled=NULL;
  177. #define N_WAV_BUF 10
  178. #define MAX_SAMPLE_RATE 22050
  179. #define FRAMES_PER_BUFFER 512
  180. #define BUFFER_LENGTH (MAX_SAMPLE_RATE*2*sizeof(uint16_t))
  181. //#define THRESHOLD (BUFFER_LENGTH/5)
  182. static char myBuffer[BUFFER_LENGTH];
  183. static char* myRead=NULL;
  184. static char* myWrite=NULL;
  185. static int out_channels=1;
  186. static int my_stream_could_start=0;
  187. static int wave_samplerate;
  188. static int mInCallbackFinishedState = false;
  189. #if (USE_PORTAUDIO == 18)
  190. static PortAudioStream *pa_stream=NULL;
  191. #endif
  192. #if (USE_PORTAUDIO == 19)
  193. static struct PaStreamParameters myOutputParameters;
  194. static PaStream *pa_stream=NULL;
  195. #endif
  196. static int userdata[4];
  197. static PaError pa_init_err=0;
  198. // time measurement
  199. // The read and write position audio stream in the audio stream are measured in ms.
  200. //
  201. // * When the stream is opened, myReadPosition and myWritePosition are cleared.
  202. // * myWritePosition is updated in wave_write.
  203. // * myReadPosition is updated in pa_callback (+ sample delay).
  204. static uint32_t myReadPosition = 0; // in ms
  205. static uint32_t myWritePosition = 0;
  206. //>
  207. //<init_buffer, get_used_mem
  208. static void init_buffer()
  209. {
  210. myWrite = myBuffer;
  211. myRead = myBuffer;
  212. memset(myBuffer,0,BUFFER_LENGTH);
  213. myReadPosition = myWritePosition = 0;
  214. SHOW("init_buffer > myRead=0x%x, myWrite=0x%x, BUFFER_LENGTH=0x%x, myReadPosition = myWritePosition = 0\n", (int)myRead, (int)myWrite, BUFFER_LENGTH);
  215. }
  216. static unsigned int get_used_mem()
  217. {
  218. char* aRead = myRead;
  219. char* aWrite = myWrite;
  220. unsigned int used = 0;
  221. assert ((aRead >= myBuffer)
  222. && (aRead <= myBuffer + BUFFER_LENGTH)
  223. && (aWrite >= myBuffer)
  224. && (aWrite <= myBuffer + BUFFER_LENGTH));
  225. if (aRead < aWrite)
  226. {
  227. used = aWrite - aRead;
  228. }
  229. else
  230. {
  231. used = aWrite + BUFFER_LENGTH - aRead;
  232. }
  233. SHOW("get_used_mem > %d\n", used);
  234. return used;
  235. }
  236. //>
  237. //<start stream
  238. static void start_stream()
  239. {
  240. PaError err;
  241. SHOW_TIME("start_stream");
  242. my_stream_could_start=0;
  243. mInCallbackFinishedState = false;
  244. err = Pa_StartStream(pa_stream);
  245. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  246. #if USE_PORTAUDIO == 19
  247. if(err == paStreamIsNotStopped)
  248. {
  249. SHOW_TIME("start_stream > restart stream (begin)");
  250. // not sure why we need this, but PA v19 seems to need it
  251. err = Pa_StopStream(pa_stream);
  252. SHOW("start_stream > Pa_StopStream=%d (%s)\n", err, Pa_GetErrorText(err));
  253. err = Pa_StartStream(pa_stream);
  254. SHOW("start_stream > Pa_StartStream=%d (%s)\n", err, Pa_GetErrorText(err));
  255. SHOW_TIME("start_stream > restart stream (end)");
  256. }
  257. #endif
  258. }
  259. //>
  260. //<pa_callback
  261. /* This routine will be called by the PortAudio engine when audio is needed.
  262. ** It may called at interrupt level on some machines so don't do anything
  263. ** that could mess up the system like calling malloc() or free().
