/***************************************************************************
* Copyright (C) 2005 to 2014 by Jonathan Duddington *
* email: jonsd@users.sourceforge.net *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write see: *
* . *
***************************************************************************/
#include "StdAfx.h"
#include
#include
#include
#include
#include
#include
#include "speak_lib.h"
#include "speech.h"
#include "phoneme.h"
#include "synthesize.h"
#include "translate.h"
int dictionary_skipwords;
char dictionary_name[40];
extern void print_dictionary_flags(unsigned int *flags, char *buf, int buf_len);
extern char *DecodeRule(const char *group_chars, int group_length, char *rule, int control);
// accented characters which indicate (in some languages) the start of a separate syllable
//static const unsigned short diereses_list[7] = {L'ä',L'ë',L'ï',L'ö',L'ü',L'ÿ',0};
static const unsigned short diereses_list[7] = {0xe4,0xeb,0xef,0xf6,0xfc,0xff,0};
// convert characters to an approximate 7 bit ascii equivalent
// used for checking for vowels (up to 0x259=schwa)
#define N_REMOVE_ACCENT 0x25e
static unsigned char remove_accent[N_REMOVE_ACCENT] = {
'a','a','a','a','a','a','a','c','e','e','e','e','i','i','i','i', // 0c0
'd','n','o','o','o','o','o', 0, 'o','u','u','u','u','y','t','s', // 0d0
'a','a','a','a','a','a','a','c','e','e','e','e','i','i','i','i', // 0e0
'd','n','o','o','o','o','o', 0 ,'o','u','u','u','u','y','t','y', // 0f0
'a','a','a','a','a','a','c','c','c','c','c','c','c','c','d','d', // 100
'd','d','e','e','e','e','e','e','e','e','e','e','g','g','g','g', // 110
'g','g','g','g','h','h','h','h','i','i','i','i','i','i','i','i', // 120
'i','i','i','i','j','j','k','k','k','l','l','l','l','l','l','l', // 130
'l','l','l','n','n','n','n','n','n','n','n','n','o','o','o','o', // 140
'o','o','o','o','r','r','r','r','r','r','s','s','s','s','s','s', // 150
's','s','t','t','t','t','t','t','u','u','u','u','u','u','u','u', // 160
'u','u','u','u','w','w','y','y','y','z','z','z','z','z','z','s', // 170
'b','b','b','b', 0, 0, 'o','c','c','d','d','d','d','d','e','e', // 180
'e','f','f','g','g','h','i','i','k','k','l','l','m','n','n','o', // 190
'o','o','o','o','p','p','y', 0, 0, 's','s','t','t','t','t','u', // 1a0
'u','u','v','y','y','z','z','z','z','z','z','z', 0, 0, 0, 'w', // 1b0
't','t','t','k','d','d','d','l','l','l','n','n','n','a','a','i', // 1c0
'i','o','o','u','u','u','u','u','u','u','u','u','u','e','a','a', // 1d0
'a','a','a','a','g','g','g','g','k','k','o','o','o','o','z','z', // 1e0
'j','d','d','d','g','g','w','w','n','n','a','a','a','a','o','o', // 1f0
'a','a','a','a','e','e','e','e','i','i','i','i','o','o','o','o', // 200
'r','r','r','r','u','u','u','u','s','s','t','t','y','y','h','h', // 210
'n','d','o','o','z','z','a','a','e','e','o','o','o','o','o','o', // 220
'o','o','y','y','l','n','t','j','d','q','a','c','c','l','t','s', // 230
'z', 0, 0, 'b','u','v','e','e','j','j','q','q','r','r','y','y', // 240
'a','a','a','b','o','c','d','d','e','e','e','e','e','e'
};
void strncpy0(char *to,const char *from, int size)
{//===================================================
// strcpy with limit, ensures a zero terminator
strncpy(to,from,size);
to[size-1] = 0;
}
int Reverse4Bytes(int word)
{//==========================
// reverse the order of bytes from little-endian to big-endian
#ifdef ARCH_BIG
int ix;
int word2 = 0;
for(ix=0; ix<=24; ix+=8)
{
word2 = word2 << 8;
word2 |= (word >> ix) & 0xff;
}
return(word2);
#else
return(word);
#endif
}
int LookupMnem(MNEM_TAB *table, const char *string)
{//==================================================
while(table->mnem != NULL)
{
if(strcmp(string,table->mnem)==0)
return(table->value);
table++;
}
return(table->value);
}
//=============================================================================================
// Read pronunciation rules and pronunciation lookup dictionary
//
//=============================================================================================
static void InitGroups(Translator *tr)
{//===================================
// Called after dictionary 1 is loaded, to set up table of entry points for translation rule chains
// for single-letters and two-letter combinations
int ix;
char *p;
char *p_name;
unsigned int *pw;
unsigned char c, c2;
int len;
tr->n_groups2 = 0;
for(ix=0; ix<256; ix++)
{
tr->groups1[ix]=NULL;
tr->groups2_count[ix]=0;
tr->groups2_start[ix]=255; // indicates "not set"
}
memset(tr->letterGroups,0,sizeof(tr->letterGroups));
memset(tr->groups3,0,sizeof(tr->groups3));
p = tr->data_dictrules;
while(*p != 0)
{
if(*p != RULE_GROUP_START)
{
fprintf(stderr,"Bad rules data in '%s_dict' at 0x%x\n",dictionary_name,(unsigned int)(p - tr->data_dictrules));
break;
}
p++;
if(p[0] == RULE_REPLACEMENTS)
{
pw = (unsigned int *)(((long64)p+4) & ~3); // advance to next word boundary
tr->langopts.replace_chars = pw;
while(pw[0] != 0)
{
pw += 2; // find the end of the replacement list, each entry is 2 words.
}
p = (char *)(pw+1);
#ifdef ARCH_BIG
pw = (unsigned int *)(tr->langopts.replace_chars);
while(*pw != 0)
{
*pw = Reverse4Bytes(*pw);
pw++;
*pw = Reverse4Bytes(*pw);
pw++;
}
#endif
continue;
}
if(p[0] == RULE_LETTERGP2)
{
ix = p[1] - 'A';
p += 2;
if((ix >= 0) && (ix < N_LETTER_GROUPS))
{
tr->letterGroups[ix] = p;
}
}
else
{
len = strlen(p);
p_name = p;
c = p_name[0];
c2 = p_name[1];
p += (len+1);
if(len == 1)
{
tr->groups1[c] = p;
}
else if(len == 0)
{
tr->groups1[0] = p;
}
else if(c == 1)
{
// index by offset from letter base
tr->groups3[c2 - 1] = p;
}
else
{
if(tr->groups2_start[c] == 255)
tr->groups2_start[c] = tr->n_groups2;
tr->groups2_count[c]++;
tr->groups2[tr->n_groups2] = p;
tr->groups2_name[tr->n_groups2++] = (c + (c2 << 8));
}
}
// skip over all the rules in this group
while(*p != RULE_GROUP_END)
{
p += (strlen(p) + 1);
}
p++;
}
} // end of InitGroups
int LoadDictionary(Translator *tr, const char *name, int no_error)
{//===============================================================
int hash;
char *p;
int *pw;
int length;
FILE *f;
unsigned int size;
char fname[sizeof(path_home)+20];
strcpy(dictionary_name,name); // currently loaded dictionary name
strcpy(tr->dictionary_name, name);
// Load a pronunciation data file into memory
// bytes 0-3: offset to rules data
// bytes 4-7: number of hash table entries
sprintf(fname,"%s%c%s_dict",path_home,PATHSEP,name);
size = GetFileLength(fname);
if(tr->data_dictlist != NULL)
{
Free(tr->data_dictlist);
tr->data_dictlist = NULL;
}
f = fopen(fname,"rb");
if((f == NULL) || (size <= 0))
{
if(no_error == 0)
{
fprintf(stderr,"Can't read dictionary file: '%s'\n",fname);
}
return(1);
}
tr->data_dictlist = Alloc(size);
size = fread(tr->data_dictlist,1,size,f);
fclose(f);
pw = (int *)(tr->data_dictlist);
length = Reverse4Bytes(pw[1]);
if(size <= (N_HASH_DICT + sizeof(int)*2))
{
fprintf(stderr,"Empty _dict file: '%s\n",fname);
return(2);
}
if((Reverse4Bytes(pw[0]) != N_HASH_DICT) ||
(length <= 0) || (length > 0x8000000))
{
fprintf(stderr,"Bad data: '%s' (%x length=%x)\n",fname,Reverse4Bytes(pw[0]),length);
return(2);
}
tr->data_dictrules = &(tr->data_dictlist[length]);
// set up indices into data_dictrules
InitGroups(tr);
// set up hash table for data_dictlist
p = &(tr->data_dictlist[8]);
for(hash=0; hashdict_hashtab[hash] = p;
while((length = *p) != 0)
{
p += length;
}
p++; // skip over the zero which terminates the list for this hash value
}
if((tr->dict_min_size > 0) && (size < (unsigned int)tr->dict_min_size))
{
fprintf(stderr, "Full dictionary is not installed for '%s'\n", name);
}
return(0);
} // end of LoadDictionary
int HashDictionary(const char *string)
//====================================
/* Generate a hash code from the specified string
This is used to access the dictionary_2 word-lookup dictionary
*/
{
int c;
int chars=0;
int hash=0;
while((c = (*string++ & 0xff)) != 0)
{
hash = hash * 8 + c;
hash = (hash & 0x3ff) ^ (hash >> 8); /* exclusive or */
chars++;
}
return((hash+chars) & 0x3ff); // a 10 bit hash code
} // end of HashDictionary
//=============================================================================================
// Translate between internal representation of phonemes and a mnemonic form for display
//
//=============================================================================================
const char *EncodePhonemes(const char *p, char *outptr, int *bad_phoneme)
/******************************************************************/
/* Translate a phoneme string from ascii mnemonics to internal phoneme numbers,
from 'p' up to next blank .
