/*
* Copyright (C) 2005 to 2014 by Jonathan Duddington
* email: jonsd@users.sourceforge.net
* Copyright (C) 2015-2017 Reece H. Dunn
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see: .
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "synthesize.h"
#include "dictionary.h" // for WritePhMnemonic, GetTranslatedPhone...
#include "intonation.h" // for CalcPitches
#include "mbrola.h" // for MbrolaGenerate, mbrola_name
#include "phoneme.h" // for PHONEME_TAB, phVOWEL, phLIQUID, phN...
#include "setlengths.h" // for CalcLengths
#include "soundicon.h" // for soundicon_tab, n_soundicon
#include "synthdata.h" // for InterpretPhoneme, GetEnvelope, Inte...
#include "translate.h" // for translator, LANGUAGE_OPTIONS, Trans...
#include "voice.h" // for voice_t, voice, LoadVoiceVariant
#include "wavegen.h" // for WcmdqInc, WcmdqFree, WcmdqStop
#include "speech.h" // for MAKE_MEM_UNDEFINED
static void SmoothSpect(void);
// list of phonemes in a clause
int n_phoneme_list = 0;
PHONEME_LIST phoneme_list[N_PHONEME_LIST+1];
SPEED_FACTORS speed;
static int last_pitch_cmd;
static int last_amp_cmd;
static frame_t *last_frame;
static int last_wcmdq;
static int pitch_length;
static int amp_length;
static int modn_flags;
static int fmt_amplitude = 0;
static int syllable_start;
static int syllable_end;
static int syllable_centre;
static voice_t *new_voice = NULL;
static int (*phoneme_callback)(const char *) = NULL;
#define RMS_GLOTTAL1 35 // vowel before glottal stop
#define RMS_START 28 // 28
#define VOWEL_FRONT_LENGTH 50
const char *WordToString(char buf[5], unsigned int word)
{
// Convert a phoneme mnemonic word into a string
int ix;
for (ix = 0; ix < 4; ix++)
buf[ix] = word >> (ix*8);
buf[4] = 0;
return buf;
}
void SynthesizeInit(void)
{
last_pitch_cmd = 0;
last_amp_cmd = 0;
last_frame = NULL;
syllable_centre = -1;
}
static void EndAmplitude(void)
{
if (amp_length > 0) {
if (wcmdq[last_amp_cmd][1] == 0)
wcmdq[last_amp_cmd][1] = amp_length;
amp_length = 0;
}
}
static void EndPitch(int voice_break)
{
// possible end of pitch envelope, fill in the length
if ((pitch_length > 0) && (last_pitch_cmd >= 0)) {
if (wcmdq[last_pitch_cmd][1] == 0)
wcmdq[last_pitch_cmd][1] = pitch_length;
pitch_length = 0;
}
if (voice_break) {
last_wcmdq = -1;
last_frame = NULL;
syllable_end = wcmdq_tail;
SmoothSpect();
syllable_centre = -1;
}
}
static void DoAmplitude(int amp, const unsigned char *amp_env)
{
intptr_t *q;
last_amp_cmd = wcmdq_tail;
amp_length = 0; // total length of vowel with this amplitude envelope
q = wcmdq[wcmdq_tail];
q[0] = WCMD_AMPLITUDE;
q[1] = 0; // fill in later from amp_length
q[2] = (intptr_t)amp_env;
q[3] = amp;
WcmdqInc();
}
static void DoPhonemeAlignment(char* pho, int type)
{
wcmdq[wcmdq_tail][0] = WCMD_PHONEME_ALIGNMENT;
wcmdq[wcmdq_tail][1] = (intptr_t)pho;
wcmdq[wcmdq_tail][2] = type;
WcmdqInc();
}
static void DoPitch(const unsigned char *env, int pitch1, int pitch2)
{
intptr_t *q;
EndPitch(0);
if (pitch1 == 255) {
// pitch was not set
pitch1 = 55;
pitch2 = 76;
env = envelope_data[PITCHfall];
}
last_pitch_cmd = wcmdq_tail;
pitch_length = 0; // total length of spect with this pitch envelope
if (pitch2 < 0)
pitch2 = 0;
q = wcmdq[wcmdq_tail];
q[0] = WCMD_PITCH;
q[1] = 0; // length, fill in later from pitch_length
q[2] = (intptr_t)env;
q[3] = (pitch1 << 16) + pitch2;
WcmdqInc();
}
int PauseLength(int pause, int control)
{
unsigned int len;
if (control == 0) {
if (pause >= 200)
len = (pause * speed.clause_pause_factor)/256;
else
len = (pause * speed.pause_factor)/256;
} else
len = (pause * speed.wav_factor)/256;
if (len < speed.min_pause)
len = speed.min_pause; // mS, limit the amount to which pauses can be shortened
return len;
}
static void DoPause(int length, int control)
{
// length in nominal mS
// control = 1, less shortening at fast speeds
unsigned int len;
if (length == 0)
len = 0;
else {
len = PauseLength(length, control);
if (len < 90000)
len = (len * samplerate) / 1000; // convert from mS to number of samples
else {
int srate2 = samplerate / 25; // avoid overflow
len = (len * srate2) / 40;
}
}
EndPitch(1);
wcmdq[wcmdq_tail][0] = WCMD_PAUSE;
wcmdq[wcmdq_tail][1] = len;
WcmdqInc();
last_frame = NULL;
if (fmt_amplitude != 0) {
wcmdq[wcmdq_tail][0] = WCMD_FMT_AMPLITUDE;
wcmdq[wcmdq_tail][1] = fmt_amplitude = 0;
WcmdqInc();
}
}
extern int seq_len_adjust; // temporary fix to advance the start point for playing the wav sample
static int DoSample2(int index, int which, int std_length, int control, int length_mod, int amp)
{
int length;
int wav_length;
int wav_scale;
int min_length;
int x;
int len4;
intptr_t *q;
unsigned char *p;
index = index & 0x7fffff;
p = &wavefile_data[index];
wav_scale = p[2];
wav_length = (p[1] * 256);
wav_length += p[0]; // length in bytes
if (wav_length == 0)
return 0;
min_length = speed.min_sample_len;
if (wav_scale == 0)
min_length *= 2; // 16 bit samples
if (std_length > 0) {
std_length = (std_length * samplerate)/1000;
if (wav_scale == 0)
std_length *= 2;
x = (min_length * std_length)/wav_length;
if (x > min_length)
min_length = x;
} else {
// no length specified, use the length of the stored sound
std_length = wav_length;
}
if (length_mod > 0)
std_length = (std_length * length_mod)/256;
length = (std_length * speed.wav_factor)/256;
if (control & pd_DONTLENGTHEN) {
// this option is used for Stops, with short noise bursts.
