@@ -0,0 +1,31 @@ | |||
import torch | |||
import torch.nn.functional as F | |||
class Head(torch.nn.Module): | |||
def __init__(self, config): | |||
super(Head, self).__init__() | |||
self.embedding_dim = config['embedding_dim'] | |||
self.fc1_in_dim = config['embedding_dim'] * 8 | |||
self.fc2_in_dim = config['first_fc_hidden_dim'] | |||
self.fc2_out_dim = config['second_fc_hidden_dim'] | |||
self.use_cuda = True | |||
self.fc1 = torch.nn.Linear(self.fc1_in_dim, self.fc2_in_dim) | |||
self.fc2 = torch.nn.Linear(self.fc2_in_dim, self.fc2_out_dim) | |||
self.linear_out = torch.nn.Linear(self.fc2_out_dim, 1) | |||
self.dropout_rate = config['head_dropout'] | |||
self.dropout = torch.nn.Dropout(self.dropout_rate) | |||
def forward(self, task_embed, gamma_1, beta_1, gamma_2, beta_2): | |||
hidden_1 = self.fc1(task_embed) | |||
hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
hidden_1 = self.dropout(hidden_1) | |||
hidden_2 = F.relu(hidden_1) | |||
hidden_2 = self.fc2(hidden_2) | |||
hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
hidden_2 = self.dropout(hidden_2) | |||
hidden_3 = F.relu(hidden_2) | |||
y_pred = self.linear_out(hidden_3) | |||
return y_pred |
@@ -2,93 +2,113 @@ import torch.nn.init as init | |||
import os | |||
import torch | |||
import pickle | |||
from options import config | |||
# from options import config | |||
import gc | |||
import torch.nn as nn | |||
from torch.nn import functional as F | |||
import numpy as np | |||
class ClustringModule(torch.nn.Module): | |||
def __init__(self, config_param): | |||
def __init__(self, config): | |||
super(ClustringModule, self).__init__() | |||
self.h1_dim = config_param['cluster_h1_dim'] | |||
self.h2_dim = config_param['cluster_h2_dim'] | |||
self.final_dim = config_param['cluster_final_dim'] | |||
self.dropout_rate = config_param['cluster_dropout_rate'] | |||
self.final_dim = config['task_dim'] | |||
self.dropout_rate = config['rnn_dropout'] | |||
self.embedding_dim = config['embedding_dim'] | |||
self.kmeans_alpha = config['kmeans_alpha'] | |||
# layers = [ | |||
# nn.Linear(config['embedding_dim'] * 8 + 1, self.h1_dim), | |||
# # nn.Linear(config['embedding_dim'] * 8, self.h1_dim), | |||
# torch.nn.Dropout(self.dropout_rate), | |||
# nn.ReLU(inplace=True), | |||
# nn.Linear(self.h1_dim, self.h2_dim), | |||
# torch.nn.Dropout(self.dropout_rate), | |||
# nn.ReLU(inplace=True), | |||
# nn.Linear(self.h2_dim, self.final_dim), | |||
# ] | |||
# layers_out = [ | |||
# nn.Linear(self.final_dim,self.h3_dim), | |||
# torch.nn.Dropout(self.dropout_rate), | |||
# nn.ReLU(inplace=True), | |||
# nn.Linear(self.h3_dim,self.h4_dim), | |||
# torch.nn.Dropout(self.dropout_rate), | |||
# nn.ReLU(inplace=True), | |||
# nn.Linear(self.h4_dim,config['embedding_dim'] * 8 + 1), | |||
# # nn.Linear(self.h4_dim,config['embedding_dim'] * 8), | |||
# # torch.nn.Dropout(self.dropout_rate), | |||
# # nn.ReLU(inplace=True), | |||
# ] | |||
# self.input_to_hidden = nn.Sequential(*layers) | |||
# self.hidden_to_output = nn.Sequential(*layers_out) | |||
# self.recon_loss = nn.MSELoss() | |||
# self.hidden_dim = 64 | |||
# self.l1_dim = 64 | |||
self.hidden_dim = config['rnn_hidden'] | |||
self.l1_dim = config['rnn_l1'] | |||
self.rnn = nn.LSTM(4 * config['embedding_dim'] + 1, self.hidden_dim, batch_first=True) | |||
layers = [ | |||
# nn.Linear(config_param['embedding_dim'] * 8 + 1, self.h1_dim), | |||
nn.Linear(config_param['embedding_dim'] * 8, self.h1_dim), | |||
torch.nn.Dropout(self.dropout_rate), | |||
nn.ReLU(inplace=True), | |||
# nn.BatchNorm1d(self.h1_dim), | |||
nn.Linear(self.h1_dim, self.h2_dim), | |||
torch.nn.Dropout(self.dropout_rate), | |||
nn.ReLU(inplace=True), | |||
# nn.BatchNorm1d(self.h2_dim), | |||
nn.Linear(self.h2_dim, self.final_dim)] | |||
nn.Linear(config['embedding_dim'] * 4 + self.hidden_dim, self.l1_dim), | |||
torch.nn.Dropout(self.dropout_rate), | |||
nn.ReLU(inplace=True), | |||
nn.Linear(self.l1_dim, self.final_dim), | |||
] | |||
self.input_to_hidden = nn.Sequential(*layers) | |||
self.clusters_k = config_param['cluster_k'] | |||
self.clusters_k = config['cluster_k'] | |||
self.embed_size = self.final_dim | |||
self.array = nn.Parameter(init.xavier_uniform_(torch.FloatTensor(self.clusters_k, self.embed_size))) | |||
self.temperature = config_param['temperature'] | |||