Returns advanced 'p'
outptr contains encoded phonemes, unrecognized phoneme stops the encoding
bad_phoneme must point to char array of length 2 of more
*/
{
int ix;
unsigned char c;
int count; /* num. of matching characters */
int max; /* highest num. of matching found so far */
int max_ph; /* corresponding phoneme with highest matching */
int consumed;
unsigned int mnemonic_word;
if(bad_phoneme != NULL)
*bad_phoneme = 0;
// skip initial blanks
while(isspace(*p))
{
p++;
}
while(((c = *p) != 0) && !isspace(c))
{
consumed = 0;
switch(c)
{
case '|':
// used to separate phoneme mnemonics if needed, to prevent characters being treated
// as a multi-letter mnemonic
if((c = p[1]) == '|')
{
// treat double || as a word-break symbol, drop through
// to the default case with c = '|'
}
else
{
p++;
break;
}
default:
// lookup the phoneme mnemonic, find the phoneme with the highest number of
// matching characters
max= -1;
max_ph= 0;
for(ix=1; ixtype == phINVALID)
continue; // this phoneme is not defined for this language
count = 0;
mnemonic_word = phoneme_tab[ix]->mnemonic;
while(((c = p[count]) > ' ') && (count < 4) &&
(c == ((mnemonic_word >> (count*8)) & 0xff)))
count++;
if((count > max) &&
((count == 4) || (((mnemonic_word >> (count*8)) & 0xff)==0)))
{
max = count;
max_ph = phoneme_tab[ix]->code;
}
}
if(max_ph == 0)
{
// not recognised, report and ignore
if(bad_phoneme != NULL)
{
utf8_in(bad_phoneme, p);
}
*outptr++ = 0;
return(p+1);
}
if(max <= 0)
max = 1;
p += (consumed + max);
*outptr++ = (char)(max_ph);
if(max_ph == phonSWITCH)
{
// Switch Language: this phoneme is followed by a text string
char *p_lang = outptr;
while(!isspace(c = *p) && (c != 0))
{
p++;
*outptr++ = tolower(c);
}
*outptr = 0;
if(c == 0)
{
if(strcmp(p_lang,"en")==0)
{
*p_lang = 0; // don't need "en", it's assumed by default
return(p);
}
}
else
{
*outptr++ = '|'; // more phonemes follow, terminate language string with separator
}
}
break;
}
}
/* terminate the encoded string */
*outptr = 0;
return(p);
} // end of EncodePhonemes
void DecodePhonemes(const char *inptr, char *outptr)
{//==================================================
// Translate from internal phoneme codes into phoneme mnemonics
unsigned char phcode;
unsigned char c;
unsigned int mnem;
PHONEME_TAB *ph;
static const char *stress_chars = "==,,'* ";
sprintf(outptr,"* ");
while((phcode = *inptr++) > 0)
{
if(phcode == 255)
continue; /* indicates unrecognised phoneme */
if((ph = phoneme_tab[phcode]) == NULL)
continue;
if((ph->type == phSTRESS) && (ph->std_length <= 4) && (ph->program == 0))
{
if(ph->std_length > 1)
*outptr++ = stress_chars[ph->std_length];
}
else
{
mnem = ph->mnemonic;
while((c = (mnem & 0xff)) != 0)
{
*outptr++ = c;
mnem = mnem >> 8;
}
if(phcode == phonSWITCH)
{
while(isalpha(*inptr))
{
*outptr++ = *inptr++;
}
}
}
}
*outptr = 0; /* string terminator */
} // end of DecodePhonemes
// using Kirschenbaum to IPA translation, ascii 0x20 to 0x7f
unsigned short ipa1[96] = {
0x20,0x21,0x22,0x2b0,0x24,0x25,0x0e6,0x2c8,0x28,0x29,0x27e,0x2b,0x2cc,0x2d,0x2e,0x2f,
0x252,0x31,0x32,0x25c,0x34,0x35,0x36,0x37,0x275,0x39,0x2d0,0x2b2,0x3c,0x3d,0x3e,0x294,
0x259,0x251,0x3b2,0xe7,0xf0,0x25b,0x46,0x262,0x127,0x26a,0x25f,0x4b,0x26b,0x271,0x14b,0x254,
0x3a6,0x263,0x280,0x283,0x3b8,0x28a,0x28c,0x153,0x3c7,0xf8,0x292,0x32a,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x261,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x303,0x7f
};
#define N_PHON_OUT 500 // realloc increment
static char *phon_out_buf = NULL; // passes the result of GetTranslatedPhonemeString()
static unsigned int phon_out_size = 0;
char *WritePhMnemonic(char *phon_out, PHONEME_TAB *ph, PHONEME_LIST *plist, int use_ipa, int *flags)
{//===================================================================================================
int c;
int mnem;
int len;
int first;
int ix = 0;
char *p;
PHONEME_DATA phdata;
if(ph->code == phonEND_WORD)
{
// ignore
phon_out[0] = 0;
return(phon_out);
}
if(ph->code == phonSWITCH)
{
// the tone_ph field contains a phoneme table number
p = phoneme_tab_list[plist->tone_ph].name;
sprintf(phon_out, "(%s)", p);
return(phon_out + strlen(phon_out));
}
if(use_ipa)
{
// has an ipa name been defined for this phoneme ?
phdata.ipa_string[0] = 0;
if(plist == NULL)
{
InterpretPhoneme2(ph->code, &phdata);
}
else
{
InterpretPhoneme(NULL, 0, plist, &phdata, NULL);
}
p = phdata.ipa_string;
if(*p == 0x20)
{
// indicates no name for this phoneme
*phon_out = 0;
return(phon_out);
}
if((*p != 0) && ((*p & 0xff) < 0x20))
{
// name starts with a flags byte
if(flags != NULL)
*flags = *p;
p++;
}
len = strlen(p);
if(len > 0)
{
strcpy(phon_out, p);
phon_out += len;
*phon_out = 0;
return(phon_out);
}
}
first = 1;
for(mnem = ph->mnemonic; (c = mnem & 0xff) != 0; mnem = mnem >> 8)
{
if((c == '/') && (option_phoneme_variants==0))
break; // discard phoneme variant indicator
if(use_ipa)
{
// convert from ascii to ipa
if(first && (c == '_'))
break; // don't show pause phonemes
if((c == '#') && (ph->type == phVOWEL))
break; // # is subscript-h, but only for consonants
// ignore digits after the first character
if(!first && IsDigit09(c))
continue;
if((c >= 0x20) && (c < 128))
c = ipa1[c-0x20];
ix += utf8_out(c, &phon_out[ix]);
}
else
{
phon_out[ix++]= c;
}
first = 0;
}
phon_out = &phon_out[ix];
*phon_out = 0;
return(phon_out);
} // end of WritePhMnemonic
const char *GetTranslatedPhonemeString(int phoneme_mode)
{//=======================================================
/* Called after a clause has been translated into phonemes, in order
to display the clause in phoneme mnemonic form.
phoneme_mode
bit 1: use IPA phoneme names
bit 7: use tie between letters in multi-character phoneme names
bits 8-23 tie or separator character
*/
int ix;
unsigned int len;
int phon_out_ix=0;
int stress;
int c;
char *p;
char *buf;
int count;
int flags;
int use_ipa;
int use_tie;
int separate_phonemes;
char phon_buf[30];
char phon_buf2[30];
PHONEME_LIST *plist;
static const char *stress_chars = "==,,''";
if(phon_out_buf == NULL)
{
phon_out_size = N_PHON_OUT;
if((phon_out_buf = (char *)realloc(phon_out_buf, phon_out_size)) == NULL)
{
phon_out_size = 0;
return("");
}
}
use_ipa = phoneme_mode & espeakPHONEMES_IPA;
if(phoneme_mode & espeakPHONEMES_TIE)
{
use_tie = phoneme_mode >> 8;
separate_phonemes = 0;
}
else
{
separate_phonemes = phoneme_mode >> 8;
use_tie = 0;
}
for(ix=1; ix<(n_phoneme_list-2); ix++)
{
buf = phon_buf;
plist = &phoneme_list[ix];
WritePhMnemonic(phon_buf2, plist->ph, plist, use_ipa, &flags);
if(plist->newword)
*buf++ = ' ';
if((!plist->newword) || (separate_phonemes == ' '))
{
if((separate_phonemes != 0) && (ix > 1))
{
utf8_in(&c, phon_buf2);
if((c < 0x2b0) || (c > 0x36f)) // not if the phoneme starts with a superscript letter
{
buf += utf8_out(separate_phonemes, buf);
}
}
}
if(plist->synthflags & SFLAG_SYLLABLE)
{
if((stress = plist->stresslevel) > 1)
{
c = 0;
if(stress > 5) stress = 5;
if(use_ipa)
{
c = 0x2cc; // ipa, secondary stress
if(stress > 3)
c = 0x02c8; // ipa, primary stress
}
else
{
c = stress_chars[stress];
}
if(c != 0)
{
buf += utf8_out(c, buf);
// if(separate_phonemes)
// *buf++ = separate_phonemes;
}
}
}
flags = 0;
count = 0;
for(p=phon_buf2; *p != 0;)
{
p += utf8_in(&c, p);
if(use_tie != 0)
{
// look for non-inital alphabetic character, but not diacritic, superscript etc.
if((count>0) && !(flags & (1 << (count-1))) && ((c < 0x2b0) || (c > 0x36f)) && iswalpha2(c))
{
buf += utf8_out(use_tie, buf);
}
}
buf += utf8_out(c, buf);
count++;
}
if(plist->ph->code != phonSWITCH)
{
if(plist->synthflags & SFLAG_LENGTHEN)
{
buf = WritePhMnemonic(buf, phoneme_tab[phonLENGTHEN], NULL, use_ipa, NULL);
}
if((plist->synthflags & SFLAG_SYLLABLE) && (plist->type != phVOWEL))
{
// syllablic consonant
buf = WritePhMnemonic(buf, phoneme_tab[phonSYLLABIC], NULL, use_ipa, NULL);
}
if(plist->tone_ph > 0)
{
buf = WritePhMnemonic(buf, phoneme_tab[plist->tone_ph], NULL, use_ipa, NULL);
}
}
len = buf - phon_buf;
if((phon_out_ix + len) >= phon_out_size)
{
// enlarge the phoneme buffer
phon_out_size = phon_out_ix + len + N_PHON_OUT;
if((phon_out_buf = (char *)realloc(phon_out_buf, phon_out_size)) == NULL)
{
phon_out_size = 0;
return("");
}
}
phon_buf[len] = 0;
strcpy(&phon_out_buf[phon_out_ix], phon_buf);
phon_out_ix += len;
}
phon_out_buf[phon_out_ix] = 0;
return(phon_out_buf);
} // end of GetTranslatedPhonemeString
//=============================================================================================
// Is a word Unpronouncable - and so should be spoken as individual letters
//
//=============================================================================================
static int IsLetterGroup(Translator *tr, char *word, int group, int pre)
{//=====================================================================
// match the word against a list of utf-8 strings
char *p;
char *w;
int len=0;
p = tr->letterGroups[group];
if(p == NULL)
return(0);
while(*p != RULE_GROUP_END)
{
if(pre)
{
len = strlen(p);
w = word - len + 1;
}
else
{
w = word;
}
while((*p == *w) && (*w != 0))
{
w++;
p++;
}
if(*p == 0)
{
if(pre)
return(len);
return(w-word); // matched a complete string
}
while(*p++ != 0); // skip to end of string
}
return(0);
}
static int IsLetter(Translator *tr, int letter, int group)
{//=======================================================
int letter2;
if(tr->letter_groups[group] != NULL)
{
if(wcschr(tr->letter_groups[group],letter))
return(1);
return(0);
}
if(group > 7)
return(0);
if(tr->letter_bits_offset > 0)
{
if(((letter2 = (letter - tr->letter_bits_offset)) > 0) && (letter2 < 0x100))
letter = letter2;
else
return(0);
}
else
{
if((letter >= 0xc0) && (letter < N_REMOVE_ACCENT))
return(tr->letter_bits[remove_accent[letter-0xc0]] & (1L << group));
}
if((letter >= 0) && (letter < 0x100))
return(tr->letter_bits[letter] & (1L << group));
return(0);
}
int IsVowel(Translator *tr, int letter)
{//====================================
return(IsLetter(tr, letter, LETTERGP_VOWEL2));
}
static int Unpronouncable2(Translator *tr, char *word)
{//===================================================
int c;
int end_flags;
char ph_buf[N_WORD_PHONEMES];
ph_buf[0] = 0;
c = word[-1];
word[-1] = ' '; // ensure there is a space before the "word"
end_flags = TranslateRules(tr, word, ph_buf, sizeof(ph_buf), NULL, FLAG_UNPRON_TEST, NULL);
word[-1] = c;
if((end_flags == 0) || (end_flags & SUFX_UNPRON))
return(1);
return(0);
}
int Unpronouncable(Translator *tr, char *word, int posn)
{//=====================================================
/* Determines whether a word in 'unpronouncable', i.e. whether it should
be spoken as individual letters.
This function may be language specific. This is a generic version.
