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Abstract. Characterizing and understanding information diffusion over
social networks play an important role in various real-world applications.
In many scenarios, however, only the states of nodes can be observed
while the underlying diffusion networks are unknown. Many methods
have therefore been proposed to infer the underlying networks based
on node observations. To enhance the inference performance, structural
priors of the networks, such as sparsity, scale-free, and community struc-
tures, are often incorporated into the learning procedure. As the building
blocks of networks, network motifs occur frequently in many social net-
works, and play an essential role in describing the network structures and
functionalities. However, to the best of our knowledge, no existing work
exploits this kind of structural primitives in diffusion network inference.
In order to address this unexplored yet important issue, in this paper,
we propose a novel framework called Motif-Aware Diffusion Network
Inference (MADNI), which aims to mine the motif profile from the node
observations and infer the underlying network based on the mined motif
profile. The mined motif profile and the inferred network are alternately
refined until the learning procedure converges. Extensive experiments on
both synthetic and real-world datasets validate the effectiveness of the
proposed framework.

1 Introduction

Characterizing and understanding information diffusion processes over social
networks play an important role in many real-world applications, such as viral
marketing [10] and rumor detection [3]. However, in many scenarios, the under-
lying diffusion networks are hidden [19,20]; what we do have is the states of
nodes observed over time. Therefore, inferring the underlying networks based on
the observations of node states is of great importance and has received much
attention recently [5,19,20].

Utilizing the network structure properties (e.g., community structure [8]
and scale-free property [21]) as the prior in the inference procedure has been
proved effective in improving the performance of network inference [7,18]. Net-
work motifs, which are regarded as the building blocks of networks [1,17], occur
frequently in many real-world networks and play a key role in analyzing the net-
work structure and interpreting the network functionality. For example, as an
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important mesoscale structure, motif patterns characterize the local structure
of the network connectivity and contribute to network classification [16] and
community detection [2]. Moreover, the incoherent feed-forward loop, which is
a representative triangle network motif, is commonly found in gene regulation
networks and can provide fold-change detection [4].

Although motifs are of great importance in describing the network structures
and functionalities, to the best of our knowledge, no existing work exploits this
kind of structural primitives in diffusion network inference. In order to address
this unexplored yet important issue, we propose a novel framework called Motif-
Aware Diffusion Network Inference (MADNI), which takes the network motifs
into account when inferring the underlying diffusion networks. Figure 1 schemat-
ically illustrates the idea and procedure of the proposed framework.

The contributions of this paper are summarized as follows.

1. We investigate an unexplored yet important issue, i.e., how to integrate motif
prior into diffusion network inference.

2. We propose a novel learning framework MADNI to mine the motif profile and
incorporate the uncovered motif profile into the network inference procedure.

3. We perform extensive experiments on both synthetic and real-world datasets,
showing the effectiveness of the proposed framework.

2 Related Work

The proposed MADNI aims to jointly mine the network motif prior and infer the
underlying diffusion network. This section therefore reviews some related works
in underlying diffusion network inference and the inference with network priors.

The diffusion network inference problem refers to tracing the diffusion edges
based on the observed infection time sequence. Gomez et al. proposed an algo-
rithm NETINF [5] to infer the diffusion edges through maximizing the likeli-
hood of observed infection time by utilizing submodular optimization. To infer
the heterogeneous transmission rates and time-varying network, NETRATE [19]
and INFOPATH [6] have been proposed respectively. Rong et al. proposed a
model-free approach NPDC [20] to utilizes the statistical difference of the infec-
tion time intervals between nodes connected with diffusion edges versus those
without diffusion edges in network inference. Moreover, Hu et al. proposed a
clustering embedded approach CENI [9] to improve the efficiency of network
inference by clustering the nodes on the embedded space.

Incorporating the network prior into the learning procedure generally
improves the performance of network inference [8,13,21]. Many literatures have
focused on inferring the scale-free networks and modular networks with block
structure. Liu and Ihler added a log l1 norm regularization on the estimated
graph structure in the Gaussian graphical model learning to encourage the esti-
mated graph becoming scale-free [15]. Liu et al. introduced the weight inverse
graph prior to encourage specific node distribution [13]. Hosseini Lee. introduced
a block prior to encourage sparse connections between blocks [8].
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Fig. 1. Schematic illustration of the proposed motif-aware diffusion network inference
(MADNI). (a) An example of the diffusion network. (b) An enlarged part of the diffu-
sion network in (a) for algorithm illustration. (c) The observed cascades on the under-
lying diffusion network shown in (b). For each cascade, only the infection time of the
influenced nodes (the red nodes) are observed, such as t1 = {t1a, t1b , · · · }. (d) The motif
profile is mined from the cascade data by estimating the frequency of various motif
patterns in the underlying diffusion network. (e) The underlying diffusion network is
learned via motif prior regularized learning. The mined motif profile and the learned
network are alternately refined until the inferred network converges. (f) The diffusion
network inferred by the MADNI framework. (Color figure online)
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However, motif, the structural primitives of many real-world networks, has
not been taken into account in underlying diffusion network inference yet. There-
fore, in this paper, we attempt to fill this gap by proposing a novel framework
to discover the underlying motif patterns and incorporate the uncovered motif
patterns into the network inference procedure.

