import torch import torch.nn.functional as F class Head(torch.nn.Module): def __init__(self, config): super(Head, self).__init__() self.embedding_dim = config['embedding_dim'] self.fc1_in_dim = config['embedding_dim'] * 8 self.fc2_in_dim = config['first_fc_hidden_dim'] self.fc2_out_dim = config['second_fc_hidden_dim'] self.use_cuda = True self.fc1 = torch.nn.Linear(self.fc1_in_dim, self.fc2_in_dim) self.fc2 = torch.nn.Linear(self.fc2_in_dim, self.fc2_out_dim) self.linear_out = torch.nn.Linear(self.fc2_out_dim, 1) self.dropout_rate = config['head_dropout'] self.dropout = torch.nn.Dropout(self.dropout_rate) def forward(self, task_embed, gamma_1, beta_1, gamma_2, beta_2): hidden_1 = self.fc1(task_embed) hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 hidden_1 = self.dropout(hidden_1) hidden_2 = F.relu(hidden_1) hidden_2 = self.fc2(hidden_2) hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 hidden_2 = self.dropout(hidden_2) hidden_3 = F.relu(hidden_2) y_pred = self.linear_out(hidden_3) return y_pred