# self.array = nn.Parameter(init.zeros_(torch.FloatTensor(self.clusters_k, self.embed_size))) | |||
self.temperature = config['temperature'] | |||
def aggregate(self, z_i): | |||
return torch.mean(z_i, dim=0) | |||
def forward(self, task_embed, y, training=True): | |||
y = y.view(-1, 1) | |||
high_idx = y > 3 | |||
high_idx = high_idx.squeeze() | |||
if high_idx.sum() > 0: | |||
input_pairs = task_embed.detach()[high_idx] | |||
else: | |||
input_pairs = torch.ones(size=(1, 8 * config['embedding_dim'])).cuda() | |||
print("found") | |||
# input_pairs = torch.cat((task_embed, y), dim=1) | |||
task_embed = self.input_to_hidden(input_pairs) | |||
idx = 4 * self.embedding_dim | |||
items = torch.cat((task_embed[:, 0:idx], y), dim=1).unsqueeze(0) | |||
output, (hn, cn) = self.rnn(items) | |||
items_embed = output.squeeze()[-1] | |||
user_embed = task_embed[0, idx:] | |||
# todo : may be useless | |||
mean_task = self.aggregate(task_embed) | |||
task_embed = self.input_to_hidden(torch.cat((items_embed, user_embed), dim=0)) | |||
mean_task = task_embed | |||
res = torch.norm(mean_task - self.array, p=2, dim=1, keepdim=True) | |||
res = torch.norm((mean_task) - (self.array), p=2, dim=1, keepdim=True) | |||
res = torch.pow((res / self.temperature) + 1, (self.temperature + 1) / -2) | |||
# 1*k | |||
C = torch.transpose(res / res.sum(), 0, 1) | |||
# 1*k, k*d, 1*d | |||
value = torch.mm(C, self.array) | |||
# simple add operation | |||
# new_task_embed = value + mean_task | |||
# new_task_embed = value | |||
new_task_embed = mean_task | |||
# print("injam1:", new_task_embed) | |||
# print("injam2:", self.array) | |||
list_dist = [] | |||
# list_dist = torch.norm(new_task_embed - self.array, p=2, dim=1,keepdim=True) | |||
list_dist = torch.sum(torch.pow(new_task_embed - self.array,2),dim=1) | |||
# compute clustering loss | |||
list_dist = torch.sum(torch.pow(new_task_embed - self.array, 2), dim=1) | |||
stack_dist = list_dist | |||
# print("injam3:", stack_dist) | |||
## Second, find the minimum squared distance for softmax normalization | |||
min_dist = min(list_dist) | |||
# print("injam4:", min_dist) | |||
## Third, compute exponentials shifted with min_dist to avoid underflow (0/0) issues in softmaxes | |||
alpha = config['kmeans_alpha'] # Placeholder tensor for alpha | |||
alpha = self.kmeans_alpha # Placeholder tensor for alpha | |||
# alpha = alphas[iteration] | |||
list_exp = [] | |||
for i in range(self.clusters_k): | |||
exp = torch.exp(-alpha * (stack_dist[i] - min_dist)) | |||
list_exp.append(exp) | |||
stack_exp = torch.stack(list_exp) | |||
sum_exponentials = torch.sum(stack_exp) | |||
# print("injam5:", stack_exp, sum_exponentials) | |||
## Fourth, compute softmaxes and the embedding/representative distances weighted by softmax | |||
list_softmax = [] | |||
list_weighted_dist = [] | |||
for j in range(self.clusters_k): | |||
@@ -97,76 +117,43 @@ class ClustringModule(torch.nn.Module): | |||
list_softmax.append(softmax) | |||
list_weighted_dist.append(weighted_dist) | |||
stack_weighted_dist = torch.stack(list_weighted_dist) | |||
kmeans_loss = torch.sum(stack_weighted_dist, dim=0) | |||
# rec_loss = self.recon_loss(input_pairs,output) | |||
# return C, new_task_embed,kmeans_loss,rec_loss | |||
return C, new_task_embed, kmeans_loss | |||
class Trainer(torch.nn.Module): | |||
def __init__(self, config_param, head=None): | |||
def __init__(self, config, head=None): | |||
super(Trainer, self).__init__() | |||
fc1_in_dim = config_param['embedding_dim'] * 8 | |||
fc2_in_dim = config_param['first_fc_hidden_dim'] | |||
fc2_out_dim = config_param['second_fc_hidden_dim'] | |||
self.fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
self.fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
self.linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
# cluster module | |||
self.cluster_module = ClustringModule(config_param) | |||
# self.task_dim = fc1_in_dim | |||
self.task_dim = config_param['cluster_final_dim'] | |||
# transform task to weights | |||
self.film_layer_1_beta = nn.Linear(self.task_dim, fc2_in_dim, bias=False) | |||
self.film_layer_1_gamma = nn.Linear(self.task_dim, fc2_in_dim, bias=False) | |||
self.film_layer_2_beta = nn.Linear(self.task_dim, fc2_out_dim, bias=False) | |||