3 Motif-Aware Diffusion Network Inference

In this section, we present our framework, Motif-Aware Diffusion Network Infer-
ence (MADNI). First, we provide the necessary notations and formally define
the problem. Then we introduce how to estimate the initial structure motif pro-
file from the cascade data and present a novel scheme for inferring the diffusion
network with the mined structural motif profile.

3.1 Notations and Problem Formulation

Let G =< V,E > denote the directed diffusion network, where V denotes the set
of N nodes (representing the individuals, Blog sites or locations) and E denotes
the set of edges (representing the directed influence from one node to another).
Generally, the edges in E is represented by the N × N adjacency matrix A,
where an entry (i, j) of A, Aij , is the transmission rate from node i to node
j. A subgraph Gs = (Vs, Es) of G satisfies Vs ⊆ V , Es ⊆ E. Two subgraphs
G1

s = (V1, E1) and G2
s = (V2, E2) are isomorphic if there exists a projection

ϕ : V1 → V2 with (u, v) ∈ E1 ↔ (ϕ(u), ϕ(v)) ∈ E2 for all (u, v).

Motif. A motif pattern with k nodes is a non-isomorphic, connected subgraph
frequently appearing in a large network. Figure 1(d) shows all seven close con-
nected triangle motif patterns.

Consider that the diffusion observation O is collected over the underlying
diffusion network G and consists of a set of C cascades. Each cascade tc (c =
1, ..., C) is a collection of observed infection time stamps within the population
during a time interval of length T and can be represented as an N -dimensional
vector tc := (tc1, · · · , tcN ), where tcn ∈ [0, T ] ∪ {∞} indicates the infection time
of node n in cascade c. The symbol ∞ labels users that are not infected during
observation window [0, T ]. Given the above diffusion observation O, we aim to
infer the underlying relation between nodes on G, i.e., the adjacency matrix A.

3.2 Estimating Motif Pattern from Cascade Data

In this subsection, we introduce a straightforward yet effective approach to esti-
mate the motif frequency from the cascade data, which is expected to be help-
ful in inferring the underlying diffusion network. When scanning the cascade
sequences, we record the occurrence matrix CO ∈ RN×N as follows. In each
cascade, if tci + tW > tcj > tci , where tW is the time window, COi,j increases by
one. Therefore, COi,j reflects how many times that node i may influence node
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j. We could further take into account the interval between the infection time of
node i and that of node j, i.e., COi,j increases by σ(−(tcj − tci )), where σ(·) could
be the Exponential function or Rayleigh function [19]. Based on this occurrence
matrix, we extract the significant pairwise influences by calculating the score of
the edge count: SE

i,j = COi,j−mean(CO)
std(CO) , where mean(CO) and std(CO) denote

the mean and standard deviation of all elements in CO, respectively. The edges
with low scores are filtered out. Then we could count the subgraph frequency
fm based on the SE by assuming that there exists an edge ei,j if SE

i,j is nonzero,
and further determine the significant motifs by calculating the Z-score of the
subgraph as Qm = fm−mean(Fm)

std(Fm) , where Fm is the m-th motif frequency of a
set of samples drawn by randomly shuffling SE [17]. The m-th motif is signifi-
cant if Zm is far above 1 [16]. We denote the procedure of extracting significant
motifs as M ← Q(SE).

