| @@ -0,0 +1,31 @@ | |||
| import torch | |||
| import torch.nn.functional as F | |||
| class Head(torch.nn.Module): | |||
| def __init__(self, config): | |||
| super(Head, self).__init__() | |||
| self.embedding_dim = config['embedding_dim'] | |||
| self.fc1_in_dim = config['embedding_dim'] * 8 | |||
| self.fc2_in_dim = config['first_fc_hidden_dim'] | |||
| self.fc2_out_dim = config['second_fc_hidden_dim'] | |||
| self.use_cuda = True | |||
| self.fc1 = torch.nn.Linear(self.fc1_in_dim, self.fc2_in_dim) | |||
| self.fc2 = torch.nn.Linear(self.fc2_in_dim, self.fc2_out_dim) | |||
| self.linear_out = torch.nn.Linear(self.fc2_out_dim, 1) | |||
| self.dropout_rate = config['head_dropout'] | |||
| self.dropout = torch.nn.Dropout(self.dropout_rate) | |||
| def forward(self, task_embed, gamma_1, beta_1, gamma_2, beta_2): | |||
| hidden_1 = self.fc1(task_embed) | |||
| hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
| hidden_1 = self.dropout(hidden_1) | |||
| hidden_2 = F.relu(hidden_1) | |||
| hidden_2 = self.fc2(hidden_2) | |||
| hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
| hidden_2 = self.dropout(hidden_2) | |||
| hidden_3 = F.relu(hidden_2) | |||
| y_pred = self.linear_out(hidden_3) | |||
| return y_pred | |||
| @@ -2,93 +2,113 @@ import torch.nn.init as init | |||
| import os | |||
| import torch | |||
| import pickle | |||
| from options import config | |||
| # from options import config | |||
| import gc | |||
| import torch.nn as nn | |||
| from torch.nn import functional as F | |||
| import numpy as np | |||
| class ClustringModule(torch.nn.Module): | |||
| def __init__(self, config_param): | |||
| def __init__(self, config): | |||
| super(ClustringModule, self).__init__() | |||
| self.h1_dim = config_param['cluster_h1_dim'] | |||
| self.h2_dim = config_param['cluster_h2_dim'] | |||
| self.final_dim = config_param['cluster_final_dim'] | |||
| self.dropout_rate = config_param['cluster_dropout_rate'] | |||
| self.final_dim = config['task_dim'] | |||
| self.dropout_rate = config['rnn_dropout'] | |||
| self.embedding_dim = config['embedding_dim'] | |||
| self.kmeans_alpha = config['kmeans_alpha'] | |||
| # layers = [ | |||
| # nn.Linear(config['embedding_dim'] * 8 + 1, self.h1_dim), | |||
| # # nn.Linear(config['embedding_dim'] * 8, self.h1_dim), | |||
| # torch.nn.Dropout(self.dropout_rate), | |||
| # nn.ReLU(inplace=True), | |||
| # nn.Linear(self.h1_dim, self.h2_dim), | |||
| # torch.nn.Dropout(self.dropout_rate), | |||
| # nn.ReLU(inplace=True), | |||
| # nn.Linear(self.h2_dim, self.final_dim), | |||
| # ] | |||
| # layers_out = [ | |||
| # nn.Linear(self.final_dim,self.h3_dim), | |||
| # torch.nn.Dropout(self.dropout_rate), | |||
| # nn.ReLU(inplace=True), | |||
| # nn.Linear(self.h3_dim,self.h4_dim), | |||
| # torch.nn.Dropout(self.dropout_rate), | |||
| # nn.ReLU(inplace=True), | |||
| # nn.Linear(self.h4_dim,config['embedding_dim'] * 8 + 1), | |||
| # # nn.Linear(self.h4_dim,config['embedding_dim'] * 8), | |||
| # # torch.nn.Dropout(self.dropout_rate), | |||
| # # nn.ReLU(inplace=True), | |||
| # ] | |||
| # self.input_to_hidden = nn.Sequential(*layers) | |||
| # self.hidden_to_output = nn.Sequential(*layers_out) | |||
| # self.recon_loss = nn.MSELoss() | |||
| # self.hidden_dim = 64 | |||
| # self.l1_dim = 64 | |||
| self.hidden_dim = config['rnn_hidden'] | |||
| self.l1_dim = config['rnn_l1'] | |||
| self.rnn = nn.LSTM(4 * config['embedding_dim'] + 1, self.hidden_dim, batch_first=True) | |||
| layers = [ | |||
| # nn.Linear(config_param['embedding_dim'] * 8 + 1, self.h1_dim), | |||
| nn.Linear(config_param['embedding_dim'] * 8, self.h1_dim), | |||
| torch.nn.Dropout(self.dropout_rate), | |||
| nn.ReLU(inplace=True), | |||
| # nn.BatchNorm1d(self.h1_dim), | |||
| nn.Linear(self.h1_dim, self.h2_dim), | |||
| torch.nn.Dropout(self.dropout_rate), | |||
| nn.ReLU(inplace=True), | |||
| # nn.BatchNorm1d(self.h2_dim), | |||
| nn.Linear(self.h2_dim, self.final_dim)] | |||
| nn.Linear(config['embedding_dim'] * 4 + self.hidden_dim, self.l1_dim), | |||
| torch.nn.Dropout(self.dropout_rate), | |||
| nn.ReLU(inplace=True), | |||
| nn.Linear(self.l1_dim, self.final_dim), | |||
| ] | |||
| self.input_to_hidden = nn.Sequential(*layers) | |||
| self.clusters_k = config_param['cluster_k'] | |||
| self.clusters_k = config['cluster_k'] | |||
| self.embed_size = self.final_dim | |||
| self.array = nn.Parameter(init.xavier_uniform_(torch.FloatTensor(self.clusters_k, self.embed_size))) | |||
| self.temperature = config_param['temperature'] | |||