  264. */
  265. #if USE_PORTAUDIO == 18
  266. static int pa_callback(void *inputBuffer, void *outputBuffer,
  267. unsigned long framesPerBuffer, PaTimestamp outTime, void *userData )
  268. #else
  269. static int pa_callback(const void *inputBuffer, void *outputBuffer,
  270. long unsigned int framesPerBuffer, const PaStreamCallbackTimeInfo *outTime,
  271. PaStreamCallbackFlags flags, void *userData )
  272. #endif
  273. {
  274. int aResult=0; // paContinue
  275. char* aWrite = myWrite;
  276. size_t n = out_channels*sizeof(uint16_t)*framesPerBuffer;
  277. myReadPosition += framesPerBuffer;
  278. SHOW("pa_callback > myReadPosition=%u, framesPerBuffer=%lu (n=0x%x) \n",(int)myReadPosition, framesPerBuffer, n);
  279. if (aWrite >= myRead)
  280. {
  281. if((size_t)(aWrite - myRead) >= n)
  282. {
  283. memcpy(outputBuffer, myRead, n);
  284. myRead += n;
  285. }
  286. else
  287. {
  288. SHOW_TIME("pa_callback > underflow");
  289. aResult=1; // paComplete;
  290. mInCallbackFinishedState = true;
  291. size_t aUsedMem=0;
  292. aUsedMem = (size_t)(aWrite - myRead);
  293. if (aUsedMem)
  294. {
  295. memcpy(outputBuffer, myRead, aUsedMem);
  296. }
  297. char* p = (char*)outputBuffer + aUsedMem;
  298. memset(p, 0, n - aUsedMem);
  299. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  300. myRead = aWrite;
  301. }
  302. }
  303. else // myRead > aWrite
  304. {
  305. if ((size_t)(myBuffer + BUFFER_LENGTH - myRead) >= n)
  306. {
  307. memcpy(outputBuffer, myRead, n);
  308. myRead += n;
  309. }
  310. else if ((size_t)(aWrite + BUFFER_LENGTH - myRead) >= n)
  311. {
  312. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  313. if (aTopMem)
  314. {
  315. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  316. memcpy(outputBuffer, myRead, aTopMem);
  317. }
  318. int aRest = n - aTopMem;
  319. if (aRest)
  320. {
  321. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  322. char* p = (char*)outputBuffer + aTopMem;
  323. memcpy(p, myBuffer, aRest);
  324. }
  325. myRead = myBuffer + aRest;
  326. }
  327. else
  328. {
  329. SHOW_TIME("pa_callback > underflow");
  330. aResult=1; // paComplete;
  331. int aTopMem = myBuffer + BUFFER_LENGTH - myRead;
  332. if (aTopMem)
  333. {
  334. SHOW("pa_callback > myRead=0x%x, aTopMem=0x%x\n",(int)myRead, (int)aTopMem);
  335. memcpy(outputBuffer, myRead, aTopMem);
  336. }
  337. int aRest = aWrite - myBuffer;
  338. if (aRest)
  339. {
  340. SHOW("pa_callback > myRead=0x%x, aRest=0x%x\n",(int)myRead, (int)aRest);
  341. char* p = (char*)outputBuffer + aTopMem;
  342. memcpy(p, myBuffer, aRest);
  343. }
  344. size_t aUsedMem = aTopMem + aRest;
  345. char* p = (char*)outputBuffer + aUsedMem;
  346. memset(p, 0, n - aUsedMem);
  347. // myReadPosition += aUsedMem/(out_channels*sizeof(uint16_t));
  348. myRead = aWrite;
  349. }
  350. }
  351. SHOW("pa_callback > myRead=%x\n",(int)myRead);
  352. // #if USE_PORTAUDIO == 18
  353. // if(aBufferEmpty)
  354. // {
  355. // static int end_timer = 0;
  356. // if(end_timer == 0)
  357. // end_timer = 4;
  358. // if(end_timer > 0)
  359. // {
  360. // end_timer--;
  361. // if(end_timer == 0)
  362. // return(1);
  363. // }
  364. // }
  365. // return(0);
  366. // #else
  367. #ifdef ARCH_BIG
  368. {
  369. // BIG-ENDIAN, swap the order of bytes in each sound sample in the portaudio buffer
  370. int c;
  371. unsigned char *out_ptr;
  372. unsigned char *out_end;
  373. out_ptr = (unsigned char *)outputBuffer;
  374. out_end = out_ptr + framesPerBuffer*2 * out_channels;
  375. while(out_ptr < out_end)
  376. {
  377. c = out_ptr[0];
  378. out_ptr[0] = out_ptr[1];
  379. out_ptr[1] = c;
  380. out_ptr += 2;
  381. }
  382. }
  383. #endif
  384. return(aResult);
  385. //#endif
  386. } // end of WaveCallBack
  387. //>
  388. void wave_flush(void* theHandler)
  389. {
  390. ENTER("wave_flush");
  391. if (my_stream_could_start)
  392. {
  393. // #define buf 1024
  394. // static char a_buffer[buf*2];
  395. // memset(a_buffer,0,buf*2);