*/
int c;
int c1=0;
int vowel_posn=9;
int index;
int count;
ALPHABET *alphabet;
utf8_in(&c,word);
if((tr->letter_bits_offset > 0) && (c < 0x241))
{
// Latin characters for a language with a non-latin alphabet
return(0); // so we can re-translate the word as English
}
if(((alphabet = AlphabetFromChar(c)) != NULL) && (alphabet->offset != tr->letter_bits_offset))
{
// Character is not in our alphabet
return(0);
}
if(tr->langopts.param[LOPT_UNPRONOUNCABLE] == 1)
return(0);
if(((c = *word) == ' ') || (c == 0) || (c == '\''))
return(0);
index = 0;
count = 0;
for(;;)
{
index += utf8_in(&c,&word[index]);
if((c==0) || (c==' '))
break;
if((c=='\'') && ((count > 1) || (posn > 0)))
break; // "tv'" but not "l'"
if(count==0)
c1 = c;
if((c == '\'') && (tr->langopts.param[LOPT_UNPRONOUNCABLE] == 3))
{
// don't count apostrophe
}
else
count++;
if(IsVowel(tr, c))
{
vowel_posn = count; // position of the first vowel
break;
}
if((c != '\'') && !iswalpha2(c))
return(0);
}
if((vowel_posn > 2) && (tr->langopts.param[LOPT_UNPRONOUNCABLE] == 2))
{
// Lookup unpronounable rules in *_rules
return(Unpronouncable2(tr, word));
}
if(c1 == tr->langopts.param[LOPT_UNPRONOUNCABLE])
vowel_posn--; // disregard this as the initial letter when counting
if(vowel_posn > (tr->langopts.max_initial_consonants+1))
return(1); // no vowel, or no vowel in first few letters
return(0);
} /* end of Unpronounceable */
//=============================================================================================
// Determine the stress pattern of a word
//
//=============================================================================================
static int GetVowelStress(Translator *tr, unsigned char *phonemes, signed char *vowel_stress, int *vowel_count, int *stressed_syllable, int control)
{//=================================================================================================================================================
// control = 1, set stress to 1 for forced unstressed vowels
unsigned char phcode;
PHONEME_TAB *ph;
unsigned char *ph_out = phonemes;
int count = 1;
int max_stress = -1;
int ix;
int j;
int stress = -1;
int primary_posn = 0;
vowel_stress[0] = 1;
while(((phcode = *phonemes++) != 0) && (count < (N_WORD_PHONEMES/2)-1))
{
if((ph = phoneme_tab[phcode]) == NULL)
continue;
if((ph->type == phSTRESS) && (ph->program == 0))
{
/* stress marker, use this for the following vowel */
if(phcode == phonSTRESS_PREV)
{
/* primary stress on preceeding vowel */
j = count - 1;
while((j > 0) && (*stressed_syllable == 0) && (vowel_stress[j] < 4))
{
if((vowel_stress[j] != 0) && (vowel_stress[j] != 1))
{
// don't promote a phoneme which must be unstressed
vowel_stress[j] = 4;
if(max_stress < 4)
{
max_stress = 4;
primary_posn = j;
}
/* reduce any preceding primary stress markers */
for(ix=1; ixstd_length < 4) || (*stressed_syllable == 0))
{
stress = ph->std_length;
if(stress > max_stress)
max_stress = stress;
}
}
continue;
}
if((ph->type == phVOWEL) && !(ph->phflags & phNONSYLLABIC))
{
vowel_stress[count] = (char)stress;
if((stress >= 4) && (stress >= max_stress))
{
primary_posn = count;
max_stress = stress;
}
if((stress < 0) && (control & 1) && (ph->phflags & phUNSTRESSED))
vowel_stress[count] = 1; /* weak vowel, must be unstressed */
count++;
stress = -1;
}
else if(phcode == phonSYLLABIC)
{
// previous consonant phoneme is syllablic
vowel_stress[count] = (char)stress;
if((stress == 0) && (control & 1))
vowel_stress[count++] = 1; // syllabic consonant, usually unstressed
}
*ph_out++ = phcode;
}
vowel_stress[count] = 1;
*ph_out = 0;
/* has the position of the primary stress been specified by $1, $2, etc? */
if(*stressed_syllable > 0)
{
if(*stressed_syllable >= count)
*stressed_syllable = count-1; // the final syllable
vowel_stress[*stressed_syllable] = 4;
max_stress = 4;
primary_posn = *stressed_syllable;
}
if(max_stress == 5)
{
// priority stress, replaces any other primary stress marker
for(ix=1; ixlangopts.stress_flags & S_PRIORITY_STRESS)
vowel_stress[ix] = 1;
else
vowel_stress[ix] = 3;
}
if(vowel_stress[ix] == 5)
{
vowel_stress[ix] = 4;
primary_posn = ix;
}
}
max_stress = 4;
}
*stressed_syllable = primary_posn;
*vowel_count = count;
return(max_stress);
} // end of GetVowelStress
static char stress_phonemes[] = {phonSTRESS_D, phonSTRESS_U, phonSTRESS_2, phonSTRESS_3,
phonSTRESS_P, phonSTRESS_P2, phonSTRESS_TONIC
};
void ChangeWordStress(Translator *tr, char *word, int new_stress)
{//==============================================================
int ix;
unsigned char *p;
int max_stress;
int vowel_count; // num of vowels + 1
int stressed_syllable=0; // position of stressed syllable
unsigned char phonetic[N_WORD_PHONEMES];
signed char vowel_stress[N_WORD_PHONEMES/2];
strcpy((char *)phonetic,word);
max_stress = GetVowelStress(tr, phonetic, vowel_stress, &vowel_count, &stressed_syllable, 0);
if(new_stress >= 4)
{
// promote to primary stress
for(ix=1; ix= max_stress)
{
vowel_stress[ix] = new_stress;
break;
}
}
}
else
{
// remove primary stress
for(ix=1; ix new_stress) // >= allows for diminished stress (=1)
vowel_stress[ix] = new_stress;
}
}
// write out phonemes
ix = 1;
p = phonetic;
while(*p != 0)
{
if((phoneme_tab[*p]->type == phVOWEL) && !(phoneme_tab[*p]->phflags & phNONSYLLABIC))
{
if((vowel_stress[ix] == 0) || (vowel_stress[ix] > 1))
*word++ = stress_phonemes[(unsigned char)vowel_stress[ix]];
ix++;
}
*word++ = *p++;
}
*word = 0;
} // end of ChangeWordStress
void SetWordStress(Translator *tr, char *output, unsigned int *dictionary_flags, int tonic, int control)
{//=====================================================================================================
/* Guess stress pattern of word. This is language specific
'output' is used for input and output
'dictionary_flags' has bits 0-3 position of stressed vowel (if > 0)
or unstressed (if == 7) or syllables 1 and 2 (if == 6)
bits 8... dictionary flags
If 'tonic' is set (>= 0), replace highest stress by this value.
control: bit 0 This is an individual symbol, not a word
bit 1 Suffix phonemes are still to be added
*/
unsigned char phcode;
unsigned char *p;
PHONEME_TAB *ph;
int stress;
int max_stress;
int max_stress_input; // any stress specified in the input?
int vowel_count; // num of vowels + 1
int ix;
int v;
int v_stress;
int stressed_syllable; // position of stressed syllable
int max_stress_posn;
int unstressed_word = 0;
char *max_output;
int final_ph;
int final_ph2;
int mnem;
int post_tonic; // currently not used
int opt_length;
int done;
int stressflags;
int dflags = 0;
int first_primary;
int long_vowel;
signed char vowel_stress[N_WORD_PHONEMES/2];
char syllable_weight[N_WORD_PHONEMES/2];
char vowel_length[N_WORD_PHONEMES/2];
unsigned char phonetic[N_WORD_PHONEMES];
static char consonant_types[16] = {0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0};
/* stress numbers STRESS_BASE +
0 diminished, unstressed within a word
1 unstressed, weak
2
3 secondary stress
4 main stress */
stressflags = tr->langopts.stress_flags;
if(dictionary_flags != NULL)
dflags = dictionary_flags[0];
/* copy input string into internal buffer */
for(ix=0; ix= n_phoneme_tab)
phonetic[ix] = phonSCHWA;
if(phonetic[ix] == 0)
break;
}
if(ix == 0) return;
final_ph = phonetic[ix-1];
final_ph2 = phonetic[ix-2];
max_output = output + (N_WORD_PHONEMES-3); /* check for overrun */
// any stress position marked in the xx_list dictionary ?
stressed_syllable = dflags & 0x7;
if(dflags & 0x8)
{
// this indicates a word without a primary stress
stressed_syllable = dflags & 0x3;
unstressed_word = 1;
}
max_stress = max_stress_input = GetVowelStress(tr, phonetic, vowel_stress, &vowel_count, &stressed_syllable, 1);
if((max_stress < 0) && dictionary_flags)
{
max_stress = 0;
}
// heavy or light syllables
ix = 1;
for(p = phonetic; *p != 0; p++)
{
if((phoneme_tab[p[0]]->type == phVOWEL) && !(phoneme_tab[p[0]]->phflags & phNONSYLLABIC))
{
int weight = 0;
int lengthened = 0;
if(phoneme_tab[p[1]]->code == phonLENGTHEN)
lengthened = 1;
if(lengthened || (phoneme_tab[p[0]]->phflags & phLONG))
{
// long vowel, increase syllable weight
weight++;
}
vowel_length[ix] = weight;
if(lengthened) p++; // advance over phonLENGTHEN
if(consonant_types[phoneme_tab[p[1]]->type] && ((phoneme_tab[p[2]]->type != phVOWEL) || (phoneme_tab[p[1]]->phflags & phLONG)))
{
// followed by two consonants, a long consonant, or consonant and end-of-word
weight++;
}
syllable_weight[ix] = weight;
ix++;
}
}
switch(tr->langopts.stress_rule)
{
case 8:
// stress on first syllable, unless it is a light syllable followed by a heavy syllable
if((syllable_weight[1] > 0) || (syllable_weight[2] == 0))
break;
// else drop through to case 1
case 1:
// stress on second syllable
if((stressed_syllable == 0) && (vowel_count > 2))
{
stressed_syllable = 2;
if(max_stress == 0)
{
vowel_stress[stressed_syllable] = 4;
}
max_stress = 4;
}
break;
case 10: // penultimate, but final if only 1 or 2 syllables
if(stressed_syllable == 0)
{
if(vowel_count < 4)
{
vowel_stress[vowel_count - 1] = 4;
max_stress = 4;
break;
}
}
// drop through to next case
case 2:
// a language with stress on penultimate vowel
if(stressed_syllable == 0)
{
/* no explicit stress - stress the penultimate vowel */
max_stress = 4;
if(vowel_count > 2)
{
stressed_syllable = vowel_count - 2;
if(stressflags & S_FINAL_SPANISH)
{
// LANG=Spanish, stress on last vowel if the word ends in a consonant other than 'n' or 's'
if(phoneme_tab[final_ph]->type != phVOWEL)
{
mnem = phoneme_tab[final_ph]->mnemonic;
if(tr->translator_name == L('a','n'))
{
if(((mnem != 's') && (mnem !='n')) || phoneme_tab[final_ph2]->type != phVOWEL)
stressed_syllable = vowel_count - 1; // stress on last syllable
}
else
if(tr->translator_name == L('i','a'))
{
if((mnem != 's') || phoneme_tab[final_ph2]->type != phVOWEL)
stressed_syllable = vowel_count - 1; // stress on last syllable
}
else
{
if((mnem == 's') && (phoneme_tab[final_ph2]->type == phNASAL))
{
// -ns stress remains on penultimate syllable
}
else if(((phoneme_tab[final_ph]->type != phNASAL) && (mnem != 's')) || (phoneme_tab[final_ph2]->type != phVOWEL))
{
stressed_syllable = vowel_count - 1;
}
}
}
}
if(stressflags & S_FINAL_LONG)
{
// stress on last syllable if it has a long vowel, but previous syllable has a short vowel
if(vowel_length[vowel_count - 1] > vowel_length[vowel_count - 2])
{
stressed_syllable = vowel_count - 1;
}
}
if((vowel_stress[stressed_syllable] == 0) || (vowel_stress[stressed_syllable] == 1))
{
// but this vowel is explicitly marked as unstressed