| # self.array = nn.Parameter(init.zeros_(torch.FloatTensor(self.clusters_k, self.embed_size))) | |||
| self.temperature = config['temperature'] | |||
| def aggregate(self, z_i): | |||
| return torch.mean(z_i, dim=0) | |||
| def forward(self, task_embed, y, training=True): | |||
| y = y.view(-1, 1) | |||
| high_idx = y > 3 | |||
| high_idx = high_idx.squeeze() | |||
| if high_idx.sum() > 0: | |||
| input_pairs = task_embed.detach()[high_idx] | |||
| else: | |||
| input_pairs = torch.ones(size=(1, 8 * config['embedding_dim'])).cuda() | |||
| print("found") | |||
| # input_pairs = torch.cat((task_embed, y), dim=1) | |||
| task_embed = self.input_to_hidden(input_pairs) | |||
| idx = 4 * self.embedding_dim | |||
| items = torch.cat((task_embed[:, 0:idx], y), dim=1).unsqueeze(0) | |||
| output, (hn, cn) = self.rnn(items) | |||
| items_embed = output.squeeze()[-1] | |||
| user_embed = task_embed[0, idx:] | |||
| # todo : may be useless | |||
| mean_task = self.aggregate(task_embed) | |||
| task_embed = self.input_to_hidden(torch.cat((items_embed, user_embed), dim=0)) | |||
| mean_task = task_embed | |||
| res = torch.norm(mean_task - self.array, p=2, dim=1, keepdim=True) | |||
| res = torch.norm((mean_task) - (self.array), p=2, dim=1, keepdim=True) | |||
| res = torch.pow((res / self.temperature) + 1, (self.temperature + 1) / -2) | |||
| # 1*k | |||
| C = torch.transpose(res / res.sum(), 0, 1) | |||
| # 1*k, k*d, 1*d | |||
| value = torch.mm(C, self.array) | |||
| # simple add operation | |||
| # new_task_embed = value + mean_task | |||
| # new_task_embed = value | |||
| new_task_embed = mean_task | |||
| # print("injam1:", new_task_embed) | |||
| # print("injam2:", self.array) | |||
| list_dist = [] | |||
| # list_dist = torch.norm(new_task_embed - self.array, p=2, dim=1,keepdim=True) | |||
| list_dist = torch.sum(torch.pow(new_task_embed - self.array,2),dim=1) | |||
| # compute clustering loss | |||
| list_dist = torch.sum(torch.pow(new_task_embed - self.array, 2), dim=1) | |||
| stack_dist = list_dist | |||
| # print("injam3:", stack_dist) | |||
| ## Second, find the minimum squared distance for softmax normalization | |||
| min_dist = min(list_dist) | |||
| # print("injam4:", min_dist) | |||
| ## Third, compute exponentials shifted with min_dist to avoid underflow (0/0) issues in softmaxes | |||
| alpha = config['kmeans_alpha'] # Placeholder tensor for alpha | |||
| alpha = self.kmeans_alpha # Placeholder tensor for alpha | |||
| # alpha = alphas[iteration] | |||
| list_exp = [] | |||
| for i in range(self.clusters_k): | |||
| exp = torch.exp(-alpha * (stack_dist[i] - min_dist)) | |||
| list_exp.append(exp) | |||
| stack_exp = torch.stack(list_exp) | |||
| sum_exponentials = torch.sum(stack_exp) | |||
| # print("injam5:", stack_exp, sum_exponentials) | |||
| ## Fourth, compute softmaxes and the embedding/representative distances weighted by softmax | |||
| list_softmax = [] | |||
| list_weighted_dist = [] | |||
| for j in range(self.clusters_k): | |||
| @@ -97,76 +117,43 @@ class ClustringModule(torch.nn.Module): | |||
| list_softmax.append(softmax) | |||
| list_weighted_dist.append(weighted_dist) | |||
| stack_weighted_dist = torch.stack(list_weighted_dist) | |||
| kmeans_loss = torch.sum(stack_weighted_dist, dim=0) | |||
| # rec_loss = self.recon_loss(input_pairs,output) | |||
| # return C, new_task_embed,kmeans_loss,rec_loss | |||
| return C, new_task_embed, kmeans_loss | |||
| class Trainer(torch.nn.Module): | |||
| def __init__(self, config_param, head=None): | |||
| def __init__(self, config, head=None): | |||
| super(Trainer, self).__init__() | |||
| fc1_in_dim = config_param['embedding_dim'] * 8 | |||
| fc2_in_dim = config_param['first_fc_hidden_dim'] | |||
| fc2_out_dim = config_param['second_fc_hidden_dim'] | |||
| self.fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
| self.fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
| self.linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
| # cluster module | |||
| self.cluster_module = ClustringModule(config_param) | |||
| # self.task_dim = fc1_in_dim | |||
| self.task_dim = config_param['cluster_final_dim'] | |||
| # transform task to weights | |||
| self.film_layer_1_beta = nn.Linear(self.task_dim, fc2_in_dim, bias=False) | |||
| self.film_layer_1_gamma = nn.Linear(self.task_dim, fc2_in_dim, bias=False) | |||
| self.film_layer_2_beta = nn.Linear(self.task_dim, fc2_out_dim, bias=False) | |||
| self.film_layer_2_gamma = nn.Linear(self.task_dim, fc2_out_dim, bias=False) | |||
| # self.film_layer_3_beta = nn.Linear(self.task_dim, self.h3_dim, bias=False) | |||