// Don't change their length much.
if (length > std_length) {
// don't let length exceed std_length
length = std_length;
}
}
if (length < min_length)
length = min_length;
if (wav_scale == 0) {
// 16 bit samples
length /= 2;
wav_length /= 2;
}
if (amp < 0)
return length;
len4 = wav_length / 4;
index += 4;
if (which & 0x100) {
// mix this with synthesised wave
last_wcmdq = wcmdq_tail;
q = wcmdq[wcmdq_tail];
q[0] = WCMD_WAVE2;
q[1] = length | (wav_length << 16); // length in samples
q[2] = (intptr_t)(&wavefile_data[index]);
q[3] = wav_scale + (amp << 8);
WcmdqInc();
return length;
}
if (length > wav_length) {
x = len4*3;
length -= x;
} else {
x = length;
length = 0;
}
last_wcmdq = wcmdq_tail;
q = wcmdq[wcmdq_tail];
q[0] = WCMD_WAVE;
q[1] = x; // length in samples
q[2] = (intptr_t)(&wavefile_data[index]);
q[3] = wav_scale + (amp << 8);
WcmdqInc();
while (length > len4*3) {
x = len4;
if (wav_scale == 0)
x *= 2;
last_wcmdq = wcmdq_tail;
q = wcmdq[wcmdq_tail];
q[0] = WCMD_WAVE;
q[1] = len4*2; // length in samples
q[2] = (intptr_t)(&wavefile_data[index+x]);
q[3] = wav_scale + (amp << 8);
WcmdqInc();
length -= len4*2;
}
if (length > 0) {
x = wav_length - length;
if (wav_scale == 0)
x *= 2;
last_wcmdq = wcmdq_tail;
q = wcmdq[wcmdq_tail];
q[0] = WCMD_WAVE;
q[1] = length; // length in samples
q[2] = (intptr_t)(&wavefile_data[index+x]);
q[3] = wav_scale + (amp << 8);
WcmdqInc();
}
return length;
}
int DoSample3(PHONEME_DATA *phdata, int length_mod, int amp)
{
int amp2;
int len;
EndPitch(1);
if (amp == -1) {
// just get the length, don't produce sound
amp2 = amp;
} else {
amp2 = phdata->sound_param[pd_WAV];
if (amp2 == 0)
amp2 = 100;
amp2 = (amp2 * 32)/100;
}
seq_len_adjust = 0;
if (phdata->sound_addr[pd_WAV] == 0)
len = 0;
else
len = DoSample2(phdata->sound_addr[pd_WAV], 2, phdata->pd_param[pd_LENGTHMOD]*2, phdata->pd_control, length_mod, amp2);
last_frame = NULL;
return len;
}
static frame_t *AllocFrame(void)
{
// Allocate a temporary spectrum frame for the wavegen queue. Use a pool which is big
// enough to use a round-robin without checks.
// Only needed for modifying spectra for blending to consonants
#define N_FRAME_POOL N_WCMDQ
static int ix = 0;
static frame_t frame_pool[N_FRAME_POOL];
ix++;
if (ix >= N_FRAME_POOL)
ix = 0;
MAKE_MEM_UNDEFINED(&frame_pool[ix], sizeof(frame_pool[ix]));
return &frame_pool[ix];
}
static void set_frame_rms(frame_t *fr, int new_rms)
{
// Each frame includes its RMS amplitude value, so to set a new
// RMS just adjust the formant amplitudes by the appropriate ratio
int x;
int ix;
static const short sqrt_tab[200] = {
0, 64, 90, 110, 128, 143, 156, 169, 181, 192, 202, 212, 221, 230, 239, 247,
256, 263, 271, 278, 286, 293, 300, 306, 313, 320, 326, 332, 338, 344, 350, 356,
362, 367, 373, 378, 384, 389, 394, 399, 404, 409, 414, 419, 424, 429, 434, 438,
443, 448, 452, 457, 461, 465, 470, 474, 478, 483, 487, 491, 495, 499, 503, 507,
512, 515, 519, 523, 527, 531, 535, 539, 543, 546, 550, 554, 557, 561, 565, 568,
572, 576, 579, 583, 586, 590, 593, 596, 600, 603, 607, 610, 613, 617, 620, 623,
627, 630, 633, 636, 640, 643, 646, 649, 652, 655, 658, 662, 665, 668, 671, 674,
677, 680, 683, 686, 689, 692, 695, 698, 701, 704, 706, 709, 712, 715, 718, 721,
724, 726, 729, 732, 735, 738, 740, 743, 746, 749, 751, 754, 757, 759, 762, 765,
768, 770, 773, 775, 778, 781, 783, 786, 789, 791, 794, 796, 799, 801, 804, 807,
809, 812, 814, 817, 819, 822, 824, 827, 829, 832, 834, 836, 839, 841, 844, 846,
849, 851, 853, 856, 858, 861, 863, 865, 868, 870, 872, 875, 877, 879, 882, 884,
886, 889, 891, 893, 896, 898, 900, 902
};
if (voice->klattv[0]) {
if (new_rms == -1)
fr->klattp[KLATT_AV] = 50;
return;
}
if (fr->rms == 0) return; // check for divide by zero
x = (new_rms * 64)/fr->rms;
if (x >= 200) x = 199;
x = sqrt_tab[x]; // sqrt(new_rms/fr->rms)*0x200;
for (ix = 0; ix < 8; ix++) {
int h;
h = fr->fheight[ix] * x;
fr->fheight[ix] = h/0x200;
}
}
static void formants_reduce_hf(frame_t *fr, int level)
{
// change height of peaks 2 to 8, percentage
if (voice->klattv[0])
return;
for (int ix = 2; ix < 8; ix++) {
int x;
x = fr->fheight[ix] * level;
fr->fheight[ix] = x/100;
}
}
static frame_t *CopyFrame(frame_t *frame1, int copy)
{
// create a copy of the specified frame in temporary buffer
frame_t *frame2;
if ((copy == 0) && (frame1->frflags & FRFLAG_COPIED)) {
// this frame has already been copied in temporary rw memory
return frame1;
}
frame2 = AllocFrame();
if (frame2 != NULL) {
memcpy(frame2, frame1, sizeof(frame_t));
frame2->length = 0;
frame2->frflags |= FRFLAG_COPIED;
}
return frame2;
}
static frame_t *DuplicateLastFrame(frameref_t *seq, int n_frames, int length)
{
frame_t *fr;