self.film_layer_2_gamma = nn.Linear(self.task_dim, fc2_out_dim, bias=False) | |||
# self.film_layer_3_beta = nn.Linear(self.task_dim, self.h3_dim, bias=False) | |||
# self.film_layer_3_gamma = nn.Linear(self.task_dim, self.h3_dim, bias=False) | |||
# self.dropout_rate = 0 | |||
self.dropout_rate = config_param['trainer_dropout_rate'] | |||
self.cluster_module = ClustringModule(config) | |||
# self.task_dim = 64 | |||
self.task_dim = config['task_dim'] | |||
self.fc2_in_dim = config['first_fc_hidden_dim'] | |||
self.fc2_out_dim = config['second_fc_hidden_dim'] | |||
self.film_layer_1_beta = nn.Linear(self.task_dim, self.fc2_in_dim, bias=False) | |||
self.film_layer_1_gamma = nn.Linear(self.task_dim, self.fc2_in_dim, bias=False) | |||
self.film_layer_2_beta = nn.Linear(self.task_dim, self.fc2_out_dim, bias=False) | |||
self.film_layer_2_gamma = nn.Linear(self.task_dim, self.fc2_out_dim, bias=False) | |||
self.dropout_rate = config['trainer_dropout'] | |||
self.dropout = nn.Dropout(self.dropout_rate) | |||
self.label_noise_std = config['label_noise_std'] | |||
def aggregate(self, z_i): | |||
return torch.mean(z_i, dim=0) | |||
def forward(self, task_embed, y, training, adaptation_data=None, adaptation_labels=None): | |||
if training: | |||
C, clustered_task_embed, k_loss = self.cluster_module(task_embed, y) | |||
# hidden layers | |||
# todo : adding activation function or remove it | |||
hidden_1 = self.fc1(task_embed) | |||
beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
hidden_1 = self.dropout(hidden_1) | |||
hidden_2 = F.relu(hidden_1) | |||
hidden_2 = self.fc2(hidden_2) | |||
beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
hidden_2 = self.dropout(hidden_2) | |||
hidden_3 = F.relu(hidden_2) | |||
y_pred = self.linear_out(hidden_3) | |||
else: | |||
C, clustered_task_embed, k_loss = self.cluster_module(adaptation_data, adaptation_labels) | |||
beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
hidden_1 = self.fc1(task_embed) | |||
hidden_1 = torch.mul(hidden_1, gamma_1) + beta_1 | |||
hidden_1 = self.dropout(hidden_1) | |||
hidden_2 = F.relu(hidden_1) | |||
hidden_2 = self.fc2(hidden_2) | |||
hidden_2 = torch.mul(hidden_2, gamma_2) + beta_2 | |||
hidden_2 = self.dropout(hidden_2) | |||
hidden_3 = F.relu(hidden_2) | |||
y_pred = self.linear_out(hidden_3) | |||
return y_pred, C, k_loss | |||
def forward(self, task_embed, y, training=True, adaptation_data=None, adaptation_labels=None): | |||
# if training: | |||
t = torch.Tensor(np.random.normal(0, self.label_noise_std, size=len(y))).cuda() | |||
noise_y = t + y | |||
# C, clustered_task_embed,k_loss,rec_loss = self.cluster_module(task_embed, noise_y) | |||
C, clustered_task_embed, k_loss = self.cluster_module(task_embed, noise_y) | |||
beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
gamma_2 = torch.tanh(self.film_layer_2_gamma(clustered_task_embed)) | |||
# return gamma_1,beta_1,gamma_2,beta_2,C,k_loss,rec_loss | |||
return gamma_1, beta_1, gamma_2, beta_2, C, k_loss |
@@ -18,38 +18,33 @@ def cl_loss(c): | |||
def fast_adapt( | |||
learn, | |||
head, | |||
adaptation_data, | |||
evaluation_data, | |||
adaptation_labels, | |||
evaluation_labels, | |||
adaptation_steps, | |||
get_predictions=False, | |||
epoch=None): | |||
is_print = random.random() < 0.05 | |||
trainer=None, | |||
test=False, | |||
iteration=None): | |||
for step in range(adaptation_steps): | |||
temp, c, k_loss = learn(adaptation_data, adaptation_labels, training=True) | |||
# g1,b1,g2,b2,c,k_loss,rec_loss = trainer(adaptation_data,adaptation_labels,training=True) | |||
g1, b1, g2, b2, c, k_loss = trainer(adaptation_data, adaptation_labels, training=True) | |||
temp = head(adaptation_data, g1, b1, g2, b2) | |||
train_error = torch.nn.functional.mse_loss(temp.view(-1), adaptation_labels) | |||
# cluster_loss = cl_loss(c) | |||
# total_loss = train_error + config['cluster_loss_weight'] * cluster_loss | |||
total_loss = train_error + config['kmeans_loss_weight'] * k_loss | |||
learn.adapt(total_loss) | |||
# train_error = train_error + config['kmeans_loss_weight'] * k_loss + config['rec_loss_weight']*rec_loss | |||
train_error = train_error + config['kmeans_loss_weight'] * k_loss | |||
head.adapt(train_error) | |||
predictions, c, k_loss = learn(evaluation_data, None, training=False, adaptation_data=adaptation_data, | |||
