Sequential Recommendation for cold-start users with meta transitional learning
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

models.py 6.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. from collections import OrderedDict
  2. import torch
  3. import torch.nn as nn
  4. from torch.nn import functional as F
  5. class Embedding(nn.Module):
  6. def __init__(self, num_ent, parameter):
  7. super(Embedding, self).__init__()
  8. # self.device = torch.device('cuda:0')
  9. self.device = torch.device(parameter['device'])
  10. self.es = parameter['embed_dim']
  11. self.embedding = nn.Embedding(num_ent + 1, self.es)
  12. nn.init.xavier_uniform_(self.embedding.weight)
  13. def forward(self, triples):
  14. idx = [[[t[0], t[2]] for t in batch] for batch in triples]
  15. idx = torch.LongTensor(idx).to(self.device)
  16. return self.embedding(idx)
  17. class MetaLearner(nn.Module):
  18. def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5):
  19. super(MetaLearner, self).__init__()
  20. self.embed_size = embed_size
  21. self.K = K
  22. # self.out_size = out_size
  23. # self.hidden_size = out_size
  24. self.out_size = embed_size
  25. self.hidden_size = embed_size
  26. # self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2)
  27. self.rnn = nn.GRU(input_size=embed_size,hidden_size=self.hidden_size, num_layers=1)
  28. # nn.init.xavier_normal_(self.rnn.all_weights)
  29. def forward(self, inputs):
  30. size = inputs.shape
  31. x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1)
  32. x = x.transpose(0,1)
  33. # _,(x,c) = self.rnn(x)
  34. x,c = self.rnn(x)
  35. x = x[-1]
  36. x = x.squeeze(0)
  37. return x.view(size[0], 1, 1, self.out_size)
  38. class EmbeddingLearner(nn.Module):
  39. def __init__(self):
  40. super(EmbeddingLearner, self).__init__()
  41. def forward(self, h, t, r, pos_num):
  42. score = -torch.norm(h + r - t, 2, -1).squeeze(2)
  43. p_score = score[:, :pos_num]
  44. n_score = score[:, pos_num:]
  45. return p_score, n_score
  46. def bpr_loss(p_scores, n_values,device):
  47. ratio = int(n_values.shape[1] / p_scores.shape[1])
  48. temp_pvalues = torch.tensor([],device=device)
  49. for i in range(p_scores.shape[1]):
  50. temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1)
  51. d = torch.sub(temp_pvalues,n_values)
  52. t = F.logsigmoid(d)
  53. loss = -1 * (1.0/n_values.shape[1]) * t.sum(dim=1)
  54. loss = loss.sum(dim=0)
  55. return loss
  56. def bpr_max_loss(p_scores, n_values,device):
  57. s = F.softmax(n_values,dim=1)
  58. ratio = int(n_values.shape[1] / p_scores.shape[1])
  59. temp_pvalues = torch.tensor([],device=device)
  60. for i in range(p_scores.shape[1]):
  61. temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1)
  62. d = torch.sigmoid(torch.sub(temp_pvalues,n_values))
  63. t = torch.mul(s,d)
  64. loss = -1 * torch.log(t.sum(dim=1))
  65. loss = loss.sum()
  66. return loss
  67. def bpr_max_loss_regularized(p_scores, n_values,device,l=0.0001):
  68. s = F.softmax(n_values,dim=1)
  69. ratio = int(n_values.shape[1] / p_scores.shape[1])
  70. temp_pvalues = torch.tensor([],device=device)
  71. for i in range(p_scores.shape[1]):
  72. temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1)
  73. d = torch.sigmoid(torch.sub(temp_pvalues,n_values))
  74. t = torch.mul(s,d)
  75. loss = -1 * torch.log(t.sum(dim=1))
  76. loss = loss.sum()
  77. loss2 = torch.mul(s,n_values**2)
  78. loss2 = loss2.sum(dim=1)
  79. loss2 = loss2.sum()
  80. return loss + l*loss2
  81. def top_loss(p_scores, n_values,device):
  82. ratio = int(n_values.shape[1] / p_scores.shape[1])
  83. temp_pvalues = torch.tensor([],device=device)
  84. for i in range(p_scores.shape[1]):
  85. temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1)
  86. t1 = torch.sigmoid(torch.sub(n_values , temp_pvalues))
  87. t2 = torch.sigmoid(torch.pow(n_values,2))
  88. t = torch.add(t1,t2)
  89. t = t.sum(dim=1)
  90. loss = t / n_values.shape[1]
  91. loss = loss.sum(dim=0)
  92. return loss
  93. class MetaTL(nn.Module):
  94. def __init__(self, itemnum, parameter):
  95. super(MetaTL, self).__init__()
  96. # self.device = torch.device(parameter['device'])
  97. self.device = parameter['device']
  98. self.beta = parameter['beta']
  99. # self.dropout_p = parameter['dropout_p']
  100. self.embed_dim = parameter['embed_dim']
  101. self.margin = parameter['margin']
  102. self.embedding = Embedding(itemnum, parameter)
  103. self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500,
  104. num_hidden2=200, out_size=100, dropout_p=0)
  105. self.embedding_learner = EmbeddingLearner()
  106. # self.loss_func = nn.MarginRankingLoss(self.margin)
  107. # self.loss_func = bpr_max_loss
  108. self.loss_func = bpr_loss
  109. self.rel_q_sharing = dict()
  110. def split_concat(self, positive, negative):
  111. pos_neg_e1 = torch.cat([positive[:, :, 0, :],
  112. negative[:, :, 0, :]], 1).unsqueeze(2)
  113. pos_neg_e2 = torch.cat([positive[:, :, 1, :],
  114. negative[:, :, 1, :]], 1).unsqueeze(2)
  115. return pos_neg_e1, pos_neg_e2
  116. def forward(self, task, iseval=False, curr_rel=''):
  117. # transfer task string into embedding
  118. support, support_negative, query, negative = [self.embedding(t) for t in task]
  119. K = support.shape[1] # num of K
  120. num_sn = support_negative.shape[1] # num of support negative
  121. num_q = query.shape[1] # num of query
  122. num_n = negative.shape[1] # num of query negative
  123. rel = self.relation_learner(support)
  124. rel.retain_grad()
  125. rel_s = rel.expand(-1, K+num_sn, -1, -1)
  126. if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys():
  127. rel_q = self.rel_q_sharing[curr_rel]
  128. else:
  129. sup_neg_e1, sup_neg_e2 = self.split_concat(support, support_negative)
  130. p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K)
  131. # y = torch.Tensor([1]).to(self.device)
  132. self.zero_grad()
  133. # sorted,indecies = torch.sort(n_score, descending=True,dim=1)
  134. # n_values = sorted[:,0:p_score.shape[1]]
  135. # loss = self.loss_func(p_score, n_values, y)
  136. loss = self.loss_func(p_score,n_score,device=self.device)
  137. loss.backward(retain_graph=True)
  138. grad_meta = rel.grad
  139. rel_q = rel - self.beta*grad_meta
  140. self.rel_q_sharing[curr_rel] = rel_q
  141. rel_q = rel_q.expand(-1, num_q + num_n, -1, -1)
  142. que_neg_e1, que_neg_e2 = self.split_concat(query, negative)
  143. p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q)
  144. return p_score, n_score