if(stressed_syllable > 1)
stressed_syllable--;
else
stressed_syllable++;
}
}
else
{
stressed_syllable = 1;
}
// only set the stress if it's not already marked explicitly
if(vowel_stress[stressed_syllable] < 0)
{
// don't stress if next and prev syllables are stressed
if((vowel_stress[stressed_syllable-1] < 4) || (vowel_stress[stressed_syllable+1] < 4))
vowel_stress[stressed_syllable] = max_stress;
}
}
break;
case 3:
// stress on last vowel
if(stressed_syllable == 0)
{
/* no explicit stress - stress the final vowel */
stressed_syllable = vowel_count - 1;
while(stressed_syllable > 0)
{
// find the last vowel which is not unstressed
if(vowel_stress[stressed_syllable] < 0)
{
vowel_stress[stressed_syllable] = 4;
break;
}
else
stressed_syllable--;
}
max_stress = 4;
}
break;
case 4: // stress on antipenultimate vowel
if(stressed_syllable == 0)
{
stressed_syllable = vowel_count - 3;
if(stressed_syllable < 1)
stressed_syllable = 1;
if(max_stress == 0)
{
vowel_stress[stressed_syllable] = 4;
}
max_stress = 4;
}
break;
case 5:
// LANG=Russian
if(stressed_syllable == 0)
{
/* no explicit stress - guess the stress from the number of syllables */
static char guess_ru[16] = {0,0,1,1,2,3,3,4,5,6,7,7,8,9,10,11};
static char guess_ru_v[16] = {0,0,1,1,2,2,3,3,4,5,6,7,7,8,9,10}; // for final phoneme is a vowel
static char guess_ru_t[16] = {0,0,1,2,3,3,3,4,5,6,7,7,7,8,9,10}; // for final phoneme is an unvoiced stop
stressed_syllable = vowel_count - 3;
if(vowel_count < 16)
{
if(phoneme_tab[final_ph]->type == phVOWEL)
stressed_syllable = guess_ru_v[vowel_count];
else if(phoneme_tab[final_ph]->type == phSTOP)
stressed_syllable = guess_ru_t[vowel_count];
else
stressed_syllable = guess_ru[vowel_count];
}
vowel_stress[stressed_syllable] = 4;
max_stress = 4;
}
break;
case 6: // LANG=hi stress on the last heaviest syllable
if(stressed_syllable == 0)
{
int wt;
int max_weight = -1;
// int prev_stressed;
// find the heaviest syllable, excluding the final syllable
for(ix = 1; ix < (vowel_count-1); ix++)
{
if(vowel_stress[ix] < 0)
{
if((wt = syllable_weight[ix]) >= max_weight)
{
max_weight = wt;
// prev_stressed = stressed_syllable;
stressed_syllable = ix;
}
}
}
if((syllable_weight[vowel_count-1] == 2) && (max_weight< 2))
{
// the only double=heavy syllable is the final syllable, so stress this
stressed_syllable = vowel_count-1;
}
else if(max_weight <= 0)
{
// all syllables, exclusing the last, are light. Stress the first syllable
stressed_syllable = 1;
}
vowel_stress[stressed_syllable] = 4;
max_stress = 4;
}
break;
case 7: // LANG=tr, the last syllable for any vowel marked explicitly as unstressed
if(stressed_syllable == 0)
{
stressed_syllable = vowel_count - 1;
for(ix=1; ix < vowel_count; ix++)
{
if(vowel_stress[ix] == 1)
{
stressed_syllable = ix-1;
break;
}
}
vowel_stress[stressed_syllable] = 4;
max_stress = 4;
}
break;
case 9: // mark all as stressed
for(ix=1; ix 0)
{
long_vowel = ix;
vowel_stress[ix] = 3; // give secondary stress to all long vowels
}
}
// 'stressed_syllable' gives the last marked stress
if(stressed_syllable == 0)
{
// no marked stress, choose the last long vowel
if(long_vowel > 0)
stressed_syllable = long_vowel;
else
{
// no long vowels or consonant clusters
if(vowel_count > 5)
stressed_syllable = vowel_count - 3; // more than 4 syllables
else
stressed_syllable = vowel_count - 1;
}
}
vowel_stress[stressed_syllable] = 4;
max_stress = 4;
break;
case 13: // LANG=ml, 1st unless 1st vowel is short and 2nd is long
if(stressed_syllable == 0)
{
stressed_syllable = 1;
if((vowel_length[1] == 0) && (vowel_count > 2) && (vowel_length[2] > 0))
stressed_syllable = 2;
vowel_stress[stressed_syllable] = 4;
max_stress = 4;
}
break;
}
if((stressflags & S_FINAL_VOWEL_UNSTRESSED) && ((control & 2) == 0) && (vowel_count > 2) && (max_stress_input < 3) && (vowel_stress[vowel_count - 1] == 4))
{
// Don't allow stress on a word-final vowel
// Only do this if there is no suffix phonemes to be added, and if a stress position was not given explicitly
if(phoneme_tab[final_ph]->type == phVOWEL)
{
vowel_stress[vowel_count - 1] = 1;
vowel_stress[vowel_count - 2] = 4;
}
}
/* now guess the complete stress pattern */
if(max_stress < 4)
stress = 4; /* no primary stress marked, use for 1st syllable */
else
stress = 3;
if(unstressed_word == 0)
{
if((stressflags & S_2_SYL_2) && (vowel_count == 3))
{
// Two syllable word, if one syllable has primary stress, then give the other secondary stress
if(vowel_stress[1] == 4)
vowel_stress[2] = 3;
if(vowel_stress[2] == 4)
vowel_stress[1] = 3;
}
if((stressflags & S_INITIAL_2) && (vowel_stress[1] < 0))
{
// If there is only one syllable before the primary stress, give it a secondary stress
if((vowel_count > 3) && (vowel_stress[2] >= 4))
{
vowel_stress[1] = 3;
}
}
}
done = 0;
first_primary = 0;
for(v=1; v 1) && (stressflags & S_2_TO_HEAVY) && (syllable_weight[v]==0) && (syllable_weight[v+1]>0))
{
// don't put secondary stress on a light syllable which is followed by a heavy syllable
continue;
}
// should start with secondary stress on the first syllable, or should it count back from
// the primary stress and put secondary stress on alternate syllables?
vowel_stress[v] = (char)stress;
done =1;
stress = 3; /* use secondary stress for remaining syllables */
}
}
if(vowel_stress[v] >= 4)
{
if(first_primary == 0)
first_primary = v;
else if(stressflags & S_FIRST_PRIMARY)
{
// reduce primary stresses after the first to secondary
vowel_stress[v] = 3;
}
}
}
if((unstressed_word) && (tonic < 0))
{
if(vowel_count <= 2)
tonic = tr->langopts.unstressed_wd1; /* monosyllable - unstressed */
else
tonic = tr->langopts.unstressed_wd2; /* more than one syllable, used secondary stress as the main stress */
}
max_stress = 0;
max_stress_posn = 0;
for(v=1; v= max_stress)
{
max_stress = vowel_stress[v];
max_stress_posn = v;
}
}
if(tonic >= 0)
{
/* find position of highest stress, and replace it by 'tonic' */
/* don't disturb an explicitly set stress by 'unstress-at-end' flag */
if((tonic > max_stress) || (max_stress <= 4))
vowel_stress[max_stress_posn] = (char)tonic;
max_stress = tonic;
}
/* produce output phoneme string */
p = phonetic;
v = 1;
if(!(control & 1) && ((ph = phoneme_tab[*p]) != NULL))
{
while((ph->type == phSTRESS) || (*p == phonEND_WORD))
{
p++;
ph = phoneme_tab[p[0]];
}
#ifdef deleted
int gap = tr->langopts.word_gap & 0x700;
if((gap) && (vowel_stress[1] >= 4) && (prev_stress >= 4))
{
/* two primary stresses together, insert a short pause */
*output++ = pause_phonemes[gap >> 8];
}
else
#endif
if((tr->langopts.vowel_pause & 0x30) && (ph->type == phVOWEL))
{
// word starts with a vowel
if((tr->langopts.vowel_pause & 0x20) && (vowel_stress[1] >= 4))
{
*output++ = phonPAUSE_NOLINK; // not to be replaced by link
}
else
{
*output++ = phonPAUSE_VSHORT; // break, but no pause
}
}
}
p = phonetic;
post_tonic = 0;
while(((phcode = *p++) != 0) && (output < max_output))
{
if((ph = phoneme_tab[phcode]) == NULL)
continue;
// if(ph->type == phSTRESS)
// continue;
if(ph->type == phPAUSE)
{
tr->prev_last_stress = 0;
}
else if(((ph->type == phVOWEL) && !(ph->phflags & phNONSYLLABIC)) || (*p == phonSYLLABIC))
{
// a vowel, or a consonant followed by a syllabic consonant marker
v_stress = vowel_stress[v];
tr->prev_last_stress = v_stress;
if(vowel_stress[v-1] >= max_stress)
post_tonic = 1;
if(v_stress <= 1)
{
if((v > 1) && (max_stress >= 2) && (stressflags & S_FINAL_DIM) && (v == (vowel_count-1)))
{
// option: mark unstressed final syllable as diminished
v_stress = 0;
}
else if((stressflags & S_NO_DIM) || (v == 1) || (v == (vowel_count-1)))
{
// first or last syllable, or option 'don't set diminished stress'
v_stress = 1;
}
else if((v == (vowel_count-2)) && (vowel_stress[vowel_count-1] <= 1))
{
// penultimate syllable, followed by an unstressed final syllable
v_stress = 1;
}
else
{
// unstressed syllable within a word
if((vowel_stress[v-1] < 0) || ((stressflags & S_MID_DIM) == 0))
{
v_stress = 0; /* change to 0 (diminished stress) */
vowel_stress[v] = v_stress;
}
}
}
if((v_stress == 0) || (v_stress > 1))
*output++ = stress_phonemes[v_stress]; // mark stress of all vowels except 1 (unstressed)
if(vowel_stress[v] > max_stress)
{
max_stress = vowel_stress[v];
}
if((*p == phonLENGTHEN) && ((opt_length = tr->langopts.param[LOPT_IT_LENGTHEN]) & 1))
{
// remove lengthen indicator from non-stressed syllables
int shorten=0;
if(opt_length & 0x10)
{
// only allow lengthen indicator on the highest stress syllable in the word
if(v != max_stress_posn)
shorten = 1;
}
else if(v_stress < 4)
{
// only allow lengthen indicator if stress >= 4.
shorten = 1;
}
if(shorten)
p++;
}
if((v_stress >= 4) && (tr->langopts.param[LOPT_IT_LENGTHEN] == 2))
{
// LANG=Italian, lengthen penultimate stressed vowels, unless followed by 2 consonants
if((v == (vowel_count - 2)) && (syllable_weight[v] == 0))
{
*output++ = phcode;
phcode = phonLENGTHEN;
}
}
v++;
}
if(phcode != 1)
*output++ = phcode;
}
*output++ = 0;
return;
} /* end of SetWordStress */
//=============================================================================================
// Look up a word in the pronunciation rules
//
//=============================================================================================
void AppendPhonemes(Translator *tr, char *string, int size, const char *ph)
{//========================================================================
/* Add new phoneme string "ph" to "string"
Keeps count of the number of vowel phonemes in the word, and whether these
can be stressed syllables. These values can be used in translation rules
*/
const char *p;
unsigned char c;
int unstress_mark;
int length;
length = strlen(ph) + strlen(string);
if(length >= size)
{
return;
}
/* any stressable vowel ? */
unstress_mark = 0;
p = ph;
while((c = *p++) != 0)
{
if(c >= n_phoneme_tab) continue;
if(phoneme_tab[c]->type == phSTRESS)
{
if(phoneme_tab[c]->std_length < 4)
unstress_mark = 1;
}
else
{
if(phoneme_tab[c]->type == phVOWEL)
{
if(((phoneme_tab[c]->phflags & phUNSTRESSED) == 0) &&
(unstress_mark == 0))
{
tr->word_stressed_count++;
}
unstress_mark = 0;
tr->word_vowel_count++;
}
}
}
if(string != NULL)
strcat(string,ph);
} /* end of AppendPhonemes */
static void MatchRule(Translator *tr, char *word[], char *word_start, int group_length, char *rule, MatchRecord *match_out, int word_flags, int dict_flags)
{//========================================================================================================================================================
/* Checks a specified word against dictionary rules.