adaptation_labels=adaptation_labels) | |||
# g1,b1,g2,b2,c,k_loss,rec_loss = trainer(adaptation_data,adaptation_labels,training=False) | |||
g1, b1, g2, b2, c, k_loss = trainer(adaptation_data, adaptation_labels, training=False) | |||
predictions = head(evaluation_data, g1, b1, g2, b2) | |||
valid_error = torch.nn.functional.mse_loss(predictions.view(-1), evaluation_labels) | |||
# cluster_loss = cl_loss(c) | |||
# total_loss = valid_error + config['cluster_loss_weight'] * cluster_loss | |||
# total_loss = valid_error + config['kmeans_loss_weight'] * k_loss + config['rec_loss_weight']*rec_loss | |||
total_loss = valid_error + config['kmeans_loss_weight'] * k_loss | |||
if is_print: | |||
# print("in query:\t", round(k_loss.item(),4)) | |||
print(c[0].detach().cpu().numpy(),"\t",round(k_loss.item(),3),"\n") | |||
# if random.random() < 0.05: | |||
# print("cl:", round(cluster_loss.item()), "\t c:", c[0].cpu().data.numpy()) | |||
if get_predictions: | |||
return total_loss, predictions | |||
return total_loss, c, k_loss.item() | |||
return predictions.detach().cpu(), c | |||
# return total_loss,c,k_loss.detach().cpu().item(),rec_loss.detach().cpu().item() | |||
return total_loss, c, k_loss.detach().cpu().item() |
@@ -6,45 +6,65 @@ from ray import tune | |||
from functools import partial | |||
from hyper_tunning import train_melu | |||
import numpy as np | |||
import torch | |||
def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/define_task_melu_data") | |||
load_data(data_dir) | |||
data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/new_data_dir3") | |||
# load_data(data_dir) | |||
config = { | |||
# "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
# "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
# "lr": tune.loguniform(1e-4, 1e-1), | |||
# "batch_size": tune.choice([2, 4, 8, 16]) | |||
"transformer": tune.choice(['kronoker']), | |||
"meta_algo": tune.choice(['gbml']), | |||
"first_order": tune.choice([False]), | |||
"adapt_transform": tune.choice([True, False]), | |||
# "local_lr":tune.choice([5e-6,5e-4,5e-3]), | |||
# "lr":tune.choice([5e-5,5e-4]), | |||
# meta learning | |||
"meta_algo": tune.choice(['metasgd']), | |||
"transformer": tune.choice(['metasgd']), | |||
"first_order": tune.choice([True]), | |||
"adapt_transform": tune.choice([False]), | |||
"local_lr": tune.loguniform(5e-6, 5e-3), | |||
"lr": tune.loguniform(5e-5, 5e-3), | |||
"batch_size": tune.choice([16, 32, 64]), | |||
"inner": tune.choice([7, 5, 4, 3, 1]), | |||
"inner": tune.choice([1, 3, 4, 5, 7]), | |||
"test_state": tune.choice(["user_and_item_cold_state"]), | |||
# head | |||
"embedding_dim": tune.choice([16, 32, 64]), | |||
"first_fc_hidden_dim": tune.choice([32, 64, 128]), | |||
"second_fc_hidden_dim": tune.choice([32, 64]), | |||
'cluster_h1_dim': tune.choice([256, 128, 64]), | |||
'cluster_h2_dim': tune.choice([128, 64, 32]), | |||
'cluster_final_dim': tune.choice([64, 32]), | |||
# clustering module | |||
'cluster_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
'cluster_k': tune.choice([3, 5, 7, 9, 11]), | |||
'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 10.0]), | |||
'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
'kmeans_alpha': tune.choice([100, 0.1, 10, 20, 50, 200]), | |||
'rnn_dropout': tune.choice([0, 0.01, 0.1]), | |||
'rnn_hidden': tune.choice([32, 64, 128]), | |||
'rnn_l1': tune.choice([32, 64, 128]), | |||
'kmeans_loss_weight': tune.choice([0, 1, 10, 50, 100, 200]), | |||
'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 5.0, 10.0]), | |||
# 'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
'distribution_power': tune.choice([0.1, 0.8, 1, 3, 5, 7, 8, 9]), | |||
'data_selection_pow': tune.choice([0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.1, 1.2, 1.4]), | |||
'task_dim': tune.choice([16, 32, 64, 128, 256]), | |||
'trainer_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]), | |||
'label_noise_std': tune.choice([0, 0.01, 0.1, 0.2, 0.3, 1, 2]), | |||
'head_dropout': tune.choice([0, 0.001, 0.01, 0.05, 0.1]), | |||
'num_epoch': tune.choice([40]), | |||
'use_cuda': tune.choice([True]), | |||
'num_rate': tune.choice([6]), | |||
'num_genre': tune.choice([25]), | |||
'num_director': tune.choice([2186]), | |||
'num_actor': tune.choice([8030]), | |||