| # self.film_layer_3_gamma = nn.Linear(self.task_dim, self.h3_dim, bias=False) | |||
| # self.dropout_rate = 0 | |||
| self.dropout_rate = config_param['trainer_dropout_rate'] | |||
| self.cluster_module = ClustringModule(config) | |||
| # self.task_dim = 64 | |||
| self.task_dim = config['task_dim'] | |||
| self.fc2_in_dim = config['first_fc_hidden_dim'] | |||
| self.fc2_out_dim = config['second_fc_hidden_dim'] | |||
| self.film_layer_1_beta = nn.Linear(self.task_dim, self.fc2_in_dim, bias=False) | |||
| self.film_layer_1_gamma = nn.Linear(self.task_dim, self.fc2_in_dim, bias=False) | |||
| self.film_layer_2_beta = nn.Linear(self.task_dim, self.fc2_out_dim, bias=False) | |||
| self.film_layer_2_gamma = nn.Linear(self.task_dim, self.fc2_out_dim, bias=False) | |||
| self.dropout_rate = config['trainer_dropout'] | |||
| self.dropout = nn.Dropout(self.dropout_rate) | |||
| self.label_noise_std = config['label_noise_std'] | |||
| def aggregate(self, z_i): | |||
| return torch.mean(z_i, dim=0) | |||
| def forward(self, task_embed, y, training, adaptation_data=None, adaptation_labels=None): | |||
| if training: | |||
| C, clustered_task_embed, k_loss = self.cluster_module(task_embed, y) | |||
| # hidden layers | |||
| # todo : adding activation function or remove it | |||
| hidden_1 = self.fc1(task_embed) | |||
| beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
| gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
| hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
| hidden_1 = self.dropout(hidden_1) | |||
| hidden_2 = F.relu(hidden_1) | |||
| hidden_2 = self.fc2(hidden_2) | |||
| beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
| gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
| hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
| hidden_2 = self.dropout(hidden_2) | |||
| hidden_3 = F.relu(hidden_2) | |||
| y_pred = self.linear_out(hidden_3) | |||
| else: | |||
| C, clustered_task_embed, k_loss = self.cluster_module(adaptation_data, adaptation_labels) | |||
| beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
| gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
| beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
| gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
| hidden_1 = self.fc1(task_embed) | |||
| hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
| hidden_1 = self.dropout(hidden_1) | |||
| hidden_2 = F.relu(hidden_1) | |||
| hidden_2 = self.fc2(hidden_2) | |||
| hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
| hidden_2 = self.dropout(hidden_2) | |||
| hidden_3 = F.relu(hidden_2) | |||
| y_pred = self.linear_out(hidden_3) | |||
| return y_pred, C, k_loss | |||
| def forward(self, task_embed, y, training=True, adaptation_data=None, adaptation_labels=None): | |||
| # if training: | |||
| t = torch.Tensor(np.random.normal(0, self.label_noise_std, size=len(y))).cuda() | |||
| noise_y = t + y | |||
| # C, clustered_task_embed,k_loss,rec_loss = self.cluster_module(task_embed, noise_y) | |||
| C, clustered_task_embed, k_loss = self.cluster_module(task_embed, noise_y) | |||
| beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
| gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
| beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
| gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
| # return gamma_1,beta_1,gamma_2,beta_2,C,k_loss,rec_loss | |||
| return gamma_1, beta_1, gamma_2, beta_2, C, k_loss | |||
| @@ -18,38 +18,33 @@ def cl_loss(c): | |||
| def fast_adapt( | |||
| learn, | |||
| head, | |||
| adaptation_data, | |||
| evaluation_data, | |||
| adaptation_labels, | |||
| evaluation_labels, | |||
| adaptation_steps, | |||
| get_predictions=False, | |||
| epoch=None): | |||
| is_print = random.random() < 0.05 | |||
| trainer=None, | |||
| test=False, | |||
| iteration=None): | |||
| for step in range(adaptation_steps): | |||
| temp, c, k_loss = learn(adaptation_data, adaptation_labels, training=True) | |||
| # g1,b1,g2,b2,c,k_loss,rec_loss = trainer(adaptation_data,adaptation_labels,training=True) | |||
| g1, b1, g2, b2, c, k_loss = trainer(adaptation_data, adaptation_labels, training=True) | |||
| temp = head(adaptation_data, g1, b1, g2, b2) | |||
| train_error = torch.nn.functional.mse_loss(temp.view(-1), adaptation_labels) | |||
| # cluster_loss = cl_loss(c) | |||
| # total_loss = train_error + config['cluster_loss_weight'] * cluster_loss | |||
| total_loss = train_error + config['kmeans_loss_weight'] * k_loss | |||
| learn.adapt(total_loss) | |||
