123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- import os
- import torch
- import pickle
- from options import config
- from data_generation import generate
- from embedding_module import EmbeddingModule
- import learn2learn as l2l
- import random
- from learnToLearnTest import test
- from fast_adapt import fast_adapt
- import gc
- from learn2learn.optim.transforms import KroneckerTransform
- import argparse
-
- def parse_args():
- print("==============")
- parser = argparse.ArgumentParser([], description='Fast Context Adaptation via Meta-Learning (CAVIA),'
- 'Clasification experiments.')
- print("==============\n")
-
- parser.add_argument('--seed', type=int, default=53)
- parser.add_argument('--task', type=str, default='multi', help='problem setting: sine or celeba')
- parser.add_argument('--tasks_per_metaupdate', type=int, default=32,
- help='number of tasks in each batch per meta-update')
-
- parser.add_argument('--lr_inner', type=float, default=5e-6, help='inner-loop learning rate (per task)')
- parser.add_argument('--lr_meta', type=float, default=5e-5,
- help='outer-loop learning rate (used with Adam optimiser)')
- # parser.add_argument('--lr_meta_decay', type=float, default=0.9, help='decay factor for meta learning rate')
-
- parser.add_argument('--inner', type=int, default=5,
- help='number of gradient steps in inner loop (during training)')
- parser.add_argument('--inner_eval', type=int, default=5,
- help='number of gradient updates at test time (for evaluation)')
-
- parser.add_argument('--first_order', action='store_true', default=False,
- help='run first order approximation of CAVIA')
- parser.add_argument('--adapt_transform', action='store_true', default=False,
- help='run adaptation transform')
- parser.add_argument('--transformer', type=str, default="kronoker",
- help='transformer type')
- parser.add_argument('--meta_algo', type=str, default="gbml",
- help='MAML/MetaSGD/GBML')
- parser.add_argument('--gpu', type=int, default=0,
- help='number of gpu to run the code')
- parser.add_argument('--epochs', type=int, default=config['num_epoch'],
- help='number of gpu to run the code')
-
-
-
- # parser.add_argument('--data_root', type=str, default="./movielens/ml-1m", help='path to data root')
- # parser.add_argument('--num_workers', type=int, default=4, help='num of workers to use')
- # parser.add_argument('--test', action='store_true', default=False, help='num of workers to use')
-
- # parser.add_argument('--embedding_dim', type=int, default=32, help='num of workers to use')
- # parser.add_argument('--first_fc_hidden_dim', type=int, default=64, help='num of workers to use')
- # parser.add_argument('--second_fc_hidden_dim', type=int, default=64, help='num of workers to use')
- # parser.add_argument('--num_epoch', type=int, default=30, help='num of workers to use')
- # parser.add_argument('--num_genre', type=int, default=25, help='num of workers to use')
- # parser.add_argument('--num_director', type=int, default=2186, help='num of workers to use')
- # parser.add_argument('--num_actor', type=int, default=8030, help='num of workers to use')
- # parser.add_argument('--num_rate', type=int, default=6, help='num of workers to use')
- # parser.add_argument('--num_gender', type=int, default=2, help='num of workers to use')
- # parser.add_argument('--num_age', type=int, default=7, help='num of workers to use')
- # parser.add_argument('--num_occupation', type=int, default=21, help='num of workers to use')
- # parser.add_argument('--num_zipcode', type=int, default=3402, help='num of workers to use')
-
- # parser.add_argument('--rerun', action='store_true', default=False,
- # help='Re-run experiment (will override previously saved results)')
-
- args = parser.parse_args()
- # use the GPU if available
- # args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- # print('Running on device: {}'.format(args.device))
- return args
-
- if __name__ == '__main__':
- args = parse_args()
- print(args)
-
- if config['use_cuda']:
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
- os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
- master_path= "/media/external_10TB/10TB/maheri/melu_data5"
-
- # DATA GENERATION
- print("DATA GENERATION PHASE")
- if not os.path.exists("{}/".format(master_path)):
- os.mkdir("{}/".format(master_path))
- # preparing dataset. It needs about 22GB of your hard disk space.
- generate(master_path)
-
- # TRAINING
- print("TRAINING PHASE")
- embedding_dim = config['embedding_dim']
- fc1_in_dim = config['embedding_dim'] * 8
- fc2_in_dim = config['first_fc_hidden_dim']
- fc2_out_dim = config['second_fc_hidden_dim']
- use_cuda = config['use_cuda']
-
- fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim)
- fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim)
- linear_out = torch.nn.Linear(fc2_out_dim, 1)
- head = torch.nn.Sequential(fc1,fc2,linear_out)
-
- if use_cuda:
- emb = EmbeddingModule(config).cuda()
- else:
- emb = EmbeddingModule(config)
-
- # META LEARNING
- print("META LEARNING PHASE")
-
- # define transformer
- transform = None
- if args.transformer == "kronoker":
- transform = KroneckerTransform(l2l.nn.KroneckerLinear)
- elif args.transformer == "linear":
- transform = l2l.optim.ModuleTransform(torch.nn.Linear)
-
- # define meta algorithm
- if args.meta_algo == "maml":
- head = l2l.algorithms.MAML(head, lr=args.lr_inner,first_order=args.first_order)
- elif args.meta_algo == 'metasgd':
- head = l2l.algorithms.MetaSGD(head, lr=args.lr_inner,first_order=args.first_order)
- elif args.meta_algo == 'gbml':
- head = l2l.algorithms.GBML(head, transform=transform, lr=args.lr_inner,adapt_transform=args.adapt_transform, first_order=args.first_order)
-
- if use_cuda:
- head.cuda()
-
- # Setup optimization
- print("SETUP OPTIMIZATION PHASE")
- all_parameters = list(emb.parameters()) + list(head.parameters())
- optimizer = torch.optim.Adam(all_parameters, lr=args.lr_meta)
- # loss = torch.nn.MSELoss(reduction='mean')
-
- # Load training dataset.