3.3 Motif Prior Regularization

Different types of networks exhibit distinct motif frequency profiles [16]. In
order to incorporate the motif prior into network inference, we propose an edge-
centered regularization to adjust the motif frequency profile of the estimated net-
work. The main idea is that if an edge is forming a high frequent motif, less penal-
ization will be given to it. Let Zm ∈ 	N×N denote the motif count matrix of G for
a certain motif pattern m, where Zm

i,j indicates the number of instances of motif
m that containing the edge (i → j) [2]. We detect the motif m from the adja-
cency matrix A and count Zm

i,j for each edge, which is denoted as Zm = P(A,m).
Furthermore, we have Z =

∑
m∈M Zm =

∑
m∈M P(A,m) = P(A). The motif

pattern in M could be selected as significant motifs detected from the networks
or based on prior knowledge. In this paper, the seven close connected triangle
motif patterns shown in Fig. 1 are considered since the empirical studies have
revealed that these motif patterns appear frequently and play special roles in
social networks [14]. Based on the motif count matrix, the reweighted regular-
ization can be constructed for learning the network with significant frequent
motif patterns:

R(P(A)) = |M ◦ A| =
N∑

i,j=1

| Ai,j

Zi,j + 1
| (1)

3.4 Learning

We aim to find the diffusion network such that likelihood of diffusion observation
is maximized. The likelihood of diffusion observation is calculated as follow.

Pairwise transmission likelihood. With the cascades data, the pairwise
transmission likelihood is calculated as follows. Define f(tci |tcj , Aj,i) as the trans-
mission likelihood from node j to node i, which is related to the infection time
interval �t = (tcj − tci ) and the transmission rate Aj,i. Moreover, a node can only
be infected by an infected node. The exponential parametric likelihood model



Motif-Aware Diffusion Network Inference 643

is adopted: f(tci |tcj , Aj,i) = Aj,i exp−Aj,i(t
c
i−tcj) if tcj < tci and 0 otherwise. The

survival likelihood of edge (j → i), denoted as S(tci |tcj , Aj,i), is the probabil-
ity that node i is not infected by node j by time tci , which is calculated as:
S(tci |tcj , Aj,i) = 1 − F (tci |tcj , Aj,i) , where F (tci |tcj , Aj,i) is the cumulative function
of the transmission likelihood.

Likelihood of a cascade. The likelihood of the observe infections t̂c =
(tc1, · · · , tcN ) is calculated as:

f(t̂c;A) =
∏

tci≤T

∏

tcm>T

S(T |tci , Ai,m)
∏

k:tck<tci

S(tci |tck, Ak,i) ×
∑

j:tcj<tci

H(tci |tcj , Aj,i),

(2)
where H(tci |tcj , Aj,i) is the hazard function: H(tci |tcj , Aj,i) = f(tci |tcj ,Aj,i)

S(tci |tcj ,Aj,i)
.

Network inference. We aim to search A that maximizes the likelihood of
cascade observation O. In our framework, the networks are estimated through
maximizing the regularized likelihood function as follow.

max
A

(
L(O|A) − R(P(A))

)
= max

A

( ∑

c∈C

log f(tc, A) − R(P(A))
)

s.t. Aj,i ≥ 0, i, j = 1, · · · , N

(3)

where L(O|A) is the likelihood function of observation given the network topol-
ogy and R(P(A)) is the regularization term. We can use ADMM or projected
gradient descent [6] to enforce A to be nonnegative. Thus the matrix gradient
in terms of A is written as ∂L

∂A − M . The additional computational bounden
of adding the regularization term is just the addition of a N × N matrix. The
gradient for edges linking to node k in the cascade where node k is uninfected is

∂Lc

∂Aj,k
= T − tcj (4)

and the gradient for edges linking to node k in the cascades where node k is
infected is:

∂Lc

∂Aj,k
= (tck − tcj) − 1

∑
l:tcl <tck

Al,k
(5)

Summating the above term over all cascades gives the gradient for edges linking
to node k. Starting from Z = P(CO) or a plain prior, i.e., Z = P(0N×N ), we
update the network structure and the motif count matrix alternately until the
estimated network structure remains unchanged. The detailed procedure of the
proposed MADNI framework is provided in Algorithm 1.

3.5 Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed
framework. The time cost of occurrence matrix counting is O(CL), where C is the
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Algorithm 1: Motif-Aware Diffusion Network Inference (MADNI)
Input : The observation O: C cascades {tc = (tc1, ..., t

c
N )|Cc=1}

Output: The estimated network Â
for c = 1, · · · , C do

if tci + tW > tcj > tci then
COi,j ← COi,j + σ(−(tcj − tci )); � Construct occurrence matrix

end

end
for i, j = 1, · · · , N do

SE
i,j ← COi,j−mean(CO)

std(CO)
; � Calculate edge significance

end

M ← Q(SE) ; � Initialize candidature motifs set M
Z ← P(SE , M) ; � Initialize motif profile