| # train_error = train_error + config['kmeans_loss_weight'] * k_loss + config['rec_loss_weight']*rec_loss | |||
| train_error = train_error + config['kmeans_loss_weight'] * k_loss | |||
| head.adapt(train_error) | |||
| predictions, c, k_loss = learn(evaluation_data, None, training=False, adaptation_data=adaptation_data, | |||
| adaptation_labels=adaptation_labels) | |||
| # g1,b1,g2,b2,c,k_loss,rec_loss = trainer(adaptation_data,adaptation_labels,training=False) | |||
| g1, b1, g2, b2, c, k_loss = trainer(adaptation_data, adaptation_labels, training=False) | |||
| predictions = head(evaluation_data, g1, b1, g2, b2) | |||
| valid_error = torch.nn.functional.mse_loss(predictions.view(-1), evaluation_labels) | |||
| # cluster_loss = cl_loss(c) | |||
| # total_loss = valid_error + config['cluster_loss_weight'] * cluster_loss | |||
| # total_loss = valid_error + config['kmeans_loss_weight'] * k_loss + config['rec_loss_weight']*rec_loss | |||
| total_loss = valid_error + config['kmeans_loss_weight'] * k_loss | |||
| if is_print: | |||
| # print("in query:\t", round(k_loss.item(),4)) | |||
| print(c[0].detach().cpu().numpy(),"\t",round(k_loss.item(),3),"\n") | |||
| # if random.random() < 0.05: | |||
| # print("cl:", round(cluster_loss.item()), "\t c:", c[0].cpu().data.numpy()) | |||
| if get_predictions: | |||
| return total_loss, predictions | |||
| return total_loss, c, k_loss.item() | |||
| return predictions.detach().cpu(), c | |||
| # return total_loss,c,k_loss.detach().cpu().item(),rec_loss.detach().cpu().item() | |||
| return total_loss, c, k_loss.detach().cpu().item() | |||
| @@ -6,45 +6,65 @@ from ray import tune | |||
| from functools import partial | |||
| from hyper_tunning import train_melu | |||
| import numpy as np | |||
| import torch | |||
| def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
| data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/define_task_melu_data") | |||
| load_data(data_dir) | |||
| data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/new_data_dir3") | |||
| # load_data(data_dir) | |||
| config = { | |||
| # "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
| # "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
| # "lr": tune.loguniform(1e-4, 1e-1), | |||
| # "batch_size": tune.choice([2, 4, 8, 16]) | |||
| "transformer": tune.choice(['kronoker']), | |||
| "meta_algo": tune.choice(['gbml']), | |||
| "first_order": tune.choice([False]), | |||
| "adapt_transform": tune.choice([True, False]), | |||
| # "local_lr":tune.choice([5e-6,5e-4,5e-3]), | |||
| # "lr":tune.choice([5e-5,5e-4]), | |||
| # meta learning | |||
| "meta_algo": tune.choice(['metasgd']), | |||
| "transformer": tune.choice(['metasgd']), | |||
| "first_order": tune.choice([True]), | |||
| "adapt_transform": tune.choice([False]), | |||
| "local_lr": tune.loguniform(5e-6, 5e-3), | |||
| "lr": tune.loguniform(5e-5, 5e-3), | |||
| "batch_size": tune.choice([16, 32, 64]), | |||
| "inner": tune.choice([7, 5, 4, 3, 1]), | |||
| "inner": tune.choice([1, 3, 4, 5, 7]), | |||
| "test_state": tune.choice(["user_and_item_cold_state"]), | |||
| # head | |||
| "embedding_dim": tune.choice([16, 32, 64]), | |||
| "first_fc_hidden_dim": tune.choice([32, 64, 128]), | |||
| "second_fc_hidden_dim": tune.choice([32, 64]), | |||
| 'cluster_h1_dim': tune.choice([256, 128, 64]), | |||
| 'cluster_h2_dim': tune.choice([128, 64, 32]), | |||
| 'cluster_final_dim': tune.choice([64, 32]), | |||
| # clustering module | |||
| 'cluster_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
| 'cluster_k': tune.choice([3, 5, 7, 9, 11]), | |||
| 'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 10.0]), | |||
| 'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
| 'kmeans_alpha': tune.choice([100, 0.1, 10, 20, 50, 200]), | |||
| 'rnn_dropout': tune.choice([0, 0.01, 0.1]), | |||
| 'rnn_hidden': tune.choice([32, 64, 128]), | |||
| 'rnn_l1': tune.choice([32, 64, 128]), | |||
| 'kmeans_loss_weight': tune.choice([0, 1, 10, 50, 100, 200]), | |||
| 'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 5.0, 10.0]), | |||
| # 'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
| 'distribution_power': tune.choice([0.1, 0.8, 1, 3, 5, 7, 8, 9]), | |||
| 'data_selection_pow': tune.choice([0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.1, 1.2, 1.4]), | |||
| 'task_dim': tune.choice([16, 32, 64, 128, 256]), | |||
| 'trainer_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]), | |||
| 'label_noise_std': tune.choice([0, 0.01, 0.1, 0.2, 0.3, 1, 2]), | |||
| 'head_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]), | |||