  396. // wave_write(theHandler, a_buffer, buf*2);
  397. start_stream();
  398. }
  399. }
  400. //<wave_open_sound
  401. static int wave_open_sound()
  402. {
  403. ENTER("wave_open_sound");
  404. PaError err=paNoError;
  405. PaError active;
  406. #if USE_PORTAUDIO == 18
  407. active = Pa_StreamActive(pa_stream);
  408. #else
  409. active = Pa_IsStreamActive(pa_stream);
  410. #endif
  411. if(active == 1)
  412. {
  413. SHOW_TIME("wave_open_sound > already active");
  414. return(0);
  415. }
  416. if(active < 0)
  417. {
  418. out_channels = 1;
  419. #if USE_PORTAUDIO == 18
  420. // err = Pa_OpenDefaultStream(&pa_stream,0,1,paInt16,wave_samplerate,FRAMES_PER_BUFFER,N_WAV_BUF,pa_callback,(void *)userdata);
  421. PaDeviceID playbackDevice = Pa_GetDefaultOutputDeviceID();
  422. PaError err = Pa_OpenStream( &pa_stream,
  423. /* capture parameters */
  424. paNoDevice,
  425. 0,
  426. paInt16,
  427. NULL,
  428. /* playback parameters */
  429. playbackDevice,
  430. out_channels,
  431. paInt16,
  432. NULL,
  433. /* general parameters */
  434. wave_samplerate, FRAMES_PER_BUFFER, 0,
  435. //paClipOff | paDitherOff,
  436. paNoFlag,
  437. pa_callback, (void *)userdata);
  438. SHOW("wave_open_sound > Pa_OpenDefaultStream(1): err=%d (%s)\n",err, Pa_GetErrorText(err));
  439. if(err == paInvalidChannelCount)
  440. {
  441. SHOW_TIME("wave_open_sound > try stereo");
  442. // failed to open with mono, try stereo
  443. out_channels = 2;
  444. // myOutputParameters.channelCount = out_channels;
  445. PaError err = Pa_OpenStream( &pa_stream,
  446. /* capture parameters */
  447. paNoDevice,
  448. 0,
  449. paInt16,
  450. NULL,
  451. /* playback parameters */
  452. playbackDevice,
  453. out_channels,
  454. paInt16,
  455. NULL,
  456. /* general parameters */
  457. wave_samplerate, FRAMES_PER_BUFFER, 0,
  458. //paClipOff | paDitherOff,
  459. paNoFlag,
  460. pa_callback, (void *)userdata);
  461. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,
  462. // wave_samplerate,
  463. // FRAMES_PER_BUFFER,
  464. // N_WAV_BUF,pa_callback,(void *)userdata);
  465. SHOW("wave_open_sound > Pa_OpenDefaultStream(2): err=%d (%s)\n",err, Pa_GetErrorText(err));
  466. err=0; // avoid warning
  467. }
  468. mInCallbackFinishedState = false; // v18 only
  469. #else
  470. myOutputParameters.channelCount = out_channels;
  471. unsigned long framesPerBuffer = paFramesPerBufferUnspecified;
  472. err = Pa_OpenStream(
  473. &pa_stream,
  474. NULL, /* no input */
  475. &myOutputParameters,
  476. wave_samplerate,
  477. framesPerBuffer,
  478. paNoFlag,
  479. // paClipOff | paDitherOff,
  480. pa_callback,
  481. (void *)userdata);
  482. if ((err!=paNoError)
  483. && (err!=paInvalidChannelCount)) //err==paUnanticipatedHostError
  484. {
  485. fprintf(stderr, "wave_open_sound > Pa_OpenStream : err=%d (%s)\n",err,Pa_GetErrorText(err));
  486. framesPerBuffer = FRAMES_PER_BUFFER;
  487. err = Pa_OpenStream(
  488. &pa_stream,
  489. NULL, /* no input */
  490. &myOutputParameters,
  491. wave_samplerate,
  492. framesPerBuffer,
  493. paNoFlag,
  494. // paClipOff | paDitherOff,
  495. pa_callback,
  496. (void *)userdata);
  497. }
  498. if(err == paInvalidChannelCount)
  499. {
  500. SHOW_TIME("wave_open_sound > try stereo");
  501. // failed to open with mono, try stereo
  502. out_channels = 2;
  503. myOutputParameters.channelCount = out_channels;
  504. err = Pa_OpenStream(
  505. &pa_stream,
  506. NULL, /* no input */
  507. &myOutputParameters,
  508. wave_samplerate,
  509. framesPerBuffer,
  510. paNoFlag,
  511. // paClipOff | paDitherOff,
  512. pa_callback,
  513. (void *)userdata);
  514. // err = Pa_OpenDefaultStream(&pa_stream,0,2,paInt16,(double)wave_samplerate,FRAMES_PER_BUFFER,pa_callback,(void *)userdata);
  515. }
  516. mInCallbackFinishedState = false;
  517. #endif
  518. }
  519. SHOW("wave_open_sound > %s\n","LEAVE");
  520. return (err != paNoError);
  521. }
  522. //>
  523. //<select_device
  524. #if (USE_PORTAUDIO == 19)
