| Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv.gz | Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv.gz | ||||
| Drug/Dataset/DDI/DrugBank/raw/Drugbank_drug_interactions.tsv | Drug/Dataset/DDI/DrugBank/raw/Drugbank_drug_interactions.tsv | ||||
| Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv | Drug/Dataset/DDI/SNAP Stanford/ChCh-Miner_durgbank-chem-chem.tsv | ||||
| Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv | |||||
| Cell/data/DTI/SNAP Stanford/ChG-Miner_miner-chem-gene.tsv.gz | |||||
| Drug/Dataset/Smiles/drugbank_all_structure_links.csv.zip |
| return x | return x | ||||
| model = GCN(dataset.num_features, dataset.num_classes) | |||||
| model.train() | |||||
| optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
| # model = GCN(dataset.num_features, dataset.num_classes) | |||||
| # model.train() | |||||
| # optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
| print("Training on CPU.") | |||||
| # print("Training on CPU.") | |||||
| for epoch in range(1, 6): | |||||
| optimizer.zero_grad() | |||||
| out = model(data.x, data.edge_index, data.edge_attr) | |||||
| loss = F.cross_entropy(out, data.y) | |||||
| loss.backward() | |||||
| optimizer.step() | |||||
| print(f"Epoch: {epoch}, Loss: {loss}") | |||||
| # for epoch in range(1, 6): | |||||
| # optimizer.zero_grad() | |||||
| # out = model(data.x, data.edge_index, data.edge_attr) | |||||
| # loss = F.cross_entropy(out, data.y) | |||||
| # loss.backward() | |||||
| # optimizer.step() | |||||
| # print(f"Epoch: {epoch}, Loss: {loss}") |
| import numpy as np | |||||
| import torch | |||||
| import torch.nn.functional as F | |||||
| import torch.nn as nn | |||||
| from models import GCN | |||||
| from datasets import DDInteractionDataset | |||||
| if __name__ == '__main__': | |||||
| model = GCN(dataset.num_features, dataset.num_classes) | |||||
| model.train() | |||||
| optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |||||
| # training on CPU | |||||
| for epoch in range(1, 6): | |||||
| optimizer.zero_grad() | |||||
| out = model(data.x, data.edge_index, data.edge_attr) | |||||
| loss = F.cross_entropy(out, data.y) | |||||
| loss.backward() | |||||
| optimizer.step() | |||||
| print(f"Epoch: {epoch}, Loss: {loss}") |