seq[n_frames-1].length = length;
fr = CopyFrame(seq[n_frames-1].frame, 1);
seq[n_frames].frame = fr;
seq[n_frames].length = 0;
return fr;
}
static void AdjustFormants(frame_t *fr, int target, int min, int max, int f1_adj, int f3_adj, int hf_reduce, int flags)
{
int x;
target = (target * voice->formant_factor)/256;
x = (target - fr->ffreq[2]) / 2;
if (x > max) x = max;
if (x < min) x = min;
fr->ffreq[2] += x;
fr->ffreq[3] += f3_adj;
if (flags & 0x20)
f3_adj = -f3_adj; // reverse direction for f4,f5 change
fr->ffreq[4] += f3_adj;
fr->ffreq[5] += f3_adj;
if (f1_adj == 1) {
x = (235 - fr->ffreq[1]);
if (x < -100) x = -100;
if (x > -60) x = -60;
fr->ffreq[1] += x;
}
if (f1_adj == 2) {
x = (235 - fr->ffreq[1]);
if (x < -300) x = -300;
if (x > -150) x = -150;
fr->ffreq[1] += x;
fr->ffreq[0] += x;
}
if (f1_adj == 3) {
x = (100 - fr->ffreq[1]);
if (x < -400) x = -400;
if (x > -300) x = -400;
fr->ffreq[1] += x;
fr->ffreq[0] += x;
}
formants_reduce_hf(fr, hf_reduce);
}
static int VowelCloseness(frame_t *fr)
{
// return a value 0-3 depending on the vowel's f1
int f1;
if ((f1 = fr->ffreq[1]) < 300)
return 3;
if (f1 < 400)
return 2;
if (f1 < 500)
return 1;
return 0;
}
int FormantTransition2(frameref_t *seq, int *n_frames, unsigned int data1, unsigned int data2, PHONEME_TAB *other_ph, int which)
{
int len;
int rms;
int f1;
int f2;
int f2_min;
int f2_max;
int f3_adj;
int f3_amp;
int flags;
int vcolour;
#define N_VCOLOUR 2
// percentage change for each formant in 256ths
static const short vcolouring[N_VCOLOUR][5] = {
{ 243, 272, 256, 256, 256 }, // palatal consonant follows
{ 256, 256, 240, 240, 240 }, // retroflex
};
frame_t *fr = NULL;
if (*n_frames < 2)
return 0;
len = (data1 & 0x3f) * 2;
rms = (data1 >> 6) & 0x3f;
flags = (data1 >> 12);
f2 = (data2 & 0x3f) * 50;
f2_min = (((data2 >> 6) & 0x1f) - 15) * 50;
f2_max = (((data2 >> 11) & 0x1f) - 15) * 50;
f3_adj = (((data2 >> 16) & 0x1f) - 15) * 50;
f3_amp = ((data2 >> 21) & 0x1f) * 8;
f1 = ((data2 >> 26) & 0x7);
vcolour = (data2 >> 29);
if ((other_ph != NULL) && (other_ph->mnemonic == '?'))
flags |= 8;
if (which == 1) {
// entry to vowel
fr = CopyFrame(seq[0].frame, 0);
seq[0].frame = fr;
seq[0].length = VOWEL_FRONT_LENGTH;
if (len > 0)
seq[0].length = len;
seq[0].frflags |= FRFLAG_LEN_MOD2; // reduce length modification
fr->frflags |= FRFLAG_LEN_MOD2;
int next_rms = seq[1].frame->rms;
if (voice->klattv[0])
fr->klattp[KLATT_AV] = seq[1].frame->klattp[KLATT_AV] - 4;
if (f2 != 0) {
if (rms & 0x20)
set_frame_rms(fr, (next_rms * (rms & 0x1f))/30);
AdjustFormants(fr, f2, f2_min, f2_max, f1, f3_adj, f3_amp, flags);
if ((rms & 0x20) == 0)
set_frame_rms(fr, rms*2);
} else {
if (flags & 8)
set_frame_rms(fr, (next_rms*24)/32);
else
set_frame_rms(fr, RMS_START);
}
if (flags & 8)
modn_flags = 0x800 + (VowelCloseness(fr) << 8);
} else {
// exit from vowel
rms = rms*2;
if ((f2 != 0) || (flags != 0)) {
if (flags & 8) {
fr = CopyFrame(seq[*n_frames-1].frame, 0);
seq[*n_frames-1].frame = fr;
rms = RMS_GLOTTAL1;
// degree of glottal-stop effect depends on closeness of vowel (indicated by f1 freq)
modn_flags = 0x400 + (VowelCloseness(fr) << 8);
} else {
fr = DuplicateLastFrame(seq, (*n_frames)++, len);
if (len > 36)
seq_len_adjust += (len - 36);
if (f2 != 0)
AdjustFormants(fr, f2, f2_min, f2_max, f1, f3_adj, f3_amp, flags);
}
set_frame_rms(fr, rms);
if ((vcolour > 0) && (vcolour <= N_VCOLOUR)) {
for (int ix = 0; ix < *n_frames; ix++) {
fr = CopyFrame(seq[ix].frame, 0);
seq[ix].frame = fr;
for (int formant = 1; formant <= 5; formant++) {
int x;
x = fr->ffreq[formant] * vcolouring[vcolour-1][formant-1];
fr->ffreq[formant] = x / 256;
}
}
}
}
}
if (fr != NULL) {
if (flags & 4)
fr->frflags |= FRFLAG_FORMANT_RATE;
if (flags & 2)
fr->frflags |= FRFLAG_BREAK; // don't merge with next frame
}
if (flags & 0x40)
DoPause(20, 0); // add a short pause after the consonant
if (flags & 16)
return len;
return 0;
}
static void SmoothSpect(void)
{
// Limit the rate of frequence change of formants, to reduce chirping
intptr_t *q;
frame_t *frame;
frame_t *frame2;
frame_t *frame1;
frame_t *frame_centre;
int ix;
int len;
int pk;
bool modified;
int allowed;
int diff;
if (syllable_start == syllable_end)
return;
if ((syllable_centre < 0) || (syllable_centre == syllable_start)) {
syllable_start = syllable_end;
return;
}
q = wcmdq[syllable_centre];
frame_centre = (frame_t *)q[2];
// backwards
ix = syllable_centre -1;
frame = frame2 = frame_centre;
for (;;) {
if (ix < 0) ix = N_WCMDQ-1;
q = wcmdq[ix];
if (q[0] == WCMD_PAUSE || q[0] == WCMD_WAVE)
break;
if (q[0] <= WCMD_SPECT2) {
len = q[1] & 0xffff;
frame1 = (frame_t *)q[3];
if (frame1 == frame) {
q[3] = (intptr_t)frame2;
frame1 = frame2;
} else
