12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- import os
- import torch
- import pickle
- import random
- from options import config, states
- from torch.nn import functional as F
- from torch.nn import L1Loss
- # import matchzoo as mz
- import numpy as np
- from fast_adapt import fast_adapt
- from sklearn.metrics import ndcg_score
- import gc
-
-
- def test(embedding, head, total_dataset, batch_size, num_epoch, test_state=None,args=None):
- losses_q = []
- ndcgs1 = []
- ndcgs3 = []
- master_path = config['master_path']
- test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4)
- indexes = list(np.arange(test_set_size))
- random.shuffle(indexes)
-
- for iterator in indexes:
- a = pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, iterator), "rb"))
- b = pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, iterator), "rb"))
- c = pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, iterator), "rb"))
- d = pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, iterator), "rb"))
-
- try:
- supp_xs = a.cuda()
- supp_ys = b.cuda()
- query_xs = c.cuda()
- query_ys = d.cuda()
- except IndexError:
- print("index error in test method")
- continue
-
- learner = head.clone()
- temp_sxs = embedding(supp_xs)
- temp_qxs = embedding(query_xs)
-
- evaluation_error, predictions = fast_adapt(learner,
- temp_sxs,
- temp_qxs,
- supp_ys,
- query_ys,
- config['inner'],
- # args.inner_eval,
- get_predictions=True,
- epoch=0)
-
- l1 = L1Loss(reduction='mean')
- loss_q = l1(predictions.view(-1), query_ys)
- # print("testing - iterator:{} - l1:{} ".format(iterator,loss_q))
- losses_q.append(float(loss_q))
-
- predictions = predictions.view(-1)
- y_true = query_ys.cpu().detach().numpy()
- y_pred = predictions.cpu().detach().numpy()
- ndcgs1.append(float(ndcg_score([y_true], [y_pred], k=1, sample_weight=None, ignore_ties=False)))
- ndcgs3.append(float(ndcg_score([y_true], [y_pred], k=3, sample_weight=None, ignore_ties=False)))
-
- del supp_xs, supp_ys, query_xs, query_ys, y_true, y_pred, loss_q, temp_sxs, temp_qxs, predictions, l1
- # torch.cuda.empty_cache()
-
- # calculate metrics
- losses_q = np.array(losses_q).mean()
- print("mean of mse: ", losses_q)
- # print("======================================")
- n1 = np.array(ndcgs1).mean()
- print("nDCG1: ", n1)
- n3 = np.array(ndcgs3).mean()
- print("nDCG3: ", n3)
-
- del a, b, c, d, total_dataset
- gc.collect()
-
- return losses_q, n1, n3
|