| 'num_epoch': tune.choice([40]), | |||
| 'use_cuda': tune.choice([True]), | |||
| 'num_rate': tune.choice([6]), | |||
| 'num_genre': tune.choice([25]), | |||
| 'num_director': tune.choice([2186]), | |||
| 'num_actor': tune.choice([8030]), | |||
| 'num_gender': tune.choice([2]), | |||
| 'num_age': tune.choice([7]), | |||
| 'num_occupation': tune.choice([21]), | |||
| 'num_zipcode': tune.choice([3402]), | |||
| } | |||
| scheduler = ASHAScheduler( | |||
| metric="loss", | |||
| mode="min", | |||
| max_t=30, | |||
| max_t=max_num_epochs, | |||
| grace_period=10, | |||
| reduction_factor=2) | |||
| reporter = CLIReporter( | |||
| @@ -52,16 +72,15 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
| metric_columns=["loss", "ndcg1", "ndcg3", "training_iteration"]) | |||
| result = tune.run( | |||
| partial(train_melu, data_dir=data_dir), | |||
| resources_per_trial={"cpu": 4, "gpu": gpus_per_trial}, | |||
| resources_per_trial={"cpu": 4, "gpu": 0.5}, | |||
| config=config, | |||
| num_samples=num_samples, | |||
| scheduler=scheduler, | |||
| progress_reporter=reporter, | |||
| log_to_file=True, | |||
| # resume=True, | |||
| local_dir="./hyper_tunning_all_cold", | |||
| name="melu_all_cold_clustered", | |||
| local_dir="./hyper_tunning_all_cold3", | |||
| name="rnn_cluster_module", | |||
| ) | |||
| best_trial = result.get_best_trial("loss", "min", "last") | |||
| @@ -78,23 +97,7 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
| print(result.results_df) | |||
| print("=======================================================\n") | |||
| # best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"]) | |||
| # device = "cpu" | |||
| # if torch.cuda.is_available(): | |||
| # device = "cuda:0" | |||
| # if gpus_per_trial > 1: | |||
| # best_trained_model = nn.DataParallel(best_trained_model) | |||
| # best_trained_model.to(device) | |||
| # | |||
| # best_checkpoint_dir = best_trial.checkpoint.value | |||
| # model_state, optimizer_state = torch.load(os.path.join( | |||
| # best_checkpoint_dir, "checkpoint")) | |||
| # best_trained_model.load_state_dict(model_state) | |||
| # | |||
| # test_acc = test_accuracy(best_trained_model, device) | |||
| # print("Best trial test set accuracy: {}".format(test_acc)) | |||
| if __name__ == "__main__": | |||
| # You can change the number of GPUs per trial here: | |||
| main(num_samples=150, max_num_epochs=25, gpus_per_trial=1) | |||
| main(num_samples=150, max_num_epochs=50, gpus_per_trial=1) | |||
| @@ -3,25 +3,38 @@ from torch.nn import L1Loss | |||
| import numpy as np | |||
| from fast_adapt import fast_adapt | |||
| from sklearn.metrics import ndcg_score | |||
| import gc | |||
| import pickle | |||
| import os | |||
| def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
| test_set_size = len(total_dataset) | |||
| random.shuffle(total_dataset) | |||
| a, b, c, d = zip(*total_dataset) | |||
| def hyper_test(embedding, head, trainer, batch_size, master_path, test_state, adaptation_step, num_epoch=None): | |||
| test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4) | |||
| indexes = list(np.arange(test_set_size)) | |||
| random.shuffle(indexes) | |||
| # test_set_size = len(total_dataset) | |||
| # random.shuffle(total_dataset) | |||
| # a, b, c, d = zip(*total_dataset) | |||
| # a, b, c, d = list(a), list(b), list(c), list(d) | |||
| losses_q = [] | |||
| ndcgs11 = [] | |||
| ndcgs33 = [] | |||
| head.eval() | |||
| trainer.eval() | |||
| for iterator in range(test_set_size): | |||
| a = pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
| b = pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
| c = pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
| d = pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
| try: | |||
| supp_xs = a[iterator].cuda() | |||
| supp_ys = b[iterator].cuda() | |||
| query_xs = c[iterator].cuda() | |||
| query_ys = d[iterator].cuda() | |||
| supp_xs = a.cuda() | |||
| supp_ys = b.cuda() | |||
| query_xs = c.cuda() | |||
| query_ys = d.cuda() | |||
| except IndexError: | |||
| print("index error in test method") | |||
| continue | |||
| @@ -30,16 +43,21 @@ def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
| temp_sxs = embedding(supp_xs) | |||
| temp_qxs = embedding(query_xs) | |||
| evaluation_error, predictions = fast_adapt(learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| supp_ys, | |||
| query_ys, | |||
| adaptation_step, | |||
| get_predictions=True) | |||
| predictions, c = fast_adapt( | |||
| learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| supp_ys, | |||