'num_gender': tune.choice([2]), | |||
'num_age': tune.choice([7]), | |||
'num_occupation': tune.choice([21]), | |||
'num_zipcode': tune.choice([3402]), | |||
} | |||
scheduler = ASHAScheduler( | |||
metric="loss", | |||
mode="min", | |||
max_t=30, | |||
max_t=max_num_epochs, | |||
grace_period=10, | |||
reduction_factor=2) | |||
reporter = CLIReporter( | |||
@@ -52,16 +72,15 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
metric_columns=["loss", "ndcg1", "ndcg3", "training_iteration"]) | |||
result = tune.run( | |||
partial(train_melu, data_dir=data_dir), | |||
resources_per_trial={"cpu": 4, "gpu": gpus_per_trial}, | |||
resources_per_trial={"cpu": 4, "gpu": 0.5}, | |||
config=config, | |||
num_samples=num_samples, | |||
scheduler=scheduler, | |||
progress_reporter=reporter, | |||
log_to_file=True, | |||
# resume=True, | |||
local_dir="./hyper_tunning_all_cold", | |||
name="melu_all_cold_clustered", | |||
local_dir="./hyper_tunning_all_cold3", | |||
name="rnn_cluster_module", | |||
) | |||
best_trial = result.get_best_trial("loss", "min", "last") | |||
@@ -78,23 +97,7 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
print(result.results_df) | |||
print("=======================================================\n") | |||
# best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"]) | |||
# device = "cpu" | |||
# if torch.cuda.is_available(): | |||
# device = "cuda:0" | |||
# if gpus_per_trial > 1: | |||
# best_trained_model = nn.DataParallel(best_trained_model) | |||
# best_trained_model.to(device) | |||
# | |||
# best_checkpoint_dir = best_trial.checkpoint.value | |||
# model_state, optimizer_state = torch.load(os.path.join( | |||
# best_checkpoint_dir, "checkpoint")) | |||
# best_trained_model.load_state_dict(model_state) | |||
# | |||
# test_acc = test_accuracy(best_trained_model, device) | |||
# print("Best trial test set accuracy: {}".format(test_acc)) | |||
if __name__ == "__main__": | |||
# You can change the number of GPUs per trial here: | |||
main(num_samples=150, max_num_epochs=25, gpus_per_trial=1) | |||
main(num_samples=150, max_num_epochs=50, gpus_per_trial=1) |
@@ -3,25 +3,38 @@ from torch.nn import L1Loss | |||
import numpy as np | |||
from fast_adapt import fast_adapt | |||
from sklearn.metrics import ndcg_score | |||
import gc | |||
import pickle | |||
import os | |||
def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
test_set_size = len(total_dataset) | |||
random.shuffle(total_dataset) | |||
a, b, c, d = zip(*total_dataset) | |||
def hyper_test(embedding, head, trainer, batch_size, master_path, test_state, adaptation_step, num_epoch=None): | |||
test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4) | |||
indexes = list(np.arange(test_set_size)) | |||
random.shuffle(indexes) | |||
# test_set_size = len(total_dataset) | |||
# random.shuffle(total_dataset) | |||
# a, b, c, d = zip(*total_dataset) | |||
# a, b, c, d = list(a), list(b), list(c), list(d) | |||
losses_q = [] | |||
ndcgs11 = [] | |||
ndcgs33 = [] | |||
head.eval() | |||
trainer.eval() | |||
for iterator in range(test_set_size): | |||
a = pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
b = pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
c = pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
d = pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, iterator), "rb")) | |||
try: | |||
supp_xs = a[iterator].cuda() | |||
supp_ys = b[iterator].cuda() | |||
query_xs = c[iterator].cuda() | |||
query_ys = d[iterator].cuda() | |||
supp_xs = a.cuda() | |||
supp_ys = b.cuda() | |||
query_xs = c.cuda() | |||
query_ys = d.cuda() | |||
except IndexError: | |||
print("index error in test method") | |||
continue | |||
@@ -30,16 +43,21 @@ def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
temp_sxs = embedding(supp_xs) | |||
temp_qxs = embedding(query_xs) | |||
evaluation_error, predictions = fast_adapt(learner, | |||
temp_sxs, | |||
temp_qxs, | |||
supp_ys, | |||
query_ys, | |||
adaptation_step, | |||
get_predictions=True) | |||
predictions, c = fast_adapt( | |||
learner, | |||
temp_sxs, | |||
temp_qxs, | |||
supp_ys, | |||
query_ys, | |||
adaptation_step, | |||
get_predictions=True, | |||
trainer=trainer, | |||
test=True, | |||
iteration=num_epoch | |||
) | |||
l1 = L1Loss(reduction='mean') | |||