  525. static void update_output_parameters(int selectedDevice, const PaDeviceInfo *deviceInfo)
  526. {
  527. // const PaDeviceInfo *pdi = Pa_GetDeviceInfo(i);
  528. myOutputParameters.device = selectedDevice;
  529. // myOutputParameters.channelCount = pdi->maxOutputChannels;
  530. myOutputParameters.channelCount = 1;
  531. myOutputParameters.sampleFormat = paInt16;
  532. // Latency greater than 100ms for avoiding glitches
  533. // (e.g. when moving a window in a graphical desktop)
  534. // deviceInfo = Pa_GetDeviceInfo(selectedDevice);
  535. if (deviceInfo)
  536. {
  537. double aLatency = deviceInfo->defaultLowOutputLatency;
  538. // double aCoeff = round(0.100 / aLatency);
  539. // myOutputParameters.suggestedLatency = aCoeff * aLatency; // to avoid glitches ?
  540. myOutputParameters.suggestedLatency = aLatency; // for faster response ?
  541. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f, aCoeff=%f\n",
  542. selectedDevice,
  543. myOutputParameters.suggestedLatency,
  544. aCoeff);
  545. }
  546. else
  547. {
  548. myOutputParameters.suggestedLatency = (double)0.1; // 100ms
  549. SHOW("Device=%d, myOutputParameters.suggestedLatency=%f (default)\n",
  550. selectedDevice,
  551. myOutputParameters.suggestedLatency);
  552. }
  553. //pdi->defaultLowOutputLatency;
  554. myOutputParameters.hostApiSpecificStreamInfo = NULL;
  555. }
  556. #endif
  557. static void select_device(const char* the_api)
  558. {
  559. ENTER("select_device");
  560. #if (USE_PORTAUDIO == 19)
  561. int numDevices = Pa_GetDeviceCount();
  562. if( numDevices < 0 )
  563. {
  564. SHOW( "ERROR: Pa_CountDevices returned 0x%x\n", numDevices );
  565. assert(0);
  566. }
  567. PaDeviceIndex i=0, selectedIndex=0, defaultAlsaIndex=numDevices;
  568. const PaDeviceInfo *deviceInfo=NULL;
  569. const PaDeviceInfo *selectedDeviceInfo=NULL;
  570. if(option_device_number >= 0)
  571. {
  572. selectedIndex = option_device_number;
  573. selectedDeviceInfo = Pa_GetDeviceInfo(selectedIndex);
  574. }
  575. if(selectedDeviceInfo == NULL)
  576. {
  577. for( i=0; i<numDevices; i++ )
  578. {
  579. deviceInfo = Pa_GetDeviceInfo( i );
  580. if (deviceInfo == NULL)
  581. {
  582. break;
  583. }
  584. const PaHostApiInfo *hostInfo = Pa_GetHostApiInfo( deviceInfo->hostApi );
  585. if (hostInfo && hostInfo->type == paALSA)
  586. {
  587. // Check (once) the default output device
  588. if (defaultAlsaIndex == numDevices)
  589. {
  590. defaultAlsaIndex = hostInfo->defaultOutputDevice;
  591. const PaDeviceInfo *deviceInfo = Pa_GetDeviceInfo( defaultAlsaIndex );
  592. update_output_parameters(defaultAlsaIndex, deviceInfo);
  593. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  594. {
  595. SHOW( "select_device > ALSA (default), name=%s (#%d)\n", deviceInfo->name, defaultAlsaIndex);
  596. selectedIndex = defaultAlsaIndex;
  597. selectedDeviceInfo = deviceInfo;
  598. break;
  599. }
  600. }
  601. // if the default output device does not match,
  602. // look for the device with the highest number of output channels
  603. SHOW( "select_device > ALSA, i=%d (numDevices=%d)\n", i, numDevices);
  604. update_output_parameters(i, deviceInfo);
  605. if (Pa_IsFormatSupported(NULL, &myOutputParameters, wave_samplerate) == 0)
  606. {
  607. SHOW( "select_device > ALSA, name=%s (#%d)\n", deviceInfo->name, i);
  608. if (!selectedDeviceInfo
  609. || (selectedDeviceInfo->maxOutputChannels < deviceInfo->maxOutputChannels))
  610. {
  611. selectedIndex = i;
  612. selectedDeviceInfo = deviceInfo;
  613. }
  614. }
  615. }
  616. }
  617. }
  618. if (selectedDeviceInfo)
  619. {
  620. update_output_parameters(selectedIndex, selectedDeviceInfo);
  621. }
  622. else
  623. {
  624. i = Pa_GetDefaultOutputDevice();
  625. deviceInfo = Pa_GetDeviceInfo( i );
  626. update_output_parameters(i, deviceInfo);
  627. }
  628. #endif
  629. }
  630. //>
  631. // int wave_Close(void* theHandler)
  632. // {
  633. // SHOW_TIME("WaveCloseSound");
  634. // // PaError active;
  635. // // check whether speaking has finished, and close the stream