| query_ys, | |||
| adaptation_step, | |||
| get_predictions=True, | |||
| trainer=trainer, | |||
| test=True, | |||
| iteration=num_epoch | |||
| ) | |||
| l1 = L1Loss(reduction='mean') | |||
| loss_q = l1(predictions.view(-1), query_ys) | |||
| loss_q = l1(predictions.view(-1), query_ys.cpu()) | |||
| losses_q.append(float(loss_q)) | |||
| predictions = predictions.view(-1) | |||
| y_true = query_ys.cpu().detach().numpy() | |||
| @@ -63,4 +81,6 @@ def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
| ndcg3 = 0 | |||
| head.train() | |||
| trainer.train() | |||
| gc.collect() | |||
| return losses_q, ndcg1, ndcg3 | |||
| @@ -3,7 +3,6 @@ import torch | |||
| import torch.nn as nn | |||
| from ray import tune | |||
| import pickle | |||
| from options import config | |||
| from embedding_module import EmbeddingModule | |||
| import learn2learn as l2l | |||
| import random | |||
| @@ -12,25 +11,27 @@ import gc | |||
| from learn2learn.optim.transforms import KroneckerTransform | |||
| from hyper_testing import hyper_test | |||
| from clustering import Trainer | |||
| from Head import Head | |||
| import numpy as np | |||
| # Define paths (for data) | |||
| # master_path= "/media/external_10TB/10TB/maheri/melu_data5" | |||
| def load_data(data_dir=None, test_state='warm_state'): | |||
| training_set_size = int(len(os.listdir("{}/warm_state".format(data_dir))) / 4) | |||
| supp_xs_s = [] | |||
| supp_ys_s = [] | |||
| query_xs_s = [] | |||
| query_ys_s = [] | |||
| for idx in range(training_set_size): | |||
| supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
| del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| trainset = total_dataset | |||
| # training_set_size = int(len(os.listdir("{}/warm_state".format(data_dir))) / 4) | |||
| # supp_xs_s = [] | |||
| # supp_ys_s = [] | |||
| # query_xs_s = [] | |||
| # query_ys_s = [] | |||
| # for idx in range(training_set_size): | |||
| # supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| # supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| # query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| # query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| # total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
| # del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| # trainset = total_dataset | |||
| test_set_size = int(len(os.listdir("{}/{}".format(data_dir, test_state))) / 4) | |||
| supp_xs_s = [] | |||
| @@ -46,27 +47,70 @@ def load_data(data_dir=None, test_state='warm_state'): | |||
| del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| random.shuffle(test_dataset) | |||
| random.shuffle(trainset) | |||
| val_size = int(test_set_size * 0.2) | |||
| # random.shuffle(trainset) | |||
| val_size = int(test_set_size * 0.3) | |||
| validationset = test_dataset[:val_size] | |||
| testset = test_dataset[val_size:] | |||
| # testset = test_dataset[val_size:] | |||
| return trainset, validationset, testset | |||
| return None, validationset, None | |||
| def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
| print("inajm1:", checkpoint_dir) | |||
| embedding_dim = conf['embedding_dim'] | |||
| fc1_in_dim = conf['embedding_dim'] * 8 | |||
| fc2_in_dim = conf['first_fc_hidden_dim'] | |||
| fc2_out_dim = conf['second_fc_hidden_dim'] | |||
| def data_batching_new(indexes, C_distribs, batch_size, training_set_size, num_clusters,config): | |||
| probs = np.squeeze(C_distribs) | |||
| probs = np.array(probs) ** config['distribution_power'] / np.sum(np.array(probs) ** config['distribution_power'], | |||
| axis=1, keepdims=True) | |||
| cs = [np.random.choice(num_clusters, p=i) for i in probs] | |||
| num_batch = int(training_set_size / batch_size) | |||
| res = [[] for i in range(num_batch)] | |||
| clas = [[] for i in range(num_clusters)] | |||
| clas_temp = [[] for i in range(num_clusters)] | |||
| for idx, c in zip(indexes, cs): | |||
| clas[c].append(idx) | |||
| for i in range(num_clusters): | |||
| random.shuffle(clas[i]) | |||
| # t = np.array([len(i) for i in clas]) | |||
| t = np.array([len(i) ** config['data_selection_pow'] for i in clas]) | |||
| t = t / t.sum() | |||
| dif = list(set(list(np.arange(training_set_size))) - set(indexes[0:(num_batch * batch_size)])) | |||
| cnt = 0 | |||
| for i in range(len(res)): | |||
| for j in range(batch_size): | |||
| temp = np.random.choice(num_clusters, p=t) | |||
| if len(clas[temp]) > 0: | |||
| selected = clas[temp].pop(0) | |||
| res[i].append(selected) | |||
| clas_temp[temp].append(selected) | |||
| else: | |||
| # res[i].append(indexes[training_set_size-1-cnt]) | |||
