@@ -8,7 +8,7 @@ def cl_loss(c): | |||
alpha = config['alpha'] | |||
beta = config['beta'] | |||
d = config['d'] | |||
a = torch.div(1, torch.add(1, torch.exp(torch.mul(-1, torch.mul(alpha, torch.sub(torch.mul(d, c), beta)))))) | |||
a = torch.div(1, torch.add(1, torch.exp(torch.mul(-1, torch.mul(alpha, torch.sub(torch.mul(d, c.squeeze()), beta)))))) | |||
# a = 1 / (1 + torch.exp((-1) * alpha * (d * c - beta))) | |||
b = torch.mul(a, torch.mul(torch.sub(1, a), torch.sub(1, torch.mul(2, a)))) | |||
# b = 1 * a * (1 - a) * (1 - 2 * a) |
@@ -260,7 +260,7 @@ if __name__ == '__main__': | |||
kmeans_model = KMeans(n_clusters=config['cluster_k'], init="k-means++").fit(user_embeddings) | |||
tr.cluster_module.array.data = torch.Tensor(kmeans_model.cluster_centers_).cuda() | |||
if iteration > (0): | |||
if iteration > 0: | |||
# indexes = data_batching(indexes, C_distribs, batch_size, training_set_size, config['cluster_k']) | |||
# random.shuffle(indexes) | |||
C_distribs = [] |