break; // doesn't follow on from previous frame
frame = frame2 = (frame_t *)q[2];
modified = false;
if (frame->frflags & FRFLAG_BREAK)
break;
if (frame->frflags & FRFLAG_FORMANT_RATE)
len = (len * 12)/10; // allow slightly greater rate of change for this frame (was 12/10)
for (pk = 0; pk < 6; pk++) {
int f1, f2;
if ((frame->frflags & FRFLAG_BREAK_LF) && (pk < 3))
continue;
f1 = frame1->ffreq[pk];
f2 = frame->ffreq[pk];
// backwards
if ((diff = f2 - f1) > 0)
allowed = f1*2 + f2;
else
allowed = f1 + f2*2;
// the allowed change is specified as percentage (%*10) of the frequency
// take "frequency" as 1/3 from the lower freq
allowed = (allowed * formant_rate[pk])/3000;
allowed = (allowed * len)/256;
if (diff > allowed) {
if (modified == false) {
frame2 = CopyFrame(frame, 0);
modified = true;
}
frame2->ffreq[pk] = frame1->ffreq[pk] + allowed;
q[2] = (intptr_t)frame2;
} else if (diff < -allowed) {
if (modified == false) {
frame2 = CopyFrame(frame, 0);
modified = true;
}
frame2->ffreq[pk] = frame1->ffreq[pk] - allowed;
q[2] = (intptr_t)frame2;
}
}
}
if (ix == syllable_start)
break;
ix--;
}
// forwards
ix = syllable_centre;
frame = NULL;
for (;;) {
q = wcmdq[ix];
if (q[0] == WCMD_PAUSE || q[0] == WCMD_WAVE)
break;
if (q[0] <= WCMD_SPECT2) {
len = q[1] & 0xffff;
frame1 = (frame_t *)q[2];
if (frame != NULL) {
if (frame1 == frame) {
q[2] = (intptr_t)frame2;
frame1 = frame2;
} else
break; // doesn't follow on from previous frame
}
frame = frame2 = (frame_t *)q[3];
modified = false;
if (frame1->frflags & FRFLAG_BREAK)
break;
if (frame1->frflags & FRFLAG_FORMANT_RATE)
len = (len *6)/5; // allow slightly greater rate of change for this frame
for (pk = 0; pk < 6; pk++) {
int f1, f2;
f1 = frame1->ffreq[pk];
f2 = frame->ffreq[pk];
// forwards
if ((diff = f2 - f1) > 0)
allowed = f1*2 + f2;
else
allowed = f1 + f2*2;
allowed = (allowed * formant_rate[pk])/3000;
allowed = (allowed * len)/256;
if (diff > allowed) {
if (modified == false) {
frame2 = CopyFrame(frame, 0);
modified = true;
}
frame2->ffreq[pk] = frame1->ffreq[pk] + allowed;
q[3] = (intptr_t)frame2;
} else if (diff < -allowed) {
if (modified == false) {
frame2 = CopyFrame(frame, 0);
modified = true;
}
frame2->ffreq[pk] = frame1->ffreq[pk] - allowed;
q[3] = (intptr_t)frame2;
}
}
}
ix++;
if (ix >= N_WCMDQ) ix = 0;
if (ix == syllable_end)
break;
}
syllable_start = syllable_end;
}
static void StartSyllable(void)
{
// start of syllable, if not already started
if (syllable_end == syllable_start)
syllable_end = wcmdq_tail;
}
int DoSpect2(PHONEME_TAB *this_ph, int which, FMT_PARAMS *fmt_params, PHONEME_LIST *plist, int modulation)
{
// which: 0 not a vowel, 1 start of vowel, 2 body and end of vowel
// length_mod: 256 = 100%
// modulation: -1 = don't write to wcmdq
int n_frames;
frameref_t *frames;
int frameix;
frame_t *frame1;
frame_t *frame2;
intptr_t *q;
int len;
int length_mod;
int length_sum;
int length_min;
int total_len = 0;
static int wave_flag = 0;
int wcmd_spect = WCMD_SPECT;
int frame_lengths[N_SEQ_FRAMES];
if (fmt_params->fmt_addr == 0)
return 0;
length_mod = plist->length;
if (length_mod == 0) length_mod = 256;
length_min = (samplerate/70); // greater than one cycle at low pitch (Hz)
if (which == 2) {
if ((translator->langopts.param[LOPT_LONG_VOWEL_THRESHOLD] > 0) && ((this_ph->std_length >= translator->langopts.param[LOPT_LONG_VOWEL_THRESHOLD]) || (plist->synthflags & SFLAG_LENGTHEN) || (this_ph->phflags & phLONG)))
length_min *= 2; // ensure long vowels are longer
}
if (which == 1) {
// limit the shortening of sonorants before shortened (eg. unstressed vowels)
if ((this_ph->type == phLIQUID) || (plist[-1].type == phLIQUID) || (plist[-1].type == phNASAL)) {
if (length_mod < (len = translator->langopts.param[LOPT_SONORANT_MIN]))
length_mod = len;
}
}
modn_flags = 0;
frames = LookupSpect(this_ph, which, fmt_params, &n_frames, plist);
if (frames == NULL)
return 0; // not found
if (fmt_params->fmt_amp != fmt_amplitude) {
// an amplitude adjustment is specified for this sequence
q = wcmdq[wcmdq_tail];
q[0] = WCMD_FMT_AMPLITUDE;
q[1] = fmt_amplitude = fmt_params->fmt_amp;
WcmdqInc();
}
frame1 = frames[0].frame;
if (voice->klattv[0])
wcmd_spect = WCMD_KLATT;
if (fmt_params->wav_addr == 0) {
if (wave_flag) {
// cancel any wavefile that was playing previously
wcmd_spect = WCMD_SPECT2;
if (voice->klattv[0])
wcmd_spect = WCMD_KLATT2;
wave_flag = 0;
} else {
wcmd_spect = WCMD_SPECT;
if (voice->klattv[0])
wcmd_spect = WCMD_KLATT;
}
}
if (last_frame != NULL) {
if (((last_frame->length < 2) || (last_frame->frflags & FRFLAG_VOWEL_CENTRE))
&& !(last_frame->frflags & FRFLAG_BREAK)) {
// last frame of previous sequence was zero-length, replace with first of this sequence