| if len(dif) > 0: | |||
| if random.random() < 0.5 or len(clas_temp[temp]) == 0: | |||
| res[i].append(dif.pop(0)) | |||
| else: | |||
| selected = clas_temp[temp].pop(0) | |||
| clas_temp[temp].append(selected) | |||
| res[i].append(selected) | |||
| else: | |||
| selected = clas_temp[temp].pop(0) | |||
| res[i].append(selected) | |||
| # fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
| # fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
| # linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
| # head = torch.nn.Sequential(fc1, fc2, linear_out) | |||
| cnt = cnt + 1 | |||
| emb = EmbeddingModule(config).cuda() | |||
| print("data_batching : ", cnt) | |||
| res = np.random.permutation(res) | |||
| final_result = np.array(res).flatten() | |||
| return final_result | |||
| def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
| config = conf | |||
| master_path = data_dir | |||
| emb = EmbeddingModule(conf).cuda() | |||
| transform = None | |||
| if conf['transformer'] == "kronoker": | |||
| @@ -74,23 +118,33 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
| elif conf['transformer'] == "linear": | |||
| transform = l2l.optim.ModuleTransform(torch.nn.Linear) | |||
| trainer = Trainer(config) | |||
| trainer = Trainer(conf) | |||
| trainer.cuda() | |||
| head = Head(config) | |||
| # define meta algorithm | |||
| if conf['meta_algo'] == "maml": | |||
| trainer = l2l.algorithms.MAML(trainer, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| head = l2l.algorithms.MAML(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| elif conf['meta_algo'] == 'metasgd': | |||
| trainer = l2l.algorithms.MetaSGD(trainer, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| head = l2l.algorithms.MetaSGD(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| elif conf['meta_algo'] == 'gbml': | |||
| trainer = l2l.algorithms.GBML(trainer, transform=transform, lr=conf['local_lr'], | |||
| head = l2l.algorithms.GBML(head, transform=transform, lr=conf['local_lr'], | |||
| adapt_transform=conf['adapt_transform'], first_order=conf['first_order']) | |||
| trainer.cuda() | |||
| # net = nn.Sequential(emb, head) | |||
| head.cuda() | |||
| criterion = nn.MSELoss() | |||
| all_parameters = list(emb.parameters()) + list(trainer.parameters()) | |||
| all_parameters = list(emb.parameters()) + list(trainer.parameters()) + list(head.parameters()) | |||
| optimizer = torch.optim.Adam(all_parameters, lr=conf['lr']) | |||
| # Load training dataset. | |||
| print("LOAD DATASET PHASE") | |||
| training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4) | |||
| supp_xs_s = [] | |||
| supp_ys_s = [] | |||
| query_xs_s = [] | |||
| query_ys_s = [] | |||
| if checkpoint_dir: | |||
| print("in checkpoint - bug happened") | |||
| # model_state, optimizer_state = torch.load( | |||
| @@ -99,64 +153,129 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
| # optimizer.load_state_dict(optimizer_state) | |||
| # loading data | |||
| train_dataset, validation_dataset, test_dataset = load_data(data_dir, test_state=conf['test_state']) | |||
| # _, validation_dataset, _ = load_data(data_dir, test_state=conf['test_state']) | |||
| batch_size = conf['batch_size'] | |||
| num_batch = int(len(train_dataset) / batch_size) | |||
| # num_batch = int(len(train_dataset) / batch_size) | |||
| # a, b, c, d = zip(*train_dataset) | |||
| C_distribs = [] | |||
| indexes = list(np.arange(training_set_size)) | |||
| all_test_users = [] | |||
| for iteration in range(conf['num_epoch']): # loop over the dataset multiple times | |||
| print("iteration:", iteration) | |||
| num_batch = int(training_set_size / batch_size) | |||
| if iteration == 0: | |||
| print("changing cluster centroids started ...") | |||
| indexes = list(np.arange(training_set_size)) | |||
| supp_xs, supp_ys, query_xs, query_ys = [], [], [], [] | |||
| for idx in range(0, 2500): | |||
| supp_xs.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| supp_ys.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| query_xs.append( | |||
| pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| query_ys.append( | |||
| pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| batch_sz = len(supp_xs) | |||
| user_embeddings = [] | |||
| for task in range(batch_sz): | |||
| # Compute meta-training loss | |||
| supp_xs[task] = supp_xs[task].cuda() | |||
| supp_ys[task] = supp_ys[task].cuda() | |||
| temp_sxs = emb(supp_xs[task]) | |||
| y = supp_ys[task].view(-1, 1) | |||
| input_pairs = torch.cat((temp_sxs, y), dim=1) | |||