Returns with phoneme code string, or NULL if no match found.
word (indirect) points to current character group within the input word
This is advanced by this procedure as characters are consumed
group: the initial characters used to choose the rules group
rule: address of dictionary rule data for this character group
match_out: returns best points score
word_flags: indicates whether this is a retranslation after a suffix has been removed
*/
unsigned char rb; // current instuction from rule
unsigned char letter; // current letter from input word, single byte
int letter_w; // current letter, wide character
int letter_xbytes; // number of extra bytes of multibyte character (num bytes - 1)
unsigned char last_letter;
char *pre_ptr;
char *post_ptr; /* pointer to first character after group */
char *rule_start; /* start of current match template */
char *p;
int ix;
int match_type; /* left, right, or consume */
int failed;
int unpron_ignore;
int consumed; /* number of letters consumed from input */
int syllable_count;
int vowel;
int letter_group;
int distance_right;
int distance_left;
int lg_pts;
int n_bytes;
int add_points;
int command;
int check_atstart;
unsigned int *flags;
MatchRecord match;
static MatchRecord best;
int total_consumed; /* letters consumed for best match */
unsigned char condition_num;
char *common_phonemes; /* common to a group of entries */
char *group_chars;
char word_buf[N_WORD_BYTES];
group_chars = *word;
if(rule == NULL)
{
match_out->points = 0;
(*word)++;
return;
}
total_consumed = 0;
common_phonemes = NULL;
match_type = 0;
best.points = 0;
best.phonemes = "";
best.end_type = 0;
best.del_fwd = NULL;
/* search through dictionary rules */
while(rule[0] != RULE_GROUP_END)
{
unpron_ignore = word_flags & FLAG_UNPRON_TEST;
match_type=0;
consumed = 0;
letter = 0;
distance_right= -6; /* used to reduce points for matches further away the current letter */
distance_left= -2;
check_atstart = 0;
match.points = 1;
match.end_type = 0;
match.del_fwd = NULL;
pre_ptr = *word;
post_ptr = *word + group_length;
/* work through next rule until end, or until no-match proved */
rule_start = rule;
failed = 0;
while(!failed)
{
rb = *rule++;
if(rb <= RULE_LINENUM)
{
switch(rb)
{
case 0: // no phoneme string for this rule, use previous common rule
if(common_phonemes != NULL)
{
match.phonemes = common_phonemes;
while(((rb = *match.phonemes++) != 0) && (rb != RULE_PHONEMES))
{
if(rb == RULE_CONDITION)
match.phonemes++; // skip over condition number
if(rb == RULE_LINENUM)
match.phonemes += 2; // skip over line number
}
}
else
{
match.phonemes = "";
}
rule--; // so we are still pointing at the 0
failed=2; // matched OK
break;
case RULE_PRE_ATSTART: // pre rule with implied 'start of word'
check_atstart = 1;
unpron_ignore = 0;
match_type = RULE_PRE;
break;
case RULE_PRE:
match_type = RULE_PRE;
if(word_flags & FLAG_UNPRON_TEST)
{
// checking the start of the word for unpronouncable character sequences, only
// consider rules which explicitly match the start of a word
// Note: Those rules now use RULE_PRE_ATSTART
failed = 1;
}
break;
case RULE_POST:
match_type = RULE_POST;
break;
case RULE_PHONEMES:
match.phonemes = rule;
failed=2; // matched OK
break;
case RULE_PH_COMMON:
common_phonemes = rule;
break;
case RULE_CONDITION:
/* conditional rule, next byte gives condition number */
condition_num = *rule++;
if(condition_num >= 32)
{
// allow the rule only if the condition number is NOT set
if((tr->dict_condition & (1L << (condition_num-32))) != 0)
failed = 1;
}
else
{
// allow the rule only if the condition number is set
if((tr->dict_condition & (1L << condition_num)) == 0)
failed = 1;
}
if(!failed)
match.points++; // add one point for a matched conditional rule
break;
case RULE_LINENUM:
rule+=2;
break;
}
continue;
}
add_points = 0;
switch(match_type)
{
case 0:
/* match and consume this letter */
last_letter = letter;
letter = *post_ptr++;
if((letter == rb) || ((letter==(unsigned char)REPLACED_E) && (rb=='e')))
{
if((letter & 0xc0) != 0x80)
add_points = 21; // don't add point for non-initial UTF-8 bytes
consumed++;
}
else
failed = 1;
break;
case RULE_POST:
/* continue moving fowards */
distance_right += 6;
if(distance_right > 18)
distance_right = 19;
last_letter = letter;
letter_xbytes = utf8_in(&letter_w,post_ptr)-1;
letter = *post_ptr++;
switch(rb)
{
case RULE_LETTERGP:
letter_group = *rule++ - 'A';
if(IsLetter(tr, letter_w, letter_group))
{
lg_pts = 20;
if(letter_group==2)
lg_pts = 19; // fewer points for C, general consonant
add_points = (lg_pts-distance_right);
post_ptr += letter_xbytes;
}
else
failed = 1;
break;
case RULE_LETTERGP2: // match against a list of utf-8 strings
letter_group = *rule++ - 'A';
if((n_bytes = IsLetterGroup(tr, post_ptr-1,letter_group,0)) >0)
{
add_points = (20-distance_right);
post_ptr += (n_bytes-1);
}
else
failed =1;
break;
case RULE_NOTVOWEL:
if(IsLetter(tr, letter_w, 0) || ((letter_w == ' ') && (word_flags & FLAG_SUFFIX_VOWEL)))
{
failed = 1;
}
else
{
add_points = (20-distance_right);
post_ptr += letter_xbytes;
}
break;
case RULE_DIGIT:
if(IsDigit(letter_w))
{
add_points = (20-distance_right);
post_ptr += letter_xbytes;
}
else if(tr->langopts.tone_numbers)
{
// also match if there is no digit
add_points = (20-distance_right);
post_ptr--;
}
else
failed = 1;
break;
case RULE_NONALPHA:
if(!iswalpha2(letter_w))
{
add_points = (21-distance_right);
post_ptr += letter_xbytes;
}
else
failed = 1;
break;
case RULE_DOUBLE:
if(letter == last_letter)
add_points = (21-distance_right);
else
failed = 1;
break;
case RULE_DOLLAR:
command = *rule++;
if(command == DOLLAR_UNPR)
{
match.end_type = SUFX_UNPRON; // $unpron
}
else if(command == DOLLAR_NOPREFIX) // $noprefix
{
if(word_flags & FLAG_PREFIX_REMOVED)
failed = 1; // a prefix has been removed
else
add_points = 1;
}
else if((command & 0xf0) == 0x10)
{
// $w_alt
if(dict_flags & (1 << (BITNUM_FLAG_ALT + (command & 0xf))))
add_points = 23;
else
failed = 1;
}
else if(((command & 0xf0) == 0x20) || (command == DOLLAR_LIST))
{
// $list or $p_alt
// make a copy of the word up to the post-match characters
ix = *word - word_start + consumed + group_length + 1;
memcpy(word_buf, word_start-1, ix);
word_buf[ix] = ' ';
word_buf[ix+1] = 0;
LookupFlags(tr, &word_buf[1], &flags);
if((command == DOLLAR_LIST) && (flags[0] & FLAG_FOUND) && !(flags[1] & FLAG_ONLY))
add_points = 23;
else
if(flags[0] & (1 << (BITNUM_FLAG_ALT + (command & 0xf))))
add_points = 23;
else
failed = 1;
}
break;
case '-':
if((letter == '-') || ((letter == ' ') && (word_flags & FLAG_HYPHEN_AFTER)))
{
add_points = (22-distance_right); // one point more than match against space
}
else
failed = 1;
break;
case RULE_SYLLABLE:
{
/* more than specified number of vowel letters to the right */
char *p = post_ptr + letter_xbytes;
int vowel_count=0;
syllable_count = 1;
while(*rule == RULE_SYLLABLE)
{
rule++;
syllable_count+=1; /* number of syllables to match */
}
vowel = 0;
while(letter_w != RULE_SPACE)
{
if((vowel==0) && IsLetter(tr, letter_w,LETTERGP_VOWEL2))
{
// this is counting vowels which are separated by non-vowel letters
vowel_count++;
}
vowel = IsLetter(tr, letter_w,LETTERGP_VOWEL2);
p += utf8_in(&letter_w,p);
}
if(syllable_count <= vowel_count)
add_points = (18+syllable_count-distance_right);
else
failed = 1;
}
break;
case RULE_NOVOWELS:
{
char *p = post_ptr + letter_xbytes;
while(letter_w != RULE_SPACE)
{
if(IsLetter(tr, letter_w,LETTERGP_VOWEL2))
{
failed = 1;
break;
}
p += utf8_in(&letter_w,p);
}
if(!failed)
add_points = (19-distance_right);
}
break;
case RULE_SKIPCHARS:
{
// Used for lang=Tamil, used to match on the next word after an unknown word ending
// only look until the end of the word (including the end-of-word marker)
// Jx means 'skip characters until x', where 'x' may be '_' for 'end of word'
char *p = post_ptr + letter_xbytes;
char *p2 = p;
int rule_w; // skip characters until this
utf8_in(&rule_w,rule);
while((letter_w != rule_w) && (letter_w != RULE_SPACE))
{
p2 = p;
p += utf8_in(&letter_w,p);
}
if(letter_w == rule_w)
{
post_ptr = p2;
}
}
break;
case RULE_INC_SCORE:
add_points = 20; // force an increase in points
break;
case RULE_DEL_FWD:
// find the next 'e' in the word and replace by 'E'
for(p = *word + group_length; p < post_ptr; p++)
{
if(*p == 'e')
{
match.del_fwd = p;
break;
}
}
break;
case RULE_ENDING:
{
int end_type;
// next 3 bytes are a (non-zero) ending type. 2 bytes of flags + suffix length
end_type = (rule[0] << 16) + ((rule[1] & 0x7f) << 8) + (rule[2] & 0x7f);
if((tr->word_vowel_count == 0) && !(end_type & SUFX_P) && (tr->langopts.param[LOPT_SUFFIX] & 1))
failed = 1; // don't match a suffix rule if there are no previous syllables (needed for lang=tr).