loss_q = l1(predictions.view(-1), query_ys) | |||
loss_q = l1(predictions.view(-1), query_ys.cpu()) | |||
losses_q.append(float(loss_q)) | |||
predictions = predictions.view(-1) | |||
y_true = query_ys.cpu().detach().numpy() | |||
@@ -63,4 +81,6 @@ def hyper_test(embedding, head, total_dataset, adaptation_step): | |||
ndcg3 = 0 | |||
head.train() | |||
trainer.train() | |||
gc.collect() | |||
return losses_q, ndcg1, ndcg3 |
@@ -3,7 +3,6 @@ import torch | |||
import torch.nn as nn | |||
from ray import tune | |||
import pickle | |||
from options import config | |||
from embedding_module import EmbeddingModule | |||
import learn2learn as l2l | |||
import random | |||
@@ -12,25 +11,27 @@ import gc | |||
from learn2learn.optim.transforms import KroneckerTransform | |||
from hyper_testing import hyper_test | |||
from clustering import Trainer | |||
from Head import Head | |||
import numpy as np | |||
# Define paths (for data) | |||
# master_path= "/media/external_10TB/10TB/maheri/melu_data5" | |||
def load_data(data_dir=None, test_state='warm_state'): | |||
training_set_size = int(len(os.listdir("{}/warm_state".format(data_dir))) / 4) | |||
supp_xs_s = [] | |||
supp_ys_s = [] | |||
query_xs_s = [] | |||
query_ys_s = [] | |||
for idx in range(training_set_size): | |||
supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
trainset = total_dataset | |||
# training_set_size = int(len(os.listdir("{}/warm_state".format(data_dir))) / 4) | |||
# supp_xs_s = [] | |||
# supp_ys_s = [] | |||
# query_xs_s = [] | |||
# query_ys_s = [] | |||
# for idx in range(training_set_size): | |||
# supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
# supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
# query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
# query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
# total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
# del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
# trainset = total_dataset | |||
test_set_size = int(len(os.listdir("{}/{}".format(data_dir, test_state))) / 4) | |||
supp_xs_s = [] | |||
@@ -46,27 +47,70 @@ def load_data(data_dir=None, test_state='warm_state'): | |||
del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
random.shuffle(test_dataset) | |||
random.shuffle(trainset) | |||
val_size = int(test_set_size * 0.2) | |||
# random.shuffle(trainset) | |||
val_size = int(test_set_size * 0.3) | |||
validationset = test_dataset[:val_size] | |||
testset = test_dataset[val_size:] | |||
# testset = test_dataset[val_size:] | |||
return trainset, validationset, testset | |||
return None, validationset, None | |||
def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
print("inajm1:", checkpoint_dir) | |||
embedding_dim = conf['embedding_dim'] | |||
fc1_in_dim = conf['embedding_dim'] * 8 | |||
fc2_in_dim = conf['first_fc_hidden_dim'] | |||
fc2_out_dim = conf['second_fc_hidden_dim'] | |||
def data_batching_new(indexes, C_distribs, batch_size, training_set_size, num_clusters,config): | |||
probs = np.squeeze(C_distribs) | |||
probs = np.array(probs) ** config['distribution_power'] / np.sum(np.array(probs) ** config['distribution_power'], | |||
axis=1, keepdims=True) | |||
cs = [np.random.choice(num_clusters, p=i) for i in probs] | |||
num_batch = int(training_set_size / batch_size) | |||
res = [[] for i in range(num_batch)] | |||
clas = [[] for i in range(num_clusters)] | |||
clas_temp = [[] for i in range(num_clusters)] | |||
for idx, c in zip(indexes, cs): | |||
clas[c].append(idx) | |||
for i in range(num_clusters): | |||
random.shuffle(clas[i]) | |||
# t = np.array([len(i) for i in clas]) | |||
t = np.array([len(i) ** config['data_selection_pow'] for i in clas]) | |||
t = t / t.sum() | |||
dif = list(set(list(np.arange(training_set_size))) - set(indexes[0:(num_batch * batch_size)])) | |||
cnt = 0 | |||
for i in range(len(res)): | |||
for j in range(batch_size): | |||
temp = np.random.choice(num_clusters, p=t) | |||
if len(clas[temp]) > 0: | |||
selected = clas[temp].pop(0) | |||
res[i].append(selected) | |||
clas_temp[temp].append(selected) | |||
else: | |||
# res[i].append(indexes[training_set_size-1-cnt]) | |||
if len(dif) > 0: | |||
if random.random() < 0.5 or len(clas_temp[temp]) == 0: | |||
res[i].append(dif.pop(0)) | |||
else: | |||