| _, mean_task, _ = trainer.cluster_module(temp_sxs, y) | |||
| user_embeddings.append(mean_task.detach().cpu().numpy()) | |||
| a, b, c, d = zip(*train_dataset) | |||
| supp_xs[task] = supp_xs[task].cpu() | |||
| supp_ys[task] = supp_ys[task].cpu() | |||
| from sklearn.cluster import KMeans | |||
| user_embeddings = np.array(user_embeddings) | |||
| kmeans_model = KMeans(n_clusters=conf['cluster_k'], init="k-means++").fit(user_embeddings) | |||
| trainer.cluster_module.array.data = torch.Tensor(kmeans_model.cluster_centers_).cuda() | |||
| if iteration > (0): | |||
| indexes = data_batching_new(indexes, C_distribs, batch_size, training_set_size, conf['cluster_k'], conf) | |||
| else: | |||
| random.shuffle(indexes) | |||
| C_distribs = [] | |||
| for epoch in range(config['num_epoch']): # loop over the dataset multiple times | |||
| for i in range(num_batch): | |||
| optimizer.zero_grad() | |||
| meta_train_error = 0.0 | |||
| meta_cluster_error = 0.0 | |||
| # print("EPOCH: ", epoch, " BATCH: ", i) | |||
| supp_xs = list(a[batch_size * i:batch_size * (i + 1)]) | |||
| supp_ys = list(b[batch_size * i:batch_size * (i + 1)]) | |||
| query_xs = list(c[batch_size * i:batch_size * (i + 1)]) | |||
| query_ys = list(d[batch_size * i:batch_size * (i + 1)]) | |||
| supp_xs, supp_ys, query_xs, query_ys = [], [], [], [] | |||
| for idx in range(batch_size * i, batch_size * (i + 1)): | |||
| supp_xs.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| supp_ys.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| query_xs.append( | |||
| pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| query_ys.append( | |||
| pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
| batch_sz = len(supp_xs) | |||
| # iterate over all tasks | |||
| for task in range(batch_sz): | |||
| sxs = supp_xs[task].cuda() | |||
| qxs = query_xs[task].cuda() | |||
| sys = supp_ys[task].cuda() | |||
| qys = query_ys[task].cuda() | |||
| learner = trainer.clone() | |||
| temp_sxs = emb(sxs) | |||
| temp_qxs = emb(qxs) | |||
| evaluation_error = fast_adapt(learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| sys, | |||
| qys, | |||
| conf['inner']) | |||
| evaluation_error.backward() | |||
| # Compute meta-training loss | |||
| supp_xs[task] = supp_xs[task].cuda() | |||
| supp_ys[task] = supp_ys[task].cuda() | |||
| query_xs[task] = query_xs[task].cuda() | |||
| query_ys[task] = query_ys[task].cuda() | |||
| learner = head.clone() | |||
| temp_sxs = emb(supp_xs[task]) | |||
| temp_qxs = emb(query_xs[task]) | |||
| evaluation_error, c, K_LOSS = fast_adapt(learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| supp_ys[task], | |||
| query_ys[task], | |||
| conf['inner'], | |||
| trainer=trainer, | |||
| test=False, | |||
| iteration=iteration | |||
| ) | |||
| C_distribs.append(c.detach().cpu().numpy()) | |||
| meta_cluster_error += K_LOSS | |||
| evaluation_error.backward(retain_graph=True) | |||
| meta_train_error += evaluation_error.item() | |||
| del (sxs, qxs, sys, qys) | |||
| supp_xs[task].cpu() | |||
| query_xs[task].cpu() | |||
| supp_ys[task].cpu() | |||
| query_ys[task].cpu() | |||
| supp_xs[task] = supp_xs[task].cpu() | |||
| supp_ys[task] = supp_ys[task].cpu() | |||
| query_xs[task] = query_xs[task].cpu() | |||
| query_ys[task] = query_ys[task].cpu() | |||
| ################################################ | |||
| # Average the accumulated gradients and optimize (After each batch we will update params) | |||
| # Print some metrics | |||
| print('Iteration', iteration) | |||
| print('Meta Train Error', meta_train_error / batch_sz) | |||
| print('KL Train Error', round(meta_cluster_error / batch_sz, 4), "\t", C_distribs[-1]) | |||
| # Average the accumulated gradients and optimize | |||
| for p in all_parameters: | |||
| # if p.grad!=None: | |||
| p.grad.data.mul_(1.0 / batch_sz) | |||
| optimizer.step() | |||
| del (supp_xs, supp_ys, query_xs, query_ys) | |||
| gc.collect() | |||
| # test results on the validation data | |||
| val_loss, val_ndcg1, val_ndcg3 = hyper_test(emb, trainer, validation_dataset, adaptation_step=conf['inner']) | |||
| val_loss, val_ndcg1, val_ndcg3 = hyper_test(emb, head, trainer, batch_size, master_path, conf['test_state'], | |||
| adaptation_step=conf['inner'], num_epoch=iteration) | |||
| # with tune.checkpoint_dir(epoch) as checkpoint_dir: | |||
| # path = os.path.join(checkpoint_dir, "checkpoint") | |||
| # torch.save((net.state_dict(), optimizer.state_dict()), path) | |||
| tune.report(loss=val_loss, ndcg1=val_ndcg1, ndcg3=val_ndcg3) | |||
| print("Finished Training") | |||