  636. // if(pa_stream != NULL)
  637. // {
  638. // Pa_CloseStream(pa_stream);
  639. // pa_stream = NULL;
  640. // init_buffer();
  641. // // #if USE_PORTAUDIO == 18
  642. // // active = Pa_StreamActive(pa_stream);
  643. // // #else
  644. // // active = Pa_IsStreamActive(pa_stream);
  645. // // #endif
  646. // // if(active == 0)
  647. // // {
  648. // // SHOW_TIME("WaveCloseSound > ok, not active");
  649. // // Pa_CloseStream(pa_stream);
  650. // // pa_stream = NULL;
  651. // // return(1);
  652. // // }
  653. // }
  654. // return(0);
  655. // }
  656. //<wave_set_callback_is_output_enabled
  657. void wave_set_callback_is_output_enabled(t_wave_callback* cb)
  658. {
  659. my_callback_is_output_enabled = cb;
  660. }
  661. //>
  662. //<wave_init
  663. // TBD: the arg could be "alsa", "oss",...
  664. int wave_init(int srate)
  665. {
  666. ENTER("wave_init");
  667. PaError err;
  668. pa_stream = NULL;
  669. wave_samplerate = srate;
  670. mInCallbackFinishedState = false;
  671. init_buffer();
  672. // PortAudio sound output library
  673. err = Pa_Initialize();
  674. pa_init_err = err;
  675. if(err != paNoError)
  676. {
  677. SHOW_TIME("wave_init > Failed to initialise the PortAudio sound");
  678. }
  679. return err == paNoError;
  680. }
  681. //>
  682. //<wave_open
  683. void* wave_open(const char* the_api)
  684. {
  685. ENTER("wave_open");
  686. static int once=0;
  687. // TBD: the_api (e.g. "alsa") is not used at the moment
  688. // select_device is called once
  689. if (!once)
  690. {
  691. select_device("alsa");
  692. once=1;
  693. }
  694. return((void*)1);
  695. }
  696. //>
  697. //<copyBuffer
  698. static size_t copyBuffer(char* dest, char* src, const size_t theSizeInBytes)
  699. {
  700. size_t bytes_written = 0;
  701. unsigned int i = 0;
  702. uint16_t* a_dest = NULL;
  703. uint16_t* a_src = NULL;
  704. if ((src != NULL) && dest != NULL)
  705. {
  706. // copy for one channel (mono)?
  707. if(out_channels==1)
  708. {
  709. SHOW("copyBuffer > 1 channel > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  710. memcpy(dest, src, theSizeInBytes);
  711. bytes_written = theSizeInBytes;
  712. }
  713. else // copy for 2 channels (stereo)
  714. {
  715. SHOW("copyBuffer > 2 channels > memcpy %x (%d bytes)\n", (int)myWrite, theSizeInBytes);
  716. i = 0;
  717. a_dest = (uint16_t* )dest;
  718. a_src = (uint16_t* )src;
  719. for(i=0; i<theSizeInBytes/2; i++)
  720. {
  721. a_dest[2*i] = a_src[i];
  722. a_dest[2*i+1] = a_src[i];
  723. }
  724. bytes_written = 2*theSizeInBytes;
  725. } // end if(out_channels==1)
  726. } // end if ((src != NULL) && dest != NULL)
  727. return bytes_written;
  728. }
  729. //>
  730. //<wave_write
  731. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize)
  732. {
  733. ENTER("wave_write");
  734. size_t bytes_written = 0;
  735. // space in ringbuffer for the sample needed: 1x mono channel but 2x for 1 stereo channel
  736. size_t bytes_to_write = (out_channels==1) ? theSize : theSize*2;
  737. my_stream_could_start = 0;
  738. if(pa_stream == NULL)
  739. {
  740. SHOW_TIME("wave_write > wave_open_sound\n");
  741. if (0 != wave_open_sound())
  742. {
  743. SHOW_TIME("wave_write > wave_open_sound fails!");
  744. return 0;
  745. }
  746. my_stream_could_start=1;
  747. }
  748. else if (!wave_is_busy(NULL))
  749. {
  750. my_stream_could_start = 1;
  751. }
  752. assert(BUFFER_LENGTH >= bytes_to_write);
  753. if (myWrite >= myBuffer + BUFFER_LENGTH)
  754. {
  755. myWrite = myBuffer;
  756. } // end if (myWrite >= myBuffer + BUFFER_LENGTH)
  757. size_t aTotalFreeMem=0;
  758. char* aRead = myRead;
  759. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  760. while (1)
  761. {
  762. if (my_callback_is_output_enabled && (0==my_callback_is_output_enabled()))
  763. {
  764. SHOW_TIME("wave_write > my_callback_is_output_enabled: no!");
  765. return 0;
  766. }
  767. aRead = myRead;
  768. // write pointer is before read pointer?