while not converged do

Â ← arg maxA L(O|A) − R(Z) ; � Learn diffusion network

Z ← P(Â, M) ; � Update motif profile

end

number of cascades and L is the length of a cascade. Assume on average there are
K elements in each row of SE +(SE)T , then the cost of motif counting in SE and
its random shuffling variants is O(NK2). For each iteration of diffusion network
learning and motif profile updating, the computational demand comes from two
parts: motif count matrix calculation and network inference. Assume there are
M edges in the graph and the maximum degree is Dmax. For each edge e, the
cost of calculating the motif count Ce is O(Dmax) and thus the cost of calculating
the matrix count for all edges is O(MDmax). The network structure is inferred
via an iterative way, in which the complexity in each iteration is O(CN2). If
the maximum number of iterations in network inference problem is Ni, then the
complexity of network inference is O(NiCN2). As O(CNiN

2) > O(MDmax)
holds in general, the total computational cost of the proposed framework is
O(CNiN

2).

4 Validations

In this section, we evaluate the performance of our framework in diffusion net-
work inference on both the synthetic and real-world networks, in terms of Pre-
cision, Recall and F1 score [7].

4.1 Experiments on Synthetic Networks

In this subsection, we evaluate the performance of our framework on synthetic
networks and cascades. We first construct the synthetic network with N nodes
and then generate C cascades using exponential diffusion model on the network
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Fig. 2. (a) Performance comparison (in terms of Precision and Recall) between MADNI
and the baseline. MADNI significantly outperforms the baseline method with only one
iteration. The performance of MADNI is further improved after each iteration, and
the learning procedure quickly converges in only three iterations. (b) F1 improvement
ratio of MADNI over the baseline method with varying ρ. MADNI outperforms the
baseline even if the target network is close to a random network (ρ = 0.9). When
the target network becomes more structured, i.e., ρ becomes smaller, the improvement
ratio becomes more significant.

as the observation [19]. We choose NETRATE [19] as the baseline method for
comparison in our experiments as it explores the global convexity of network
inference problem.

Comparison with baseline. We first evaluate the performance of the proposed
framework on inferring the motif-dense network, i.e., the network with certain
motif patterns occurring frequently. The motif-dense network is generated from
a random motif network model, which enumerates the combinations over all
nodes and assigns a specific motif to each node combination with probability p.
Here we choose the feed-forward loop motif, i.e., Motif 5 illustrated in Fig. 1(d),
for our experiment, as it is a commonly observed motif in social networks [16].
Figure 2(a) shows the Precision and Recall of the baseline method and those of
MADNI after different number of iterations. It can be seen that the proposed
framework achieves significant improvement over the baseline method with only
one iteration, which validates the effectiveness of taking the motif into consider-
ation when inferring the structured networks. Furthermore, the performance of
the proposed framework can be further improved after each iteration, and the
learning procedure quickly converges in only three iterations.

Performance improvement with random edges. After having evaluated the
performance of the proposed framework on the motif-dense network, we further
test our framework on the networks consist of both significant motifs and random
edges. Specifically, we generate the target network from a motif-dense network
and a random network. The proportion of random network is indicated by a
parameter ρ, where ρ = 0 indicates the complete motif-dense network, which
is used in our previous experiment; while ρ = 1 indicates the complete random
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Fig. 3. Performance comparison (in terms of F1 score) between MADNI and the base-
line in (a) Exponential and (b) Rayleigh cascades on the networks with different types
of close connected triangle motifs.

network. The F1 score improvement ratio of MADNI over the baseline method
with varying ρ is shown in Fig. 2(b). Here the improvement ratio is defined as
(F1m−F1b)/F1b, where F1m is the F1 score of MADNI and F1b is the F1 score
of the baseline method. It can be observed from the figure that the proposed
framework outperforms the baseline even if the target network is close to a
random network (ρ = 0.9). When the target network becomes more structured,
i.e., the ratio of motif-dense network increases, the improvement ratio becomes
more significant.

Adaptivity over various motif patterns. In order to show that the perfor-
mance improvement is independent of the specific motif, we examine the per-
formance of our framework on inferring the networks with different types of fre-
quently occurred motifs. Specifically, we consider all the seven close connected
triangle motifs in this experiment. We generate the cascades using the Exponen-
tial and Rayleigh cascade models [19] and set ρ = 0.5. The comparison results
are shown in Fig. 3. MADNI consistently performs better than the baseline over
networks with different types of frequently occurred motifs, which demonstrates
the adaptivity of the proposed framework over various motif patterns.