wcmdq[last_wcmdq][3] = (intptr_t)frame1;
if (last_frame->frflags & FRFLAG_BREAK_LF) {
// but flag indicates keep HF peaks in last segment
frame_t *fr;
fr = CopyFrame(frame1, 1);
for (int ix = 3; ix < 8; ix++) {
if (ix < 7)
fr->ffreq[ix] = last_frame->ffreq[ix];
fr->fheight[ix] = last_frame->fheight[ix];
}
wcmdq[last_wcmdq][3] = (intptr_t)fr;
}
}
}
if ((this_ph->type == phVOWEL) && (which == 2)) {
SmoothSpect(); // process previous syllable
// remember the point in the output queue of the centre of the vowel
syllable_centre = wcmdq_tail;
}
length_sum = 0;
for (frameix = 1; frameix < n_frames; frameix++) {
int length_factor = length_mod;
if (frames[frameix-1].frflags & FRFLAG_LEN_MOD) // reduce effect of length mod
length_factor = (length_mod*(256-speed.lenmod_factor) + 256*speed.lenmod_factor)/256;
else if (frames[frameix-1].frflags & FRFLAG_LEN_MOD2) // reduce effect of length mod, used for the start of a vowel
length_factor = (length_mod*(256-speed.lenmod2_factor) + 256*speed.lenmod2_factor)/256;
int frame_length = frames[frameix-1].length;
len = (frame_length * samplerate)/1000;
len = (len * length_factor)/256;
length_sum += len;
frame_lengths[frameix] = len;
}
if ((length_sum > 0) && (length_sum < length_min)) {
// lengthen, so that the sequence is greater than one cycle at low pitch
for (frameix = 1; frameix < n_frames; frameix++)
frame_lengths[frameix] = (frame_lengths[frameix] * length_min) / length_sum;
}
for (frameix = 1; frameix < n_frames; frameix++) {
frame2 = frames[frameix].frame;
if ((fmt_params->wav_addr != 0) && ((frame1->frflags & FRFLAG_DEFER_WAV) == 0)) {
// there is a wave file to play along with this synthesis
seq_len_adjust = 0;
int wavefile_amp;
if (fmt_params->wav_amp == 0)
wavefile_amp = 32;
else
wavefile_amp = (fmt_params->wav_amp * 32)/100;
DoSample2(fmt_params->wav_addr, which+0x100, 0, fmt_params->fmt_control, 0, wavefile_amp);
wave_flag = 1;
fmt_params->wav_addr = 0;
}
if (modulation >= 0) {
if (frame1->frflags & FRFLAG_MODULATE)
modulation = 6;
if ((frameix == n_frames-1) && (modn_flags & 0xf00))
modulation |= modn_flags; // before or after a glottal stop
}
len = frame_lengths[frameix];
pitch_length += len;
amp_length += len;
if (len == 0) {
last_frame = NULL;
frame1 = frame2;
} else {
last_wcmdq = wcmdq_tail;
if (modulation >= 0) {
q = wcmdq[wcmdq_tail];
q[0] = wcmd_spect;
q[1] = len + (modulation << 16);
q[2] = (intptr_t)frame1;
q[3] = (intptr_t)frame2;
WcmdqInc();
}
last_frame = frame1 = frame2;
total_len += len;
}
}
if ((which != 1) && (fmt_amplitude != 0)) {
q = wcmdq[wcmdq_tail];
q[0] = WCMD_FMT_AMPLITUDE;
q[1] = fmt_amplitude = 0;
WcmdqInc();
}
return total_len;
}
void DoMarker(int type, int char_posn, int length, int value)
{
// This could be used to return an index to the word currently being spoken
// Type 1=word, 2=sentence, 3=named marker, 4=play audio, 5=end
if (WcmdqFree() > 5) {
wcmdq[wcmdq_tail][0] = WCMD_MARKER + (type << 8);
wcmdq[wcmdq_tail][1] = (char_posn & 0xffffff) | (length << 24);
wcmdq[wcmdq_tail][2] = value;
WcmdqInc();
}
}
void DoPhonemeMarker(int type, int char_posn, int length, char *name)
{
// This could be used to return an index to the word currently being spoken
// Type 7=phoneme
if (WcmdqFree() > 5) {
wcmdq[wcmdq_tail][0] = WCMD_MARKER + (type << 8);
wcmdq[wcmdq_tail][1] = (char_posn & 0xffffff) | (length << 24);
memcpy(&wcmdq[wcmdq_tail][2], name, 8); // up to 8 bytes of UTF8 characters
WcmdqInc();
}
}
#if USE_LIBSONIC
void DoSonicSpeed(int value)
{
// value, multiplier * 1024
wcmdq[wcmdq_tail][0] = WCMD_SONIC_SPEED;
wcmdq[wcmdq_tail][1] = value;
WcmdqInc();
}
#endif
espeak_ng_STATUS DoVoiceChange(voice_t *v)
{
// allocate memory for a copy of the voice data, and free it in wavegenfill()
voice_t *v2;
if ((v2 = (voice_t *)malloc(sizeof(voice_t))) == NULL)
return ENOMEM;
memcpy(v2, v, sizeof(voice_t));
wcmdq[wcmdq_tail][0] = WCMD_VOICE;
wcmdq[wcmdq_tail][2] = (intptr_t)v2;
WcmdqInc();
return ENS_OK;
}
void DoEmbedded(int *embix, int sourceix)
{
// There were embedded commands in the text at this point
unsigned int word; // bit 7=last command for this word, bits 5,6 sign, bits 0-4 command
do {
unsigned int value;
int command;
word = embedded_list[*embix];
value = word >> 8;
command = word & 0x7f;
if (command == 0)
return; // error
(*embix)++;
switch (command & 0x1f)
{
case EMBED_S: // speed
SetEmbedded((command & 0x60) + EMBED_S2, value); // adjusts embedded_value[EMBED_S2]
SetSpeed(2);
break;
case EMBED_I: // play dynamically loaded wav data (sound icon)
if ((int)value < n_soundicon_tab) {
if (soundicon_tab[value].length != 0) {
DoPause(10, 0); // ensure a break in the speech
wcmdq[wcmdq_tail][0] = WCMD_WAVE;