  769. if (myWrite >= aRead)
  770. {
  771. aTotalFreeMem = aRead + BUFFER_LENGTH - myWrite;
  772. }
  773. else // read pointer is before write pointer!
  774. {
  775. aTotalFreeMem = aRead - myWrite;
  776. } // end if (myWrite >= aRead)
  777. if (aTotalFreeMem>1)
  778. {
  779. // -1 because myWrite must be different of aRead
  780. // otherwise buffer would be considered as empty
  781. aTotalFreeMem -= 1;
  782. } // end if (aTotalFreeMem>1)
  783. if (aTotalFreeMem >= bytes_to_write)
  784. {
  785. break;
  786. } // end if (aTotalFreeMem >= bytes_to_write)
  787. //SHOW_TIME("wave_write > wait");
  788. SHOW("wave_write > wait: aTotalFreeMem=%d\n", aTotalFreeMem);
  789. SHOW("wave_write > aRead=%x, myWrite=%x\n", (int)aRead, (int)myWrite);
  790. usleep(10000);
  791. } // end while (1)
  792. aRead = myRead;
  793. // write pointer is ahead the read pointer?
  794. if (myWrite >= aRead)
  795. {
  796. SHOW_TIME("wave_write > myWrite >= aRead");
  797. // determine remaining free memory to the end of the ringbuffer
  798. size_t aFreeMem = myBuffer + BUFFER_LENGTH - myWrite;
  799. // is enough linear space available (regardless 1 or 2 channels)?
  800. if (aFreeMem >= bytes_to_write)
  801. {
  802. // copy direct - no wrap around at end of ringbuffer needed
  803. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  804. }
  805. else // not enough linear space available
  806. {
  807. // 2 channels (stereo)?
  808. if (out_channels == 2)
  809. {
  810. // copy with wrap around at the end of ringbuffer
  811. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem/2);
  812. myWrite = myBuffer;
  813. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem/2, theSize - aFreeMem/2);
  814. }
  815. else // 1 channel (mono)
  816. {
  817. // copy with wrap around at the end of ringbuffer
  818. copyBuffer(myWrite, theMono16BitsWaveBuffer, aFreeMem);
  819. myWrite = myBuffer;
  820. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer+aFreeMem, theSize - aFreeMem);
  821. } // end if (out_channels == 2)
  822. } // end if (aFreeMem >= bytes_to_write)
  823. } // if (myWrite >= aRead)
  824. else // read pointer is ahead the write pointer
  825. {
  826. SHOW_TIME("wave_write > myWrite <= aRead");
  827. myWrite += copyBuffer(myWrite, theMono16BitsWaveBuffer, theSize);
  828. } // end if (myWrite >= aRead)
  829. bytes_written = bytes_to_write;
  830. myWritePosition += theSize/sizeof(uint16_t); // add number of samples
  831. if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  832. {
  833. start_stream();
  834. } // end if (my_stream_could_start && (get_used_mem() >= out_channels * sizeof(uint16_t) * FRAMES_PER_BUFFER))
  835. SHOW_TIME("wave_write > LEAVE");
  836. return bytes_written;
  837. }
  838. //>
  839. //<wave_close
  840. int wave_close(void* theHandler)
  841. {
  842. SHOW_TIME("wave_close > ENTER");
  843. static int aStopStreamCount = 0;
  844. #if (USE_PORTAUDIO == 19)
  845. if( pa_stream == NULL )
  846. {
  847. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  848. return 0;
  849. }
  850. if( Pa_IsStreamStopped( pa_stream ) )
  851. {
  852. SHOW_TIME("wave_close > LEAVE (stopped)");
  853. return 0;
  854. }
  855. #else
  856. if( pa_stream == NULL )
  857. {
  858. SHOW_TIME("wave_close > LEAVE (NULL stream)");
  859. return 0;
  860. }
  861. if( Pa_StreamActive( pa_stream ) == false && mInCallbackFinishedState == false )
  862. {
  863. SHOW_TIME("wave_close > LEAVE (not active)");
  864. return 0;
  865. }
  866. #endif
  867. // Avoid race condition by making sure this function only
  868. // gets called once at a time
  869. aStopStreamCount++;
  870. if (aStopStreamCount != 1)
  871. {
  872. SHOW_TIME("wave_close > LEAVE (stopStreamCount)");
  873. return 0;
  874. }
  875. // Comment from Audacity-1.2.4b adapted to the eSpeak context.
