123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- from hyper_tunning import load_data
- import os
- from ray.tune.schedulers import ASHAScheduler
- from ray.tune import CLIReporter
- from ray import tune
- from functools import partial
- from hyper_tunning import train_melu
- import numpy as np
- import torch
-
-
- def main(num_samples, max_num_epochs=20, gpus_per_trial=2):
- data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/new_data_dir3")
- # load_data(data_dir)
- config = {
- # meta learning
- "meta_algo": tune.choice(['metasgd']),
- "transformer": tune.choice(['metasgd']),
- "first_order": tune.choice([True]),
- "adapt_transform": tune.choice([False]),
- "local_lr": tune.loguniform(5e-6, 5e-3),
- "lr": tune.loguniform(5e-5, 5e-3),
- "batch_size": tune.choice([16, 32, 64]),
- "inner": tune.choice([1, 3, 4, 5, 7]),
- "test_state": tune.choice(["user_and_item_cold_state"]),
-
- # head
- "embedding_dim": tune.choice([16, 32, 64]),
- "first_fc_hidden_dim": tune.choice([32, 64, 128]),
- "second_fc_hidden_dim": tune.choice([32, 64]),
-
- # clustering module
- 'cluster_dropout_rate': tune.choice([0, 0.01, 0.1]),
- 'cluster_k': tune.choice([3, 5, 7, 9, 11]),
- 'kmeans_alpha': tune.choice([100, 0.1, 10, 20, 50, 200]),
- 'rnn_dropout': tune.choice([0, 0.01, 0.1]),
- 'rnn_hidden': tune.choice([32, 64, 128]),
- 'rnn_l1': tune.choice([32, 64, 128]),
- 'kmeans_loss_weight': tune.choice([0, 1, 10, 50, 100, 200]),
-
- 'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 5.0, 10.0]),
- # 'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]),
-
- 'distribution_power': tune.choice([0.1, 0.8, 1, 3, 5, 7, 8, 9]),
- 'data_selection_pow': tune.choice([0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.1, 1.2, 1.4]),
-
- 'task_dim': tune.choice([16, 32, 64, 128, 256]),
- 'trainer_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]),
- 'label_noise_std': tune.choice([0, 0.01, 0.1, 0.2, 0.3, 1, 2]),
- 'head_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]),
- 'num_epoch': tune.choice([40]),
- 'use_cuda': tune.choice([True]),
-
- 'num_rate': tune.choice([6]),
- 'num_genre': tune.choice([25]),
- 'num_director': tune.choice([2186]),
- 'num_actor': tune.choice([8030]),
- 'num_gender': tune.choice([2]),
- 'num_age': tune.choice([7]),
- 'num_occupation': tune.choice([21]),
- 'num_zipcode': tune.choice([3402]),
- }
-
- scheduler = ASHAScheduler(
- metric="loss",
- mode="min",
- max_t=max_num_epochs,
- grace_period=10,
- reduction_factor=2)
- reporter = CLIReporter(
- # parameter_columns=["l1", "l2", "lr", "batch_size"],
- metric_columns=["loss", "ndcg1", "ndcg3", "training_iteration"])
- result = tune.run(
- partial(train_melu, data_dir=data_dir),
- resources_per_trial={"cpu": 4, "gpu": 0.5},
- config=config,
- num_samples=num_samples,
- scheduler=scheduler,
- progress_reporter=reporter,
- log_to_file=True,
- # resume=True,
- local_dir="./hyper_tunning_all_cold3",
- name="rnn_cluster_module",
- )
-
- best_trial = result.get_best_trial("loss", "min", "last")
- print("Best trial config: {}".format(best_trial.config))
- print("Best trial final validation loss: {}".format(
- best_trial.last_result["loss"]))
- print("Best trial final validation ndcg1: {}".format(
- best_trial.last_result["ndcg1"]))
- print("Best trial final validation ndcg3: {}".format(
- best_trial.last_result["ndcg3"]))
-
- #
- print("=======================================================")
- print(result.results_df)
- print("=======================================================\n")
-
-
- if __name__ == "__main__":
- # You can change the number of GPUs per trial here:
- main(num_samples=150, max_num_epochs=50, gpus_per_trial=1)
|