wcmdq[wcmdq_tail][1] = soundicon_tab[value].length;
wcmdq[wcmdq_tail][2] = (intptr_t)soundicon_tab[value].data + 44; // skip WAV header
wcmdq[wcmdq_tail][3] = 0x1500; // 16 bit data, amp=21
WcmdqInc();
}
}
break;
case EMBED_M: // named marker
DoMarker(espeakEVENT_MARK, (sourceix & 0x7ff) + clause_start_char, 0, value);
break;
case EMBED_U: // play sound
DoMarker(espeakEVENT_PLAY, count_characters+1, 0, value); // always occurs at end of clause
break;
default:
DoPause(10, 0); // ensure a break in the speech
wcmdq[wcmdq_tail][0] = WCMD_EMBEDDED;
wcmdq[wcmdq_tail][1] = command;
wcmdq[wcmdq_tail][2] = value;
WcmdqInc();
break;
}
} while ((word & 0x80) == 0);
}
extern espeak_ng_OUTPUT_HOOKS* output_hooks;
int Generate(PHONEME_LIST *phoneme_list, int *n_ph, bool resume)
{
static int ix;
static int embedded_ix;
static int word_count;
PHONEME_LIST *p;
bool released;
int stress;
int modulation;
bool pre_voiced;
int free_min;
int value;
const unsigned char *pitch_env = NULL;
const unsigned char *amp_env;
PHONEME_TAB *ph;
int use_ipa = 0;
int vowelstart_prev;
char phoneme_name[16];
static int sourceix = 0;
PHONEME_DATA phdata;
PHONEME_DATA phdata_prev;
PHONEME_DATA phdata_next;
PHONEME_DATA phdata_tone;
FMT_PARAMS fmtp;
static WORD_PH_DATA worddata;
if (option_phoneme_events & espeakINITIALIZE_PHONEME_IPA)
use_ipa = 1;
#if USE_MBROLA
if (mbrola_name[0] != 0)
return MbrolaGenerate(phoneme_list, n_ph, resume);
#endif
if (resume == false) {
ix = 1;
embedded_ix = 0;
word_count = 0;
pitch_length = 0;
amp_length = 0;
last_frame = NULL;
last_wcmdq = -1;
syllable_start = wcmdq_tail;
syllable_end = wcmdq_tail;
syllable_centre = -1;
last_pitch_cmd = -1;
memset(&worddata, 0, sizeof(worddata));
DoPause(0, 0); // isolate from the previous clause
}
while ((ix < (*n_ph)) && (ix < N_PHONEME_LIST-2)) {
p = &phoneme_list[ix];
if(output_hooks && output_hooks->outputPhoSymbol)
{
char buf[30];
int dummy=0;
//WritePhMnemonic(buf, p->ph, p, 0, &dummy);
WritePhMnemonicWithStress(buf, p->ph, p, 0, &dummy);
DoPhonemeAlignment(strdup(buf),p->type);
}
if (p->type == phPAUSE)
free_min = 10;
else if (p->type != phVOWEL)
free_min = 15; // we need less Q space for non-vowels, and we need to generate phonemes after a vowel so that the pitch_length is filled in
else
free_min = MIN_WCMDQ;
if (WcmdqFree() <= free_min)
return 1; // wait
PHONEME_LIST *prev;
PHONEME_LIST *next;
PHONEME_LIST *next2;
prev = &phoneme_list[ix-1];
next = &phoneme_list[ix+1];
next2 = &phoneme_list[ix+2];
if (p->synthflags & SFLAG_EMBEDDED)
DoEmbedded(&embedded_ix, p->sourceix);
if (p->newword) {
if (((p->type == phVOWEL) && (translator->langopts.param[LOPT_WORD_MERGE] & 1)) ||
(p->ph->phflags & phNOPAUSE)) {
} else
last_frame = NULL;
sourceix = (p->sourceix & 0x7ff) + clause_start_char;
if (p->newword & PHLIST_START_OF_SENTENCE)
DoMarker(espeakEVENT_SENTENCE, sourceix, 0, count_sentences); // start of sentence
if (p->newword & PHLIST_START_OF_WORD)
DoMarker(espeakEVENT_WORD, sourceix, p->sourceix >> 11, clause_start_word + word_count++); // NOTE, this count doesn't include multiple-word pronunciations in *_list. eg (of a)
}
EndAmplitude();
if ((p->prepause > 0) && !(p->ph->phflags & phPREVOICE))
DoPause(p->prepause, 1);
bool done_phoneme_marker = false;
if (option_phoneme_events && (p->ph->code != phonEND_WORD)) {
if ((p->type == phVOWEL) && (prev->type == phLIQUID || prev->type == phNASAL)) {
// For vowels following a liquid or nasal, do the phoneme event after the vowel-start
} else {
//WritePhMnemonic(phoneme_name, p->ph, p, use_ipa, NULL);
WritePhMnemonicWithStress(phoneme_name, p->ph, p, use_ipa, NULL);
DoPhonemeMarker(espeakEVENT_PHONEME, sourceix, 0, phoneme_name);
done_phoneme_marker = true;
}
}
switch (p->type)
{
case phPAUSE:
DoPause(p->length, 0);
p->std_length = p->ph->std_length;
break;
case phSTOP:
released = false;
ph = p->ph;
if (next->type == phVOWEL)
released = true;
else if (!next->newword) {
if (next->type == phLIQUID) released = true;
}
if (released == false)
p->synthflags |= SFLAG_NEXT_PAUSE;
if (ph->phflags & phPREVOICE) {
// a period of voicing before the release
memset(&fmtp, 0, sizeof(fmtp));
InterpretPhoneme(NULL, 0x01, p, &phdata, &worddata);
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
if (last_pitch_cmd < 0) {
DoAmplitude(next->amp, NULL);
DoPitch(envelope_data[p->env], next->pitch1, next->pitch2);
}
DoSpect2(ph, 0, &fmtp, p, 0);
}
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
phdata.pd_control |= pd_DONTLENGTHEN;
DoSample3(&phdata, 0, 0);
break;
case phFRICATIVE:
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
if (p->synthflags & SFLAG_LENGTHEN)
DoSample3(&phdata, p->length, 0); // play it twice for [s:] etc.