  876. //
  877. // We got here in one of two ways:
  878. //
  879. // 1. The calling program calls the espeak_Cancel function and we
  880. // therefore want to stop as quickly as possible.
  881. // So we use AbortStream(). If this is
  882. // the case the portaudio stream is still in the Running state
  883. // (see PortAudio state machine docs).
  884. //
  885. // 2. The callback told PortAudio to stop the stream since it had
  886. // reached the end of the selection.
  887. // The event polling thread discovered this by noticing that
  888. // wave_is_busy() returned false.
  889. // wave_is_busy() (which calls Pa_GetStreamActive()) will not return
  890. // false until all buffers have finished playing, so we can call
  891. // AbortStream without losing any samples. If this is the case
  892. // we are in the "callback finished state" (see PortAudio state
  893. // machine docs).
  894. //
  895. // The moral of the story: We can call AbortStream safely, without
  896. // losing samples.
  897. //
  898. // DMM: This doesn't seem to be true; it seems to be necessary to
  899. // call StopStream if the callback brought us here, and AbortStream
  900. // if the user brought us here.
  901. //
  902. #if (USE_PORTAUDIO == 19)
  903. if (pa_stream)
  904. {
  905. Pa_AbortStream( pa_stream );
  906. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  907. Pa_CloseStream( pa_stream );
  908. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  909. pa_stream = NULL;
  910. mInCallbackFinishedState = false;
  911. }
  912. #else
  913. if (pa_stream)
  914. {
  915. if (mInCallbackFinishedState)
  916. {
  917. Pa_StopStream( pa_stream );
  918. SHOW_TIME("wave_close > Pa_StopStream (end)");
  919. }
  920. else
  921. {
  922. Pa_AbortStream( pa_stream );
  923. SHOW_TIME("wave_close > Pa_AbortStream (end)");
  924. }
  925. Pa_CloseStream( pa_stream );
  926. SHOW_TIME("wave_close > Pa_CloseStream (end)");
  927. pa_stream = NULL;
  928. mInCallbackFinishedState = false;
  929. }
  930. #endif
  931. init_buffer();
  932. aStopStreamCount = 0; // last action
  933. SHOW_TIME("wave_close > LEAVE");
  934. return 0;
  935. }
  936. // int wave_close(void* theHandler)
  937. // {
  938. // ENTER("wave_close");
  939. // if(pa_stream != NULL)
  940. // {
  941. // PaError err = Pa_AbortStream(pa_stream);
  942. // SHOW_TIME("wave_close > Pa_AbortStream (end)");
  943. // SHOW("wave_close Pa_AbortStream > err=%d\n",err);
  944. // while(1)
  945. // {
  946. // PaError active;
  947. // #if USE_PORTAUDIO == 18
  948. // active = Pa_StreamActive(pa_stream);
  949. // #else
  950. // active = Pa_IsStreamActive(pa_stream);
  951. // #endif
  952. // if (active != 1)
  953. // {
  954. // break;
  955. // }
  956. // SHOW("wave_close > active=%d\n",err);
  957. // usleep(10000); /* sleep until playback has finished */
  958. // }
  959. // err = Pa_CloseStream( pa_stream );
  960. // SHOW_TIME("wave_close > Pa_CloseStream (end)");
  961. // SHOW("wave_close Pa_CloseStream > err=%d\n",err);
  962. // pa_stream = NULL;
  963. // init_buffer();
  964. // }
  965. // return 0;
  966. // }
  967. //>
  968. //<wave_is_busy
  969. int wave_is_busy(void* theHandler)
  970. {
  971. PaError active=0;
  972. SHOW_TIME("wave_is_busy");
  973. if (pa_stream)
  974. {
  975. #if USE_PORTAUDIO == 18
  976. active = Pa_StreamActive(pa_stream)
  977. && (mInCallbackFinishedState == false);