else
{
match.end_type = end_type;
rule += 3;
}
}
break;
case RULE_NO_SUFFIX:
if(word_flags & FLAG_SUFFIX_REMOVED)
failed = 1; // a suffix has been removed
else
add_points = 1;
break;
default:
if(letter == rb)
{
if((letter & 0xc0) != 0x80)
{
// not for non-initial UTF-8 bytes
add_points = (21-distance_right);
}
}
else
failed = 1;
break;
}
break;
case RULE_PRE:
/* match backwards from start of current group */
distance_left += 2;
if(distance_left > 18)
distance_left = 19;
last_letter = *pre_ptr;
pre_ptr--;
letter_xbytes = utf8_in2(&letter_w,pre_ptr,1)-1;
letter = *pre_ptr;
switch(rb)
{
case RULE_LETTERGP:
letter_group = *rule++ - 'A';
if(IsLetter(tr, letter_w,letter_group))
{
lg_pts = 20;
if(letter_group==2)
lg_pts = 19; // fewer points for C, general consonant
add_points = (lg_pts-distance_left);
pre_ptr -= letter_xbytes;
}
else
failed = 1;
break;
case RULE_LETTERGP2: // match against a list of utf-8 strings
letter_group = *rule++ - 'A';
if((n_bytes = IsLetterGroup(tr, pre_ptr,letter_group,1)) >0)
{
add_points = (20-distance_right);
pre_ptr -= (n_bytes-1);
}
else
failed =1;
break;
case RULE_NOTVOWEL:
if(!IsLetter(tr, letter_w,0))
{
add_points = (20-distance_left);
pre_ptr -= letter_xbytes;
}
else
failed = 1;
break;
case RULE_DOUBLE:
if(letter == last_letter)
add_points = (21-distance_left);
else
failed = 1;
break;
case RULE_DIGIT:
if(IsDigit(letter_w))
{
add_points = (21-distance_left);
pre_ptr -= letter_xbytes;
}
else
failed = 1;
break;
case RULE_NONALPHA:
if(!iswalpha2(letter_w))
{
add_points = (21-distance_right);
pre_ptr -= letter_xbytes;
}
else
failed = 1;
break;
case RULE_DOLLAR:
command = *rule++;
if((command==DOLLAR_LIST) || ((command & 0xf0) == 0x20))
{
// $list or $p_alt
// make a copy of the word up to the current character
ix = *word - word_start + 1;
memcpy(word_buf, word_start-1, ix);
word_buf[ix] = ' ';
word_buf[ix+1] = 0;
LookupFlags(tr, &word_buf[1], &flags);
if((command==DOLLAR_LIST) && (flags[0] & FLAG_FOUND) && !(flags[1] & FLAG_ONLY))
add_points = 23;
else
if(flags[0] & (1 << (BITNUM_FLAG_ALT + (command & 0xf))))
add_points = 23;
else
failed = 1;
}
break;
case RULE_SYLLABLE:
/* more than specified number of vowels to the left */
syllable_count = 1;
while(*rule == RULE_SYLLABLE)
{
rule++;
syllable_count++; /* number of syllables to match */
}
if(syllable_count <= tr->word_vowel_count)
add_points = (18+syllable_count-distance_left);
else
failed = 1;
break;
case RULE_STRESSED:
if(tr->word_stressed_count > 0)
add_points = 19;
else
failed = 1;
break;
case RULE_NOVOWELS:
{
char *p = pre_ptr - letter_xbytes - 1;
while(letter_w != RULE_SPACE)
{
if(IsLetter(tr, letter_w,LETTERGP_VOWEL2))
{
failed = 1;
break;
}
p -= utf8_in2(&letter_w,p,1);
}
if(!failed)
add_points = 3;
}
break;
case RULE_IFVERB:
if(tr->expect_verb)
add_points = 1;
else
failed = 1;
break;
case RULE_CAPITAL:
if(word_flags & FLAG_FIRST_UPPER)
add_points = 1;
else
failed = 1;
break;
case '.':
// dot in pre- section, match on any dot before this point in the word
for(p=pre_ptr; *p != ' '; p--)
{
if(*p == '.')
{
add_points = 50;
break;
}
}
if(*p == ' ')
failed = 1;
break;
case '-':
if((letter == '-') || ((letter == ' ') && (word_flags & FLAG_HYPHEN)))
{
add_points = (22-distance_right); // one point more than match against space
}
else
failed = 1;
break;
default:
if(letter == rb)
{
if(letter == RULE_SPACE)
add_points = 4;
else
{
if((letter & 0xc0) != 0x80)
{
// not for non-initial UTF-8 bytes
add_points = (21-distance_left);
}
}
}
else
failed = 1;
break;
}
break;
}
if(failed == 0)
match.points += add_points;
}
if((failed == 2) && (unpron_ignore == 0))
{
// do we also need to check for 'start of word' ?
if((check_atstart==0) || (pre_ptr[-1] == ' '))
{
if(check_atstart)
match.points += 4;
/* matched OK, is this better than the last best match ? */
if(match.points >= best.points)
{
memcpy(&best,&match,sizeof(match));
total_consumed = consumed;
}
if((option_phonemes & espeakPHONEMES_TRACE) && (match.points > 0) && ((word_flags & FLAG_NO_TRACE) == 0))
{
// show each rule that matches, and it's points score
int pts;
char decoded_phonemes[80];
pts = match.points;
if(group_length > 1)
pts += 35; // to account for an extra letter matching
DecodePhonemes(match.phonemes,decoded_phonemes);
fprintf(f_trans,"%3d\t%s [%s]\n",pts,DecodeRule(group_chars, group_length, rule_start, word_flags), decoded_phonemes);
}
}
}
/* skip phoneme string to reach start of next template */
while(*rule++ != 0);
}
/* advance input data pointer */
total_consumed += group_length;
if(total_consumed == 0)
total_consumed = 1; /* always advance over 1st letter */
*word += total_consumed;
if(best.points == 0)
best.phonemes = "";
memcpy(match_out,&best,sizeof(MatchRecord));
} /* end of MatchRule */
int TranslateRules(Translator *tr, char *p_start, char *phonemes, int ph_size, char *end_phonemes, int word_flags, unsigned int *dict_flags)
{//=====================================================================================================================================
/* Translate a word bounded by space characters
Append the result to 'phonemes' and any standard prefix/suffix in 'end_phonemes' */
unsigned char c, c2;
unsigned int c12;
int wc=0;
int wc_bytes;
char *p2; /* copy of p for use in double letter chain match */
int found;
int g; /* group chain number */
int g1; /* first group for this letter */
int n;
int letter;
int any_alpha=0;
int ix;
unsigned int digit_count=0;
char *p;
ALPHABET *alphabet;
int dict_flags0=0;
MatchRecord match1;
MatchRecord match2;
char ph_buf[40];
char word_copy[N_WORD_BYTES];
static const char str_pause[2] = {phonPAUSE_NOLINK,0};
if(tr->data_dictrules == NULL)
return(0);
if(dict_flags != NULL)
dict_flags0 = dict_flags[0];
for(ix=0; ix<(N_WORD_BYTES-1);)
{
c = p_start[ix];
word_copy[ix++] = c;
if(c == 0)
break;
}
word_copy[ix] = 0;
if((option_phonemes & espeakPHONEMES_TRACE) && ((word_flags & FLAG_NO_TRACE)==0))
{
char wordbuf[120];
unsigned int ix;
for(ix=0; ((c = p_start[ix]) != ' ') && (c != 0) && (ix < (sizeof(wordbuf)-1)); ix++)
{
wordbuf[ix] = c;
}
wordbuf[ix] = 0;
if(word_flags & FLAG_UNPRON_TEST)
fprintf(f_trans,"Unpronouncable? '%s'\n",wordbuf);
else
fprintf(f_trans,"Translate '%s'\n",wordbuf);
}
p = p_start;
tr->word_vowel_count = 0;
tr->word_stressed_count = 0;
if(end_phonemes != NULL)
end_phonemes[0] = 0;
while(((c = *p) != ' ') && (c != 0))
{
wc_bytes = utf8_in(&wc,p);
if(IsAlpha(wc))
any_alpha++;
n = tr->groups2_count[c];
if(IsDigit(wc) && ((tr->langopts.tone_numbers == 0) || !any_alpha))
{
// lookup the number in *_list not *_rules
char string[8];
char buf[40];
string[0] = '_';
memcpy(&string[1],p,wc_bytes);
string[1+wc_bytes] = 0;
Lookup(tr, string,buf);
if(++digit_count >= 2)
{
strcat(buf,str_pause);
digit_count=0;
}
AppendPhonemes(tr,phonemes,ph_size,buf);
p += wc_bytes;
continue;
}
else
{
digit_count = 0;
found = 0;
if(((ix = wc - tr->letter_bits_offset) >= 0) && (ix < 128))
{
if(tr->groups3[ix] != NULL)
{
MatchRule(tr, &p, p_start, wc_bytes, tr->groups3[ix], &match1, word_flags, dict_flags0);
found = 1;
}
}
if(!found && (n > 0))
{
/* there are some 2 byte chains for this initial letter */
c2 = p[1];
c12 = c + (c2 << 8); /* 2 characters */
g1 = tr->groups2_start[c];
for(g=g1; g < (g1+n); g++)
{
if(tr->groups2_name[g] == c12)
{
found = 1;
p2 = p;
MatchRule(tr, &p2, p_start, 2, tr->groups2[g], &match2, word_flags, dict_flags0);
if(match2.points > 0)
match2.points += 35; /* to acount for 2 letters matching */
/* now see whether single letter chain gives a better match ? */
MatchRule(tr, &p, p_start, 1, tr->groups1[c], &match1, word_flags, dict_flags0);
if(match2.points >= match1.points)
{
// use match from the 2-letter group
memcpy(&match1,&match2,sizeof(MatchRecord));
p = p2;
}
}
}
}
if(!found)
{
/* alphabetic, single letter chain */
if(tr->groups1[c] != NULL)
MatchRule(tr, &p, p_start, 1, tr->groups1[c], &match1, word_flags, dict_flags0);
else
{
// no group for this letter, use default group
MatchRule(tr, &p, p_start, 0, tr->groups1[0], &match1, word_flags, dict_flags0);
if((match1.points == 0) && ((option_sayas & 0x10) == 0))
{
n = utf8_in(&letter,p-1)-1;
if(tr->letter_bits_offset > 0)
{
// not a Latin alphabet, switch to the default Latin alphabet language
if((letter <= 0x241) && iswalpha2(letter))
{
sprintf(phonemes,"%c%s",phonSWITCH,tr->langopts.ascii_language);
return(0);
}
}
#ifdef deleted
// can't switch to a tone language, because the tone-phoneme numbers are not valid for the original language
if((letter >= 0x4e00) && (letter < 0xa000) && (tr->langopts.ideographs != 1))
{
// Chinese ideogram
sprintf(phonemes,"%czh",phonSWITCH);
return(0);
}
#endif
// is it a bracket ?