DoSample3(&phdata, p->length, 0);
break;
case phVSTOP:
ph = p->ph;
memset(&fmtp, 0, sizeof(fmtp));
fmtp.fmt_control = pd_DONTLENGTHEN;
pre_voiced = false;
if (next->type == phVOWEL) {
DoAmplitude(p->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
pre_voiced = true;
} else if ((next->type == phLIQUID) && !next->newword) {
DoAmplitude(next->amp, NULL);
DoPitch(envelope_data[next->env], next->pitch1, next->pitch2);
pre_voiced = true;
} else {
if (last_pitch_cmd < 0) {
DoAmplitude(next->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
}
}
if ((prev->type == phVOWEL) || (ph->phflags & phPREVOICE)) {
// a period of voicing before the release
InterpretPhoneme(NULL, 0x01, p, &phdata, &worddata);
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
DoSpect2(ph, 0, &fmtp, p, 0);
if (p->synthflags & SFLAG_LENGTHEN) {
DoPause(25, 1);
DoSpect2(ph, 0, &fmtp, p, 0);
}
} else {
if (p->synthflags & SFLAG_LENGTHEN)
DoPause(50, 0);
}
if (pre_voiced) {
// followed by a vowel, or liquid + vowel
StartSyllable();
} else
p->synthflags |= SFLAG_NEXT_PAUSE;
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
fmtp.wav_addr = phdata.sound_addr[pd_ADDWAV];
fmtp.wav_amp = phdata.sound_param[pd_ADDWAV];
DoSpect2(ph, 0, &fmtp, p, 0);
if ((p->newword == 0) && (next2->newword == 0)) {
if (next->type == phVFRICATIVE)
DoPause(20, 0);
if (next->type == phFRICATIVE)
DoPause(12, 0);
}
break;
case phVFRICATIVE:
if (next->type == phVOWEL) {
DoAmplitude(p->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
} else if (next->type == phLIQUID) {
DoAmplitude(next->amp, NULL);
DoPitch(envelope_data[next->env], next->pitch1, next->pitch2);
} else {
if (last_pitch_cmd < 0) {
DoAmplitude(p->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
}
}
if ((next->type == phVOWEL) || ((next->type == phLIQUID) && (next->newword == 0))) // ?? test 14.Aug.2007
StartSyllable();
else
p->synthflags |= SFLAG_NEXT_PAUSE;
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
memset(&fmtp, 0, sizeof(fmtp));
fmtp.std_length = phdata.pd_param[i_SET_LENGTH]*2;
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
fmtp.wav_addr = phdata.sound_addr[pd_ADDWAV];
fmtp.wav_amp = phdata.sound_param[pd_ADDWAV];
if (p->synthflags & SFLAG_LENGTHEN)
DoSpect2(p->ph, 0, &fmtp, p, 0);
DoSpect2(p->ph, 0, &fmtp, p, 0);
break;
case phNASAL:
memset(&fmtp, 0, sizeof(fmtp));
if (!(p->synthflags & SFLAG_SEQCONTINUE)) {
DoAmplitude(p->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
}
if (prev->type == phNASAL)
last_frame = NULL;
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
fmtp.std_length = phdata.pd_param[i_SET_LENGTH]*2;
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
if (next->type == phVOWEL) {
StartSyllable();
DoSpect2(p->ph, 0, &fmtp, p, 0);
} else if (prev->type == phVOWEL && (p->synthflags & SFLAG_SEQCONTINUE))
DoSpect2(p->ph, 0, &fmtp, p, 0);
else {
last_frame = NULL; // only for nasal ?