  978. #else
  979. active = Pa_IsStreamActive(pa_stream)
  980. && (mInCallbackFinishedState == false);
  981. #endif
  982. }
  983. SHOW("wave_is_busy: %d\n",active);
  984. return (active==1);
  985. }
  986. //>
  987. //<wave_terminate
  988. void wave_terminate()
  989. {
  990. ENTER("wave_terminate");
  991. Pa_Terminate();
  992. }
  993. //>
  994. //<wave_get_read_position, wave_get_write_position, wave_get_remaining_time
  995. uint32_t wave_get_read_position(void* theHandler)
  996. {
  997. SHOW("wave_get_read_position > myReadPosition=%u\n", myReadPosition);
  998. return myReadPosition;
  999. }
  1000. uint32_t wave_get_write_position(void* theHandler)
  1001. {
  1002. SHOW("wave_get_write_position > myWritePosition=%u\n", myWritePosition);
  1003. return myWritePosition;
  1004. }
  1005. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1006. {
  1007. double a_time=0;
  1008. if (!time || !pa_stream)
  1009. {
  1010. SHOW("event get_remaining_time> %s\n","audio device not available");
  1011. return -1;
  1012. }
  1013. if (sample > myReadPosition)
  1014. {
  1015. // TBD: take in account time suplied by portaudio V18 API
  1016. a_time = sample - myReadPosition;
  1017. a_time = 0.5 + (a_time * 1000.0) / wave_samplerate;
  1018. }
  1019. else
  1020. {
  1021. a_time = 0;
  1022. }
  1023. SHOW("wave_get_remaining_time > sample=%d, time=%d\n", sample, (uint32_t)a_time);
  1024. *time = (uint32_t)a_time;
  1025. return 0;
  1026. }
  1027. //>
  1028. //<wave_test_get_write_buffer
  1029. void *wave_test_get_write_buffer()
  1030. {
  1031. return myWrite;
  1032. }
  1033. #else
  1034. // notdef USE_PORTAUDIO
  1035. int wave_init(int srate) {return 1;}
  1036. void* wave_open(const char* the_api) {return (void *)1;}
  1037. size_t wave_write(void* theHandler, char* theMono16BitsWaveBuffer, size_t theSize) {return theSize;}
  1038. int wave_close(void* theHandler) {return 0;}
  1039. int wave_is_busy(void* theHandler) {return 0;}
  1040. void wave_terminate() {}
  1041. uint32_t wave_get_read_position(void* theHandler) {return 0;}
  1042. uint32_t wave_get_write_position(void* theHandler) {return 0;}
  1043. void wave_flush(void* theHandler) {}
  1044. typedef int (t_wave_callback)(void);
  1045. void wave_set_callback_is_output_enabled(t_wave_callback* cb) {}
  1046. extern void* wave_test_get_write_buffer() {return NULL;}
  1047. int wave_get_remaining_time(uint32_t sample, uint32_t* time)
  1048. {
  1049. if (!time) return(-1);
  1050. *time = (uint32_t)0;
  1051. return 0;
  1052. }
  1053. #endif // of USE_PORTAUDIO
  1054. //>
  1055. //<clock_gettime2, add_time_in_ms
  1056. void clock_gettime2(struct timespec *ts)
  1057. {
  1058. struct timeval tv;
  1059. if (!ts)
  1060. {
  1061. return;
  1062. }
  1063. assert (gettimeofday(&tv, NULL) != -1);
  1064. ts->tv_sec = tv.tv_sec;
  1065. ts->tv_nsec = tv.tv_usec*1000;
  1066. }
  1067. void add_time_in_ms(struct timespec *ts, int time_in_ms)
  1068. {
  1069. if (!ts)
  1070. {
  1071. return;
  1072. }
  1073. uint64_t t_ns = (uint64_t)ts->tv_nsec + 1000000 * (uint64_t)time_in_ms;
  1074. while(t_ns >= ONE_BILLION)
  1075. {
  1076. SHOW("event > add_time_in_ms ns: %d sec %Lu nsec \n", ts->tv_sec, t_ns);
  1077. ts->tv_sec += 1;
  1078. t_ns -= ONE_BILLION;
  1079. }
  1080. ts->tv_nsec = (long int)t_ns;
  1081. }
  1082. #endif // USE_ASYNC
  1083. //>