if(letter == 0xe000+'(')
{
if(pre_pause < tr->langopts.param2[LOPT_BRACKET_PAUSE])
pre_pause = tr->langopts.param2[LOPT_BRACKET_PAUSE]; // a bracket, aleady spoken by AnnouncePunctuation()
}
if(IsBracket(letter))
{
if(pre_pause < tr->langopts.param[LOPT_BRACKET_PAUSE])
pre_pause = tr->langopts.param[LOPT_BRACKET_PAUSE];
}
// no match, try removing the accent and re-translating the word
if((letter >= 0xc0) && (letter < N_REMOVE_ACCENT) && ((ix = remove_accent[letter-0xc0]) != 0))
{
// within range of the remove_accent table
if((p[-2] != ' ') || (p[n] != ' '))
{
// not the only letter in the word
p2 = p-1;
p[-1] = ix;
while((p[0] = p[n]) != ' ') p++;
while(n-- > 0) *p++ = ' '; // replacement character must be no longer than original
if(tr->langopts.param[LOPT_DIERESES] && (lookupwchar(diereses_list,letter) > 0))
{
// vowel with dieresis, replace and continue from this point
p = p2;
continue;
}
phonemes[0] = 0; // delete any phonemes which have been produced so far
p = p_start;
tr->word_vowel_count = 0;
tr->word_stressed_count = 0;
continue; // start again at the beginning of the word
}
}
if(((alphabet = AlphabetFromChar(letter)) != NULL) && (alphabet->offset != tr->letter_bits_offset))
{
if(tr->langopts.alt_alphabet == alphabet->offset)
{
sprintf(phonemes,"%c%s",phonSWITCH, WordToString2(tr->langopts.alt_alphabet_lang));
return(0);
}
if(alphabet->flags & AL_WORDS)
{
// switch to the nominated language for this alphabet
sprintf(phonemes,"%c%s",phonSWITCH, WordToString2(alphabet->language));
return(0);
}
}
}
}
if(match1.points == 0)
{
if((wc >= 0x300) && (wc <= 0x36f))
{
// combining accent inside a word, ignore
}
else if(IsAlpha(wc))
{
if((any_alpha > 1) || (p[wc_bytes-1] > ' '))
{
// an unrecognised character in a word, abort and then spell the word
phonemes[0] = 0;
if(dict_flags != NULL)
dict_flags[0] |= FLAG_SPELLWORD;
break;
}
}
else
{
LookupLetter(tr, wc, -1, ph_buf, 0);
if(ph_buf[0])
{
match1.phonemes = ph_buf;
match1.points = 1;
}
}
p += (wc_bytes-1);
}
else
{
tr->phonemes_repeat_count = 0;
}
}
}
if(match1.phonemes == NULL)
match1.phonemes = "";
if(match1.points > 0)
{
if(word_flags & FLAG_UNPRON_TEST)
return(match1.end_type | 1);
#ifdef deleted
// ?? allow $unpr while translating rules, not just on initial FLAG_UNPRON_TEST
if((match1.end_type & SUFX_UNPRON) && !(word_flags & FLAG_SUFFIX_REMOVED))
return(match1.end_type);
#endif
if((match1.phonemes[0] == phonSWITCH) && ((word_flags & FLAG_DONT_SWITCH_TRANSLATOR)==0))
{
// an instruction to switch language, return immediately so we can re-translate
strcpy(phonemes,match1.phonemes);
return(0);
}
if((option_phonemes & espeakPHONEMES_TRACE) && ((word_flags & FLAG_NO_TRACE)==0))
{
fprintf(f_trans,"\n");
}
match1.end_type &= ~SUFX_UNPRON;
if((match1.end_type != 0) && (end_phonemes != NULL))
{
/* a standard ending has been found, re-translate the word without it */
if((match1.end_type & SUFX_P) && (word_flags & FLAG_NO_PREFIX))
{
// ignore the match on a prefix
}
else
{
if((match1.end_type & SUFX_P) && ((match1.end_type & 0x7f) == 0))
{
// no prefix length specified
match1.end_type |= p - p_start;
}
strcpy(end_phonemes,match1.phonemes);
memcpy(p_start,word_copy,strlen(word_copy));
return(match1.end_type);
}
}
if(match1.del_fwd != NULL)
*match1.del_fwd = REPLACED_E;
AppendPhonemes(tr,phonemes,ph_size,match1.phonemes);
}
}
memcpy(p_start,word_copy,strlen(word_copy));
return(0);
} /* end of TranslateRules */
void ApplySpecialAttribute2(Translator *tr, char *phonemes, int dict_flags)
{//========================================================================
// apply after the translation is complete
int ix;
int len;
char *p;
len = strlen(phonemes);
if(tr->langopts.param[LOPT_ALT] & 2)
{
for(ix=0; ix<(len-1); ix++)
{
if(phonemes[ix] == phonSTRESS_P)
{
p = &phonemes[ix+1];
if((dict_flags & FLAG_ALT2_TRANS) != 0)
{
if(*p == PhonemeCode('E'))
*p = PhonemeCode('e');
if(*p == PhonemeCode('O'))
*p = PhonemeCode('o');
}
else
{
if(*p == PhonemeCode('e'))
*p = PhonemeCode('E');
if(*p == PhonemeCode('o'))
*p = PhonemeCode('O');
}
break;
}
}
}
} // end of ApplySpecialAttribute2
//=============================================================================================
// Look up a word in the pronunciation dictionary list
// - exceptions which override the usual pronunciation rules, or which give a word
// special properties, such as pronounce as unstressed
//=============================================================================================
int TransposeAlphabet(Translator *tr, char *text)
{//==============================================
// transpose cyrillic alphabet (for example) into ascii (single byte) character codes
// return: number of bytes, bit 6: 1=used compression
int c;
int c2;
int ix;
int offset;
int min;
int max;
const char *map;
char *p = text;
char *p2;
int all_alpha=1;
int bits;
int acc;
int pairs_start;
const short *pairs_list;
int bufix;
char buf[N_WORD_BYTES+1];
offset = tr->transpose_min - 1;
min = tr->transpose_min;
max = tr->transpose_max;
map = tr->transpose_map;
pairs_start = max - min + 2;
bufix = 0;
do {
p += utf8_in(&c,p);
if(c != 0)
{
if((c >= min) && (c <= max))
{
if(map == NULL)
{
buf[bufix++] = c - offset;
}
else
{
// get the code from the transpose map
if(map[c - min] > 0)
{
buf[bufix++] = map[c - min];
}
else
{
all_alpha=0;
break;
}
}
}
else
{
all_alpha=0;
break;
}
}
} while ((c != 0) && (bufix < N_WORD_BYTES));
buf[bufix] = 0;
if(all_alpha)
{
// compress to 6 bits per character
acc=0;
bits=0;
p = buf;
p2 = buf;
while((c = *p++) != 0)
{
if((pairs_list = tr->frequent_pairs) != NULL)
{
c2 = c + (*p << 8);
for(ix=0; c2 >= pairs_list[ix]; ix++)
{
if(c2 == pairs_list[ix])
{
// found an encoding for a 2-character pair
c = ix + pairs_start; // 2-character codes start after the single letter codes
p++;
break;
}
}
}
acc = (acc << 6) + (c & 0x3f);
bits += 6;
if(bits >= 8)
{
bits -= 8;
*p2++ = (acc >> bits);
}
}
if(bits > 0)
{
*p2++ = (acc << (8-bits));
}
*p2 = 0;
ix = p2 - buf;
memcpy(text, buf, ix);
return(ix | 0x40); // bit 6 indicates compressed characters
}
else
{
return(strlen(text));
}
} // end of TransposeAlphabet
static const char *LookupDict2(Translator *tr, const char *word, const char *word2,
char *phonetic, unsigned int *flags, int end_flags, WORD_TAB *wtab)
//=====================================================================================
/* Find an entry in the word_dict file for a specified word.
Returns NULL if no match, else returns 'word_end'
word zero terminated word to match
word2 pointer to next word(s) in the input text (terminated by space)
flags: returns dictionary flags which are associated with a matched word
end_flags: indicates whether this is a retranslation after removing a suffix
*/
{
char *p;
char *next;
int hash;
int phoneme_len;
int wlen;
unsigned char flag;
unsigned int dictionary_flags;
unsigned int dictionary_flags2;
int condition_failed=0;
int n_chars;
int no_phonemes;
int skipwords;
int ix;
int c;
const char *word_end;
const char *word1;
int wflags = 0;
int lookup_symbol;
char word_buf[N_WORD_BYTES+1];
char dict_flags_buf[80];
if(wtab != NULL)
{
wflags = wtab->flags;
}
lookup_symbol = flags[1] & FLAG_LOOKUP_SYMBOL;
word1 = word;
if(tr->transpose_min > 0)
{
strncpy0(word_buf,word, N_WORD_BYTES);
wlen = TransposeAlphabet(tr, word_buf); // bit 6 indicates compressed characters
word = word_buf;
}
else
{
wlen = strlen(word);
}
hash = HashDictionary(word);
p = tr->dict_hashtab[hash];
if(p == NULL)
{
if(flags != NULL)
*flags = 0;
return(0);
}
// Find the first entry in the list for this hash value which matches.
// This corresponds to the last matching entry in the *_list file.
while(*p != 0)
{
next = p + p[0];
if(((p[1] & 0x7f) != wlen) || (memcmp(word,&p[2],wlen & 0x3f) != 0))
{
// bit 6 of wlen indicates whether the word has been compressed; so we need to match on this also.
p = next;
continue;
}
/* found matching entry. Decode the phonetic string */
word_end = word2;
dictionary_flags = 0;
dictionary_flags2 = 0;
no_phonemes = p[1] & 0x80;
p += ((p[1] & 0x3f) + 2);
if(no_phonemes)
{
phonetic[0] = 0;
phoneme_len = 0;
}
else
{
strcpy(phonetic,p);
phoneme_len = strlen(p);
p += (phoneme_len + 1);
}
while(p < next)
{
// examine the flags which follow the phoneme string
flag = *p++;
if(flag >= 100)
{
// conditional rule
if(flag >= 132)
{
// fail if this condition is set
if((tr->dict_condition & (1 << (flag-132))) != 0)
condition_failed = 1;
}
else
{
// allow only if this condition is set
if((tr->dict_condition & (1 << (flag-100))) == 0)
condition_failed = 1;
}
}
else if(flag > 80)
{
// flags 81 to 90 match more than one word
// This comes after the other flags
n_chars = next - p;
skipwords = flag - 80;
// don't use the contraction if any of the words are emphasized
// or has an embedded command, such as MARK
if(wtab != NULL)
{
for(ix=0; ix <= skipwords; ix++)
{
if(wtab[ix].flags & FLAG_EMPHASIZED2)
// if(((wflags2 = wtab[ix].flags) & FLAG_EMPHASIZED2) || ((ix > 0) && (wflags2 & FLAG_EMBEDDED)))
{
condition_failed = 1;
}
}
}
if(memcmp(word2,p,n_chars) != 0)
condition_failed = 1;
if(condition_failed)
{
p = next;
break;
}
dictionary_flags |= FLAG_SKIPWORDS;
dictionary_skipwords = skipwords;
p = next;
word_end = word2 + n_chars;
}
else if(flag > 64)
{
// stressed syllable information, put in bits 0-3
dictionary_flags = (dictionary_flags & ~0xf) | (flag & 0xf);
if((flag & 0xc) == 0xc)
dictionary_flags |= FLAG_STRESS_END;
}
else if(flag >= 32)
{
dictionary_flags2 |= (1L << (flag-32));
}
else
{
dictionary_flags |= (1L << flag);
}
}
if(condition_failed)
{
condition_failed=0;
continue;
}
if((end_flags & FLAG_SUFX)==0)
{
// no suffix has been removed
if(dictionary_flags2 & FLAG_STEM)
continue; // this word must have a suffix
}
if((end_flags & SUFX_P) && (dictionary_flags2 & (FLAG_ONLY | FLAG_ONLY_S)))
continue; // $only or $onlys, don't match if a prefix has been removed
if(end_flags & FLAG_SUFX)
{
// a suffix was removed from the word
if(dictionary_flags2 & FLAG_ONLY)
continue; // no match if any suffix
if((dictionary_flags2 & FLAG_ONLY_S) && ((end_flags & FLAG_SUFX_S)==0))
{
// only a 's' suffix allowed, but the suffix wasn't 's'
continue;
}
}
if(dictionary_flags2 & FLAG_HYPHENATED)
{
if(!(wflags & FLAG_HYPHEN_AFTER))
{
continue;
}
}
if(dictionary_flags2 & FLAG_CAPITAL)
{
if(!(wflags & FLAG_FIRST_UPPER))
{
continue;
}
}
if(dictionary_flags2 & FLAG_ALLCAPS)
{
if(!(wflags & FLAG_ALL_UPPER))
{
continue;
}
}
if(dictionary_flags & FLAG_NEEDS_DOT)
{
if(!(wflags & FLAG_HAS_DOT))
continue;
}
if((dictionary_flags2 & FLAG_ATEND) && (word_end < translator->clause_end) && (lookup_symbol==0))
{
// only use this pronunciation if it's the last word of the clause, or called from Lookup()
continue;
}
if((dictionary_flags2 & FLAG_ATSTART) && !(wtab->flags & FLAG_FIRST_WORD))
{
// only use this pronunciation if it's the first word of a clause
continue;
}
if((dictionary_flags2 & FLAG_SENTENCE) && !(translator->clause_terminator & CLAUSE_BIT_SENTENCE))
{
// only if this clause is a sentence , i.e. terminator is {. ? !} not {, : :}
continue;
}
if(dictionary_flags2 & FLAG_VERB)
{
// this is a verb-form pronunciation
if(tr->expect_verb || (tr->expect_verb_s && (end_flags & FLAG_SUFX_S)))
{
// OK, we are expecting a verb
if((tr->translator_name == L('e','n')) && (tr->prev_dict_flags[0] & FLAG_ALT7_TRANS) && (end_flags & FLAG_SUFX_S))
{
// lang=en, don't use verb form after 'to' if the word has 's' suffix
continue;
}
}
else
{
/* don't use the 'verb' pronunciation unless we are
expecting a verb */
continue;
}
}
if(dictionary_flags2 & FLAG_PAST)
{
if(!tr->expect_past)
{
/* don't use the 'past' pronunciation unless we are
expecting past tense */
continue;
}
}
if(dictionary_flags2 & FLAG_NOUN)
{
if((!tr->expect_noun) || (end_flags & SUFX_V))
{
/* don't use the 'noun' pronunciation unless we are
expecting a noun */
continue;
}
}
if(dictionary_flags2 & FLAG_NATIVE)
{
if(tr != translator)
continue; // don't use if we've switched translators
}
if(dictionary_flags & FLAG_ALT2_TRANS)
{
// language specific
if((tr->translator_name == L('h','u')) && !(tr->prev_dict_flags[0] & FLAG_ALT_TRANS))
continue;
}
if(flags != NULL)
{
flags[0] = dictionary_flags | FLAG_FOUND_ATTRIBUTES;
flags[1] = dictionary_flags2;
}
if(phoneme_len == 0)
{
if(option_phonemes & espeakPHONEMES_TRACE)
{
print_dictionary_flags(flags, dict_flags_buf, sizeof(dict_flags_buf));
fprintf(f_trans,"Flags: %s %s\n", word1, dict_flags_buf);
}
return(0); // no phoneme translation found here, only flags. So use rules
}
if(flags != NULL)
flags[0] |= FLAG_FOUND; // this flag indicates word was found in dictionary
if(option_phonemes & espeakPHONEMES_TRACE)
{
char ph_decoded[N_WORD_PHONEMES];
int textmode;
DecodePhonemes(phonetic,ph_decoded);
if((dictionary_flags & FLAG_TEXTMODE) == 0)
textmode = 0;
else
textmode = 1;
if(textmode == translator->langopts.textmode)
{
// only show this line if the word translates to phonemes, not replacement text
if((dictionary_flags & FLAG_SKIPWORDS) && (wtab != NULL))
{
// matched more than one word
// (check for wtab prevents showing RULE_SPELLING byte when speaking individual letters)
memcpy(word_buf,word2,word_end-word2);
word_buf[word_end-word2-1] = 0;
fprintf(f_trans,"Found: '%s %s\n",word1,word_buf);
}
else
{
fprintf(f_trans,"Found: '%s",word1);
}
print_dictionary_flags(flags, dict_flags_buf, sizeof(dict_flags_buf));
fprintf(f_trans,"' [%s] %s\n", ph_decoded,dict_flags_buf);
}
}
ix = utf8_in(&c, word);
if((word[ix] == 0) && !IsAlpha(c))
{
flags[0] |= FLAG_MAX3;
}
return(word_end);
}
return(0);
} // end of LookupDict2
int LookupDictList(Translator *tr, char **wordptr, char *ph_out, unsigned int *flags, int end_flags, WORD_TAB *wtab)
//==================================================================================================================
/* Lookup a specified word in the word dictionary.