4.2 Experiment on a Real-World Network

In this subsection, we evaluate the proposed framework on a real-world network,
i.e., an email communication network of an European Research Institute con-
sisting of 320 nodes and 3031 edges [12]. Similar to the synthetic experiments in
Sect. 4.1, we generate C (= 1000, 4000, 10000) cascades on the network as the
observations.

In this experiment, we compare the proposed framework with seven methods:
NETINF [5], NETINF with community structure prior, NETINF with scale-free
prior, NETRATE [19], NETRATE with community structure prior, NETRATE
with scale-free prior, and CENI [9]. Here NETINF and NETRATE are classical
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Table 1. Performance comparison (in terms of F1 score) between the proposed
MADNI-I/MADNI-R methods and seven competing diffusion network inference algo-
rithms in a real-world network experiment. The proposed methods perform the best.

Methods Number of cascades

C = 1000 C = 4000 C = 10000

NETINF 0.5675 0.8040 0.8333

NETINF + Community structure 0.5944 0.8041 0.8363

NETINF + Scale-free 0.6121 0.8044 0.8397

NETRATE 0.6636 0.7900 0.8350

NETRATE + Community structure 0.6385 0.7900 0.8351

NETRATE + Scale-free 0.6426 0.7901 0.8431

CENI 0.3390 0.8058 0.8517

MADNI-I 0.6287 0.8188 0.8464

MADNI-R 0.6685 0.7998 0.8600

network inference methods, community and scale-free structure are representa-
tive structural priors, and CENI is a state-of-the-art network inference algorithm.
For the proposed framework, NETINF and NETRATE are employed to learn
the diffusion network, i.e., maximize

(
L(O|A) − R(Z)

)
, respectively. Therefore,

in this experiment, we name the methods generated from the proposed frame-
work as MADNI-I (corresponding to NETINF) and MADNI-R (corresponding
to NETRATE), respectively.

Table 1 lists the performance (in terms of F1 score) of the proposed MADNI-
I/MADNI-R methods and the aforementioned seven competing algorithms under
different numbers of cascades. The proposed methods achieve the best perfor-
mance under all settings of C, indicating that the motif prior is powerful in
characterizing the complex structure of real-world networks.

4.3 Experiment on Real-World Cascades

In this subsection, we evaluate the performance of the proposed framework on a
real-world information cascade dataset, i.e., MemeTracker dataset [11]. Meme-
Tracker collects the quotes and phrases posted by the mass medium and Blog
sites. This dataset contains 1.5 million news articles and Blog from August 2008
to May 2009. The articles may include hyperlinks of their sources and thus
the information propagation can be tracked by the flow of hyperlinks. A site
publishes a piece of information with corresponding hyperlink. Sites receives
this piece of information would publish similar information and link to their
sources. Thus a collection of hyperlinks with time stamps could be regarded as
a hyperlink cascade. We construct the hyperlink cascades from top 500 mass
media and Blog sites. The total number of cascades is 11262. We test the per-
formance of the proposed methods as well as NETINF, NETINF+Community
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Table 2. Performance comparison (in terms of F1 score) between the proposed
MADNI-I/MADNI-R methods and five competing diffusion network inference algo-
rithms in a real-world cascade experiment. The proposed MADNI-I performs the best.

Methods Number of cascades

Sub (C = 4000 ) All (C = 11262)

NETINF 0.2414 0.3879

NETINF + Community structure 0.2425 0.3460

NETINF + Scale-free 0.2730 0.3800

NETRATE 0.2455 0.2608

CENI 0.2538 0.2873

MADNI-I 0.2746 0.3885

MADNI-R 0.2472 0.2959

structure, NETINF+Scale-free, NETRATE, and CENI with 4000 cascades and
all the 11262 cascades, respectively.

Table 2 shows the F1 scores of the proposed methods and five competing
algorithms under different numbers of cascades. By modeling the motif-prior in
the network inference procedure, the proposed MADNI-I performs better than
the other competing algorithms under both settings of C.

5 Conclusion

In this paper, we presented a novel MADNI framework, which mines the motif
patterns of the underlying diffusion network and incorporates the uncovered
motifs into the network inference procedure via a reweighted motif regulariza-
tion. By taking the network motifs into consideration, the proposed framework
achieves the best performance on both synthetic and real-world datasets.

Future work will be explored from two aspects. First, in the current work,
we have only considered the closed triangle motifs in the network inference as
they are elementary. In order to better characterize the network structure, more
complex motifs such as the higher-order ones should also be taken into account.
Second, we will further validate the generalization ability and the flexibility of
the proposed framework by incorporating motifs into different baseline methods
and comparing the proposed framework to more network inference approaches
with various kinds of structural priors.
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