DoSpect2(p->ph, 0, &fmtp, p, 0);
last_frame = NULL;
}
break;
case phLIQUID:
memset(&fmtp, 0, sizeof(fmtp));
modulation = 0;
if (p->ph->phflags & phTRILL)
modulation = 5;
if (!(p->synthflags & SFLAG_SEQCONTINUE)) {
DoAmplitude(p->amp, NULL);
DoPitch(envelope_data[p->env], p->pitch1, p->pitch2);
}
if (prev->type == phNASAL)
last_frame = NULL;
if (next->type == phVOWEL)
StartSyllable();
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
if ((value = (phdata.pd_param[i_PAUSE_BEFORE] - p->prepause)) > 0)
DoPause(value, 1);
fmtp.std_length = phdata.pd_param[i_SET_LENGTH]*2;
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
fmtp.wav_addr = phdata.sound_addr[pd_ADDWAV];
fmtp.wav_amp = phdata.sound_param[pd_ADDWAV];
DoSpect2(p->ph, 0, &fmtp, p, modulation);
break;
case phVOWEL:
ph = p->ph;
stress = p->stresslevel & 0xf;
memset(&fmtp, 0, sizeof(fmtp));
InterpretPhoneme(NULL, 0, p, &phdata, &worddata);
fmtp.std_length = phdata.pd_param[i_SET_LENGTH] * 2;
vowelstart_prev = 0;
if (((fmtp.fmt_addr = phdata.sound_addr[pd_VWLSTART]) != 0) && ((phdata.pd_control & pd_FORNEXTPH) == 0)) {
// a vowel start has been specified by the Vowel program
fmtp.fmt_length = phdata.sound_param[pd_VWLSTART];
} else if (prev->type != phPAUSE) {
// check the previous phoneme
InterpretPhoneme(NULL, 0, prev, &phdata_prev, NULL);
if (((fmtp.fmt_addr = phdata_prev.sound_addr[pd_VWLSTART]) != 0) && (phdata_prev.pd_control & pd_FORNEXTPH)) {
// a vowel start has been specified by the previous phoneme
vowelstart_prev = 1;
fmtp.fmt2_lenadj = phdata_prev.sound_param[pd_VWLSTART];
}
fmtp.transition0 = phdata_prev.vowel_transition[0];
fmtp.transition1 = phdata_prev.vowel_transition[1];
}
if (fmtp.fmt_addr == 0) {
// use the default start for this vowel
fmtp.use_vowelin = 1;
fmtp.fmt_control = 1;
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
}
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
pitch_env = envelope_data[p->env];
amp_env = NULL;
if (p->tone_ph != 0) {
InterpretPhoneme2(p->tone_ph, &phdata_tone);
pitch_env = GetEnvelope(phdata_tone.pitch_env);
if (phdata_tone.amp_env > 0)
amp_env = GetEnvelope(phdata_tone.amp_env);
}
StartSyllable();
modulation = 2;
if (stress <= 1)
modulation = 1; // 16ths
else if (stress >= 7)
modulation = 3;
if (prev->type == phVSTOP || prev->type == phVFRICATIVE) {
DoAmplitude(p->amp, amp_env);
DoPitch(pitch_env, p->pitch1, p->pitch2); // don't use prevocalic rising tone
DoSpect2(ph, 1, &fmtp, p, modulation);
} else if (prev->type == phLIQUID || prev->type == phNASAL) {
DoAmplitude(p->amp, amp_env);
DoSpect2(ph, 1, &fmtp, p, modulation); // continue with pre-vocalic rising tone
DoPitch(pitch_env, p->pitch1, p->pitch2);
} else if (vowelstart_prev) {
// VowelStart from the previous phoneme, but not phLIQUID or phNASAL
DoPitch(envelope_data[PITCHrise], p->pitch2 - 15, p->pitch2);
DoAmplitude(p->amp-1, amp_env);
DoSpect2(ph, 1, &fmtp, p, modulation); // continue with pre-vocalic rising tone
DoPitch(pitch_env, p->pitch1, p->pitch2);
} else {
if (!(p->synthflags & SFLAG_SEQCONTINUE)) {
DoAmplitude(p->amp, amp_env);
DoPitch(pitch_env, p->pitch1, p->pitch2);
}
DoSpect2(ph, 1, &fmtp, p, modulation);
}
if ((option_phoneme_events) && (done_phoneme_marker == false)) {
//WritePhMnemonic(phoneme_name, p->ph, p, use_ipa, NULL);
WritePhMnemonicWithStress(phoneme_name, p->ph, p, use_ipa, NULL);
DoPhonemeMarker(espeakEVENT_PHONEME, sourceix, 0, phoneme_name);
}
fmtp.fmt_addr = phdata.sound_addr[pd_FMT];
fmtp.fmt_amp = phdata.sound_param[pd_FMT];
fmtp.transition0 = 0;
fmtp.transition1 = 0;
if ((fmtp.fmt2_addr = phdata.sound_addr[pd_VWLEND]) != 0)
fmtp.fmt2_lenadj = phdata.sound_param[pd_VWLEND];
else if (next->type != phPAUSE) {
fmtp.fmt2_lenadj = 0;
InterpretPhoneme(NULL, 0, next, &phdata_next, NULL);
fmtp.use_vowelin = 1;
fmtp.transition0 = phdata_next.vowel_transition[2]; // always do vowel_transition, even if ph_VWLEND ?? consider [N]
fmtp.transition1 = phdata_next.vowel_transition[3];
if ((fmtp.fmt2_addr = phdata_next.sound_addr[pd_VWLEND]) != 0)
fmtp.fmt2_lenadj = phdata_next.sound_param[pd_VWLEND];
}
DoSpect2(ph, 2, &fmtp, p, modulation);
break;
}
ix++;
}
EndPitch(1);
if (*n_ph > 0) {
DoMarker(espeakEVENT_END, count_characters, 0, count_sentences); // end of clause
*n_ph = 0;
}
return 0; // finished the phoneme list
}
int SpeakNextClause(int control)
{
// Speak text from memory (text_in)
// control 0: start
// text_in is set
// The other calls have text_in = NULL
// control 1: speak next text
// 2: stop
int clause_tone;
char *voice_change;
if (control == 2) {
// stop speaking
n_phoneme_list = 0;
WcmdqStop();
return 0;
}
if (text_decoder_eof(p_decoder)) {
skipping_text = false;
return 0;
}
SelectPhonemeTable(voice->phoneme_tab_ix);
// read the next clause from the input text file, translate it, and generate
// entries in the wavegen command queue
TranslateClause(translator, &clause_tone, &voice_change);
CalcPitches(translator, clause_tone);
CalcLengths(translator);
if ((option_phonemes & 0xf) || (phoneme_callback != NULL)) {
const char *phon_out;
phon_out = GetTranslatedPhonemeString(option_phonemes);
if (option_phonemes & 0xf)
fprintf(f_trans, "%s\n", phon_out);
if (phoneme_callback != NULL)
phoneme_callback(phon_out);
}
if (skipping_text) {
n_phoneme_list = 0;
return 1;
}
Generate(phoneme_list, &n_phoneme_list, 0);
if (voice_change != NULL) {
// voice change at the end of the clause (i.e. clause was terminated by a voice change)
new_voice = LoadVoiceVariant(voice_change, 0); // add a Voice instruction to wavegen at the end of the clause
}
if (new_voice) {
// finished the current clause, now change the voice if there was an embedded
// change voice command at the end of it (i.e. clause was broken at the change voice command)
DoVoiceChange(voice);
new_voice = NULL;
}
return 1;
}
#pragma GCC visibility push(default)
ESPEAK_API void espeak_SetPhonemeCallback(int (*PhonemeCallback)(const char *))
{
phoneme_callback = PhonemeCallback;
}
#pragma GCC visibility pop