Returns phonetic data in 'phonetic' and bits in 'flags'
end_flags: indicates if a suffix has been removed
*/
{
int length;
const char *found;
const char *word1;
const char *word2;
unsigned char c;
int nbytes;
int len;
char word[N_WORD_BYTES];
static char word_replacement[N_WORD_BYTES];
length = 0;
word2 = word1 = *wordptr;
while((word2[nbytes = utf8_nbytes(word2)]==' ') && (word2[nbytes+1]=='.'))
{
// look for an abbreviation of the form a.b.c
// try removing the spaces between the dots and looking for a match
memcpy(&word[length],word2,nbytes);
length += nbytes;
word[length++] = '.';
word2 += nbytes+3;
}
if(length > 0)
{
// found an abbreviation containing dots
nbytes = 0;
while(((c = word2[nbytes]) != 0) && (c != ' '))
{
nbytes++;
}
memcpy(&word[length],word2,nbytes);
word[length+nbytes] = 0;
found = LookupDict2(tr, word, word2, ph_out, flags, end_flags, wtab);
if(found)
{
// set the skip words flag
flags[0] |= FLAG_SKIPWORDS;
dictionary_skipwords = length;
return(1);
}
}
for(length=0; length<(N_WORD_BYTES-1); length++)
{
if(((c = *word1++)==0) || (c == ' '))
break;
if((c=='.') && (length > 0) && (IsDigit09(word[length-1])))
break; // needed for lang=hu, eg. "december 2.-ig"
word[length] = c;
}
word[length] = 0;
found = LookupDict2(tr, word, word1, ph_out, flags, end_flags, wtab);
if(flags[0] & FLAG_MAX3)
{
if(strcmp(ph_out, tr->phonemes_repeat) == 0)
{
tr->phonemes_repeat_count++;
if(tr->phonemes_repeat_count > 3)
{
ph_out[0] = 0;
}
}
else
{
strncpy0(tr->phonemes_repeat, ph_out, sizeof(tr->phonemes_repeat));
tr->phonemes_repeat_count = 1;
}
}
else
{
tr->phonemes_repeat_count = 0;
}
if((found == 0) && (flags[1] & FLAG_ACCENT))
{
int letter;
word2 = word;
if(*word2 == '_') word2++;
len = utf8_in(&letter, word2);
LookupAccentedLetter(tr,letter, ph_out);
found = word2 + len;
}
if(found == 0)
{
ph_out[0] = 0;
// try modifications to find a recognised word
if((end_flags & FLAG_SUFX_E_ADDED) && (word[length-1] == 'e'))
{
// try removing an 'e' which has been added by RemoveEnding
word[length-1] = 0;
found = LookupDict2(tr, word, word1, ph_out, flags, end_flags, wtab);
}
else if((end_flags & SUFX_D) && (word[length-1] == word[length-2]))
{
// try removing a double letter
word[length-1] = 0;
found = LookupDict2(tr, word, word1, ph_out, flags, end_flags, wtab);
}
}
if(found)
{
// if textmode is the default, then words which have phonemes are marked.
if(tr->langopts.textmode)
*flags ^= FLAG_TEXTMODE;
if(*flags & FLAG_TEXTMODE)
{
// the word translates to replacement text, not to phonemes
if(end_flags & FLAG_ALLOW_TEXTMODE)
{
// only use replacement text if this is the original word, not if a prefix or suffix has been removed
word_replacement[0] = 0;
word_replacement[1] = ' ';
sprintf(&word_replacement[2],"%s ",ph_out); // replacement word, preceded by zerochar and space
word1 = *wordptr;
*wordptr = &word_replacement[2];
if(option_phonemes & espeakPHONEMES_TRACE)
{
len = found - word1;
memcpy(word,word1,len); // include multiple matching words
word[len] = 0;
fprintf(f_trans,"Replace: %s %s\n",word,*wordptr);
}
}
else
{
// flags[0] &= ~FLAG_SKIPWORDS; // check lang=hu január 21.-ig (error: suffix repeated ??)
}
ph_out[0] = 0;
return(0);
}
return(1);
}
ph_out[0] = 0;
return(0);
} // end of LookupDictList
extern char word_phonemes[N_WORD_PHONEMES]; // a word translated into phoneme codes
int Lookup(Translator *tr, const char *word, char *ph_out)
{//=========================================================
// Look up in *_list, returns dictionary flags[0] and phonemes
int flags0;
unsigned int flags[2];
int say_as;
char *word1 = (char *)word;
char text[80];
flags[0] = 0;
flags[1] = FLAG_LOOKUP_SYMBOL;
if((flags0 = LookupDictList(tr, &word1, ph_out, flags, FLAG_ALLOW_TEXTMODE, NULL)) != 0)
{
flags0 = flags[0];
}
if(flags[0] & FLAG_TEXTMODE)
{
say_as = option_sayas;
option_sayas = 0; // don't speak replacement word as letter names
text[0] = 0;
strncpy0(&text[1], word1, sizeof(text));
flags0 = TranslateWord(tr, &text[1], 0, NULL, NULL);
strcpy(ph_out, word_phonemes);
option_sayas = say_as;
}
return(flags0);
}
int LookupFlags(Translator *tr, const char *word, unsigned int **flags_out)
{//===========================================================================
char buf[100];
static unsigned int flags[2];
char *word1 = (char *)word;
flags[0] = flags[1] = 0;
LookupDictList(tr, &word1, buf, flags, 0, NULL);
*flags_out = flags;
return(flags[0]);
}
int RemoveEnding(Translator *tr, char *word, int end_type, char *word_copy)
{//========================================================================
/* Removes a standard suffix from a word, once it has been indicated by the dictionary rules.
end_type: bits 0-6 number of letters
bits 8-14 suffix flags
word_copy: make a copy of the original word
This routine is language specific. In English it deals with reversing y->i and e-dropping
that were done when the suffix was added to the original word.
*/
int i;
char *word_end;
int len_ending;
int end_flags;
const char *p;
int len;
char ending[50];
// these lists are language specific, but are only relevent if the 'e' suffix flag is used
static const char *add_e_exceptions[] = {
"ion", NULL
};
static const char *add_e_additions[] = {
// "c", "rs", "ir", "ur", "ath", "ns", "lu", NULL };
"c", "rs", "ir", "ur", "ath", "ns", "u", NULL
};
for(word_end = word; *word_end != ' '; word_end++)
{
/* replace discarded 'e's */
if(*word_end == REPLACED_E)
*word_end = 'e';
}
i = word_end - word;
if(word_copy != NULL)
{
memcpy(word_copy,word,i);
word_copy[i] = 0;
}
// look for multibyte characters to increase the number of bytes to remove
for(len_ending = i = (end_type & 0x3f); i>0 ; i--) // num.of characters of the suffix
{
word_end--;
while((*word_end & 0xc0) == 0x80)
{
word_end--; // for multibyte characters
len_ending++;
}
}
// remove bytes from the end of the word and replace them by spaces
for(i=0; (itranslator_name == L('n','l'))
{
if(((word_end[0] & 0x80) == 0) && ((word_end[-1] & 0x80) == 0) && IsVowel(tr, word_end[-1]) && IsLetter(tr, word_end[0], LETTERGP_C) && !IsVowel(tr, word_end[-2]))
{
//double the vowel before the (ascii) final consonant
word_end[1] = word_end[0];
word_end[0] = word_end[-1];
word_end[2] = ' ';
}
}
else if(tr->translator_name == L('e','n'))
{
// add 'e' to end of stem
if(IsLetter(tr, word_end[-1],LETTERGP_VOWEL2) && IsLetter(tr, word_end[0],1))
{
// vowel(incl.'y') + hard.consonant
for(i=0; (p = add_e_exceptions[i]) != NULL; i++)
{
len = strlen(p);
if(memcmp(p,&word_end[1-len],len)==0)
{
break;
}
}
if(p == NULL)
end_flags |= FLAG_SUFX_E_ADDED; // no exception found
}
else
{
for(i=0; (p = add_e_additions[i]) != NULL; i++)
{
len = strlen(p);
if(memcmp(p,&word_end[1-len],len)==0)
{
end_flags |= FLAG_SUFX_E_ADDED;
break;
}
}
}
}
else if(tr->langopts.suffix_add_e != 0)
{
end_flags |= FLAG_SUFX_E_ADDED;
}
if(end_flags & FLAG_SUFX_E_ADDED)
{
utf8_out(tr->langopts.suffix_add_e, &word_end[1]);
if(option_phonemes & espeakPHONEMES_TRACE)
{
fprintf(f_trans,"add e\n");
}
}
}
if((end_type & SUFX_V) && (tr->expect_verb==0))
tr->expect_verb = 1; // this suffix indicates the verb pronunciation
if((strcmp(ending,"s")==0) || (strcmp(ending,"es")==0))
end_flags |= FLAG_SUFX_S;
// if(strcmp(ending,"'s")==0)
if(ending[0] == '\'')
end_flags &= ~FLAG_SUFX; // don't consider 's as an added suffix
return(end_flags);
} /* end of RemoveEnding */