selected = clas_temp[temp].pop(0) | |||
clas_temp[temp].append(selected) | |||
res[i].append(selected) | |||
else: | |||
selected = clas_temp[temp].pop(0) | |||
res[i].append(selected) | |||
# fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
# fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
# linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
# head = torch.nn.Sequential(fc1, fc2, linear_out) | |||
cnt = cnt + 1 | |||
emb = EmbeddingModule(config).cuda() | |||
print("data_batching : ", cnt) | |||
res = np.random.permutation(res) | |||
final_result = np.array(res).flatten() | |||
return final_result | |||
def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
config = conf | |||
master_path = data_dir | |||
emb = EmbeddingModule(conf).cuda() | |||
transform = None | |||
if conf['transformer'] == "kronoker": | |||
@@ -74,23 +118,33 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
elif conf['transformer'] == "linear": | |||
transform = l2l.optim.ModuleTransform(torch.nn.Linear) | |||
trainer = Trainer(config) | |||
trainer = Trainer(conf) | |||
trainer.cuda() | |||
head = Head(config) | |||
# define meta algorithm | |||
if conf['meta_algo'] == "maml": | |||
trainer = l2l.algorithms.MAML(trainer, lr=conf['local_lr'], first_order=conf['first_order']) | |||
head = l2l.algorithms.MAML(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
elif conf['meta_algo'] == 'metasgd': | |||
trainer = l2l.algorithms.MetaSGD(trainer, lr=conf['local_lr'], first_order=conf['first_order']) | |||
head = l2l.algorithms.MetaSGD(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
elif conf['meta_algo'] == 'gbml': | |||
trainer = l2l.algorithms.GBML(trainer, transform=transform, lr=conf['local_lr'], | |||
head = l2l.algorithms.GBML(head, transform=transform, lr=conf['local_lr'], | |||
adapt_transform=conf['adapt_transform'], first_order=conf['first_order']) | |||
trainer.cuda() | |||
# net = nn.Sequential(emb, head) | |||
head.cuda() | |||
criterion = nn.MSELoss() | |||
all_parameters = list(emb.parameters()) + list(trainer.parameters()) | |||
all_parameters = list(emb.parameters()) + list(trainer.parameters()) + list(head.parameters()) | |||
optimizer = torch.optim.Adam(all_parameters, lr=conf['lr']) | |||
# Load training dataset. | |||
print("LOAD DATASET PHASE") | |||
training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4) | |||
supp_xs_s = [] | |||
supp_ys_s = [] | |||
query_xs_s = [] | |||
query_ys_s = [] | |||
if checkpoint_dir: | |||
print("in checkpoint - bug happened") | |||
# model_state, optimizer_state = torch.load( | |||
@@ -99,64 +153,129 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
# optimizer.load_state_dict(optimizer_state) | |||
# loading data | |||
train_dataset, validation_dataset, test_dataset = load_data(data_dir, test_state=conf['test_state']) | |||
# _, validation_dataset, _ = load_data(data_dir, test_state=conf['test_state']) | |||
batch_size = conf['batch_size'] | |||
num_batch = int(len(train_dataset) / batch_size) | |||
# num_batch = int(len(train_dataset) / batch_size) | |||
# a, b, c, d = zip(*train_dataset) | |||
C_distribs = [] | |||
indexes = list(np.arange(training_set_size)) | |||
all_test_users = [] | |||
for iteration in range(conf['num_epoch']): # loop over the dataset multiple times | |||
print("iteration:", iteration) | |||
num_batch = int(training_set_size / batch_size) | |||
if iteration == 0: | |||
print("changing cluster centroids started ...") | |||
indexes = list(np.arange(training_set_size)) | |||
supp_xs, supp_ys, query_xs, query_ys = [], [], [], [] | |||
for idx in range(0, 2500): | |||
supp_xs.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
supp_ys.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
query_xs.append( | |||
pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
query_ys.append( | |||
pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
batch_sz = len(supp_xs) | |||
user_embeddings = [] | |||
for task in range(batch_sz): | |||
# Compute meta-training loss | |||
supp_xs[task] = supp_xs[task].cuda() | |||
supp_ys[task] = supp_ys[task].cuda() | |||
temp_sxs = emb(supp_xs[task]) | |||
y = supp_ys[task].view(-1, 1) | |||
input_pairs = torch.cat((temp_sxs, y), dim=1) | |||
_, mean_task, _ = trainer.cluster_module(temp_sxs, y) | |||