- print("LOAD DATASET PHASE")
- training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4)
- supp_xs_s = []
- supp_ys_s = []
- query_xs_s = []
- query_ys_s = []
- for idx in range(training_set_size):
- supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb")))
- supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb")))
- query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb")))
- query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb")))
- total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))
- del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)
- training_set_size = len(total_dataset)
- batch_size = config['batch_size']
- # torch.cuda.empty_cache()
-
- random.shuffle(total_dataset)
- num_batch = int(training_set_size / batch_size)
- a, b, c, d = zip(*total_dataset)
-
- print("\n\n\n")
- for iteration in range(args.epochs):
- for i in range(num_batch):
- optimizer.zero_grad()
- meta_train_error = 0.0
- meta_train_accuracy = 0.0
- meta_valid_error = 0.0
- meta_valid_accuracy = 0.0
- meta_test_error = 0.0
- meta_test_accuracy = 0.0
-
- print("EPOCH: ", iteration, " BATCH: ", i)
- supp_xs = list(a[batch_size * i:batch_size * (i + 1)])
- supp_ys = list(b[batch_size * i:batch_size * (i + 1)])
- query_xs = list(c[batch_size * i:batch_size * (i + 1)])
- query_ys = list(d[batch_size * i:batch_size * (i + 1)])
- batch_sz = len(supp_xs)
-
- # if use_cuda:
- # for j in range(batch_size):
- # supp_xs[j] = supp_xs[j].cuda()
- # supp_ys[j] = supp_ys[j].cuda()
- # query_xs[j] = query_xs[j].cuda()
- # query_ys[j] = query_ys[j].cuda()
-
- for task in range(batch_sz):
- # print("EPOCH: ", iteration," BATCH: ",i, "TASK: ",task)
- # Compute meta-training loss
- # if use_cuda:
- sxs = supp_xs[task].cuda()
- qxs = query_xs[task].cuda()
- sys = supp_ys[task].cuda()
- qys = query_ys[task].cuda()
-
- learner = head.clone()
- temp_sxs = emb(sxs)
- temp_qxs = emb(qxs)
-
- evaluation_error = fast_adapt(learner,
- temp_sxs,
- temp_qxs,
- sys,
- qys,
- args.inner)
- # config['inner'])
-
- evaluation_error.backward()
- meta_train_error += evaluation_error.item()
-
- del(sxs,qxs,sys,qys)
- supp_xs[task].cpu()
- query_xs[task].cpu()
- supp_ys[task].cpu()
- query_ys[task].cpu()
-
-
- # Print some metrics
- print('Iteration', iteration)
- print('Meta Train Error', meta_train_error / batch_sz)
- # print('Meta Train Accuracy', meta_train_accuracy / batch_sz)
- # print('Meta Valid Error', meta_valid_error / batch_sz)
- # print('Meta Valid Accuracy', meta_valid_accuracy / batch_sz)
- # print('Meta Test Error', meta_test_error / batch_sz)
- # print('Meta Test Accuracy', meta_test_accuracy / batch_sz)
-
- # Average the accumulated gradients and optimize
- for p in all_parameters:
- p.grad.data.mul_(1.0 / batch_sz)
- optimizer.step()
-
- # torch.cuda.empty_cache()
- del(supp_xs,supp_ys,query_xs,query_ys)
- gc.collect()
- print("===============================================\n")
-
-
- # save model
- final_model = torch.nn.Sequential(emb,head)
- torch.save(final_model.state_dict(), master_path + "/models_gbml.pkl")
-
- # testing
- print("start of test phase")
- for test_state in ['warm_state', 'user_cold_state', 'item_cold_state', 'user_and_item_cold_state']:
- test_dataset = None
- test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4)
- supp_xs_s = []
- supp_ys_s = []
- query_xs_s = []
- query_ys_s = []
- for idx in range(test_set_size):
- supp_xs_s.append(pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, idx), "rb")))
- supp_ys_s.append(pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, idx), "rb")))
- query_xs_s.append(pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, idx), "rb")))
- query_ys_s.append(pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, idx), "rb")))
- test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))
- del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)
-
- print("===================== " + test_state + " =====================")
- test(emb,head, test_dataset, batch_size=config['batch_size'], num_epoch=args.epochs,adaptation_step=args.inner_eval)
- print("===================================================\n\n\n")
- print(args)
-
-
-
-
-
-
|