Browse Source

implement top1

RNN
mohamad maheri 3 years ago
parent
commit
8432f281de
1 changed files with 11 additions and 23 deletions
  1. 11
    23
      models.py

+ 11
- 23
models.py View File

@@ -76,30 +76,18 @@ def bpr_max_loss(p_scores, n_values,device):
loss = loss.sum()
return loss

def top_loss(p_scores, n_values):
p1 = p_scores[:, 0, None]
p2 = p_scores[:, 1, None]

num_neg = n_values.shape[1]
half_index = int(num_neg / 2)

d1 = torch.sub(p1, n_values[:, 0:half_index])
d2 = torch.sub(p2, n_values[:, half_index:])
# print("d1 shape:",d1.shape)
def top_loss(p_scores, n_values,device):
ratio = int(n_values.shape[1] / p_scores.shape[1])
temp_pvalues = torch.tensor([]).cuda(device=device)
for i in range(p_scores.shape[1]):
temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1)

# print("add shape:",torch.cat((d1,d2),dim=1).shape)
t1 = torch.sigmoid(torch.cat((d1,d2),dim=1))
# print("t1 shape:",t1.shape)
t1 = torch.sigmoid(torch.sub(n_values , temp_pvalues))
t2 = torch.sigmoid(torch.pow(n_values,2))
# print("t2 shape:",t2.shape)

t3 = torch.add(t1,t2)
# print("t3 shape:",t3.shape)

loss = t3.sum()
# print(loss.shape)
# loss /= (n_values.shape[1] * p_scores.shape[0])
loss /= n_values.shape[1]
t = torch.add(t1,t2)
t = t.sum(dim=1)
loss = t / n_values.shape[1]
loss = loss.sum(dim=0)
return loss


@@ -118,7 +106,7 @@ class MetaTL(nn.Module):

self.embedding_learner = EmbeddingLearner()
# self.loss_func = nn.MarginRankingLoss(self.margin)
self.loss_func = bpr_loss
self.loss_func = top_loss

self.rel_q_sharing = dict()


Loading…
Cancel
Save