user_embeddings.append(mean_task.detach().cpu().numpy()) | |||
a, b, c, d = zip(*train_dataset) | |||
supp_xs[task] = supp_xs[task].cpu() | |||
supp_ys[task] = supp_ys[task].cpu() | |||
from sklearn.cluster import KMeans | |||
user_embeddings = np.array(user_embeddings) | |||
kmeans_model = KMeans(n_clusters=conf['cluster_k'], init="k-means++").fit(user_embeddings) | |||
trainer.cluster_module.array.data = torch.Tensor(kmeans_model.cluster_centers_).cuda() | |||
if iteration > (0): | |||
indexes = data_batching_new(indexes, C_distribs, batch_size, training_set_size, conf['cluster_k'], conf) | |||
else: | |||
random.shuffle(indexes) | |||
C_distribs = [] | |||
for epoch in range(config['num_epoch']): # loop over the dataset multiple times | |||
for i in range(num_batch): | |||
optimizer.zero_grad() | |||
meta_train_error = 0.0 | |||
meta_cluster_error = 0.0 | |||
# print("EPOCH: ", epoch, " BATCH: ", i) | |||
supp_xs = list(a[batch_size * i:batch_size * (i + 1)]) | |||
supp_ys = list(b[batch_size * i:batch_size * (i + 1)]) | |||
query_xs = list(c[batch_size * i:batch_size * (i + 1)]) | |||
query_ys = list(d[batch_size * i:batch_size * (i + 1)]) | |||
supp_xs, supp_ys, query_xs, query_ys = [], [], [], [] | |||
for idx in range(batch_size * i, batch_size * (i + 1)): | |||
supp_xs.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
supp_ys.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
query_xs.append( | |||
pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
query_ys.append( | |||
pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, indexes[idx]), "rb"))) | |||
batch_sz = len(supp_xs) | |||
# iterate over all tasks | |||
for task in range(batch_sz): | |||
sxs = supp_xs[task].cuda() | |||
qxs = query_xs[task].cuda() | |||
sys = supp_ys[task].cuda() | |||
qys = query_ys[task].cuda() | |||
learner = trainer.clone() | |||
temp_sxs = emb(sxs) | |||
temp_qxs = emb(qxs) | |||
evaluation_error = fast_adapt(learner, | |||
temp_sxs, | |||
temp_qxs, | |||
sys, | |||
qys, | |||
conf['inner']) | |||
evaluation_error.backward() | |||
# Compute meta-training loss | |||
supp_xs[task] = supp_xs[task].cuda() | |||
supp_ys[task] = supp_ys[task].cuda() | |||
query_xs[task] = query_xs[task].cuda() | |||
query_ys[task] = query_ys[task].cuda() | |||
learner = head.clone() | |||
temp_sxs = emb(supp_xs[task]) | |||
temp_qxs = emb(query_xs[task]) | |||
evaluation_error, c, K_LOSS = fast_adapt(learner, | |||
temp_sxs, | |||
temp_qxs, | |||
supp_ys[task], | |||
query_ys[task], | |||
conf['inner'], | |||
trainer=trainer, | |||
test=False, | |||
iteration=iteration | |||
) | |||
C_distribs.append(c.detach().cpu().numpy()) | |||
meta_cluster_error += K_LOSS | |||
evaluation_error.backward(retain_graph=True) | |||
meta_train_error += evaluation_error.item() | |||
del (sxs, qxs, sys, qys) | |||
supp_xs[task].cpu() | |||
query_xs[task].cpu() | |||
supp_ys[task].cpu() | |||
query_ys[task].cpu() | |||
supp_xs[task] = supp_xs[task].cpu() | |||
supp_ys[task] = supp_ys[task].cpu() | |||
query_xs[task] = query_xs[task].cpu() | |||
query_ys[task] = query_ys[task].cpu() | |||
################################################ | |||
# Average the accumulated gradients and optimize (After each batch we will update params) | |||
# Print some metrics | |||
print('Iteration', iteration) | |||
print('Meta Train Error', meta_train_error / batch_sz) | |||
print('KL Train Error', round(meta_cluster_error / batch_sz, 4), "\t", C_distribs[-1]) | |||
# Average the accumulated gradients and optimize | |||
for p in all_parameters: | |||
# if p.grad!=None: | |||
p.grad.data.mul_(1.0 / batch_sz) | |||
optimizer.step() | |||
del (supp_xs, supp_ys, query_xs, query_ys) | |||
gc.collect() | |||
# test results on the validation data | |||
val_loss, val_ndcg1, val_ndcg3 = hyper_test(emb, trainer, validation_dataset, adaptation_step=conf['inner']) | |||
val_loss, val_ndcg1, val_ndcg3 = hyper_test(emb, head, trainer, batch_size, master_path, conf['test_state'], | |||
adaptation_step=conf['inner'], num_epoch=iteration) | |||
# with tune.checkpoint_dir(epoch) as checkpoint_dir: | |||
# path = os.path.join(checkpoint_dir, "checkpoint") | |||
# torch.save((net.state_dict(), optimizer.state_dict()), path) | |||
tune.report(loss=val_loss, ndcg1=val_ndcg1, ndcg3=val_ndcg3) | |||
print("Finished Training") |