extend Melu code to perform different meta algorithms and hyperparameters
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

clustering.py 3.9KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. import torch.nn.init as init
  2. import os
  3. import torch
  4. import pickle
  5. from options import config
  6. import gc
  7. import torch.nn as nn
  8. from torch.nn import functional as F
  9. class ClustringModule(torch.nn.Module):
  10. def __init__(self, config):
  11. super(ClustringModule, self).__init__()
  12. self.h1_dim = 64
  13. self.h2_dim = 32
  14. # self.final_dim = fc1_in_dim
  15. self.final_dim = 32
  16. self.dropout_rate = 0
  17. layers = [nn.Linear(config['embedding_dim'] * 8, self.h1_dim),
  18. torch.nn.Dropout(self.dropout_rate),
  19. nn.ReLU(inplace=True),
  20. nn.Linear(self.h1_dim, self.h2_dim),
  21. torch.nn.Dropout(self.dropout_rate),
  22. nn.ReLU(inplace=True),
  23. nn.Linear(self.h2_dim, self.final_dim)]
  24. self.input_to_hidden = nn.Sequential(*layers)
  25. self.clusters_k = 7
  26. self.embed_size = self.final_dim
  27. self.array = nn.Parameter(init.xavier_uniform_(torch.FloatTensor(self.clusters_k, self.embed_size)))
  28. self.temperature = 1.0
  29. def aggregate(self, z_i):
  30. return torch.mean(z_i, dim=0)
  31. def forward(self, task_embed, training=True):
  32. task_embed = self.input_to_hidden(task_embed)
  33. # todo : may be useless
  34. mean_task = self.aggregate(task_embed)
  35. # C_distribution, new_task_embed = self.memoryunit(mean_task)
  36. res = torch.norm(mean_task - self.array, p=2, dim=1, keepdim=True)
  37. res = torch.pow((res / self.temperature) + 1, (self.temperature + 1) / -2)
  38. # 1*k
  39. C = torch.transpose(res / res.sum(), 0, 1)
  40. # 1*k, k*d, 1*d
  41. value = torch.mm(C, self.array)
  42. # simple add operation
  43. new_task_embed = value + mean_task
  44. # calculate target distribution
  45. return C, new_task_embed
  46. class Trainer(torch.nn.Module):
  47. def __init__(self, config, head=None):
  48. super(Trainer, self).__init__()
  49. fc1_in_dim = config['embedding_dim'] * 8
  50. fc2_in_dim = config['first_fc_hidden_dim']
  51. fc2_out_dim = config['second_fc_hidden_dim']
  52. self.fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim)
  53. self.fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim)
  54. self.linear_out = torch.nn.Linear(fc2_out_dim, 1)
  55. # cluster module
  56. self.cluster_module = ClustringModule(config)
  57. # self.task_dim = fc1_in_dim
  58. self.task_dim = 32
  59. # transform task to weights
  60. self.film_layer_1_beta = nn.Linear(self.task_dim, fc2_in_dim, bias=False)
  61. self.film_layer_1_gamma = nn.Linear(self.task_dim, fc2_in_dim, bias=False)
  62. self.film_layer_2_beta = nn.Linear(self.task_dim, fc2_out_dim, bias=False)
  63. self.film_layer_2_gamma = nn.Linear(self.task_dim, fc2_out_dim, bias=False)
  64. # self.film_layer_3_beta = nn.Linear(self.task_dim, self.h3_dim, bias=False)
  65. # self.film_layer_3_gamma = nn.Linear(self.task_dim, self.h3_dim, bias=False)
  66. self.dropout_rate = 0
  67. self.dropout = nn.Dropout(self.dropout_rate)
  68. def aggregate(self, z_i):
  69. return torch.mean(z_i, dim=0)
  70. def forward(self, task_embed):
  71. C, clustered_task_embed = self.cluster_module(task_embed)
  72. # hidden layers
  73. # todo : adding activation function or remove it
  74. hidden_1 = self.fc1(task_embed)
  75. beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed))
  76. gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed))
  77. hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1
  78. hidden_1 = self.dropout(hidden_1)
  79. hidden_2 = F.relu(hidden_1)
  80. hidden_2 = self.fc2(hidden_2)
  81. beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed))
  82. gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed))
  83. hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2
  84. hidden_2 = self.dropout(hidden_2)
  85. hidden_3 = F.relu(hidden_2)
  86. y_pred = self.linear_out(hidden_3)
  87. return y_pred