123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- #!/usr/bin/env python
- # -*- encoding: utf-8 -*-
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
-
- from torch import nn
-
- from .network_blocks import BaseConv, CSPLayer, DWConv, Focus, ResLayer, SPPBottleneck
-
-
- class Darknet(nn.Module):
- # number of blocks from dark2 to dark5.
- depth2blocks = {21: [1, 2, 2, 1], 53: [2, 8, 8, 4]}
-
- def __init__(
- self,
- depth,
- in_channels=3,
- stem_out_channels=32,
- out_features=("dark3", "dark4", "dark5"),
- ):
- """
- Args:
- depth (int): depth of darknet used in model, usually use [21, 53] for this param.
- in_channels (int): number of input channels, for example, use 3 for RGB image.
- stem_out_channels (int): number of output chanels of darknet stem.
- It decides channels of darknet layer2 to layer5.
- out_features (Tuple[str]): desired output layer name.
- """
- super().__init__()
- assert out_features, "please provide output features of Darknet"
- self.out_features = out_features
- self.stem = nn.Sequential(
- BaseConv(in_channels, stem_out_channels, ksize=3, stride=1, act="lrelu"),
- *self.make_group_layer(stem_out_channels, num_blocks=1, stride=2),
- )
- in_channels = stem_out_channels * 2 # 64
-
- num_blocks = Darknet.depth2blocks[depth]
- # create darknet with `stem_out_channels` and `num_blocks` layers.
- # to make model structure more clear, we don't use `for` statement in python.
- self.dark2 = nn.Sequential(
- *self.make_group_layer(in_channels, num_blocks[0], stride=2)
- )
- in_channels *= 2 # 128
- self.dark3 = nn.Sequential(
- *self.make_group_layer(in_channels, num_blocks[1], stride=2)
- )
- in_channels *= 2 # 256
- self.dark4 = nn.Sequential(
- *self.make_group_layer(in_channels, num_blocks[2], stride=2)
- )
- in_channels *= 2 # 512
-
- self.dark5 = nn.Sequential(
- *self.make_group_layer(in_channels, num_blocks[3], stride=2),
- *self.make_spp_block([in_channels, in_channels * 2], in_channels * 2),
- )
-
- def make_group_layer(self, in_channels: int, num_blocks: int, stride: int = 1):
- "starts with conv layer then has `num_blocks` `ResLayer`"
- return [
- BaseConv(in_channels, in_channels * 2, ksize=3, stride=stride, act="lrelu"),
- *[(ResLayer(in_channels * 2)) for _ in range(num_blocks)],
- ]
-
- def make_spp_block(self, filters_list, in_filters):
- m = nn.Sequential(
- *[
- BaseConv(in_filters, filters_list[0], 1, stride=1, act="lrelu"),
- BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"),
- SPPBottleneck(
- in_channels=filters_list[1],
- out_channels=filters_list[0],
- activation="lrelu",
- ),
- BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"),
- BaseConv(filters_list[1], filters_list[0], 1, stride=1, act="lrelu"),
- ]
- )
- return m
-
- def forward(self, x):
- outputs = {}
- x = self.stem(x)
- outputs["stem"] = x
- x = self.dark2(x)
- outputs["dark2"] = x
- x = self.dark3(x)
- outputs["dark3"] = x
- x = self.dark4(x)
- outputs["dark4"] = x
- x = self.dark5(x)
- outputs["dark5"] = x
- return {k: v for k, v in outputs.items() if k in self.out_features}
-
-
- class CSPDarknet(nn.Module):
- def __init__(
- self,
- dep_mul,
- wid_mul,
- out_features=("dark3", "dark4", "dark5"),
- depthwise=False,
- act="silu",
- ):
- super().__init__()
- assert out_features, "please provide output features of Darknet"
- self.out_features = out_features
- Conv = DWConv if depthwise else BaseConv
-
- base_channels = int(wid_mul * 64) # 64
- base_depth = max(round(dep_mul * 3), 1) # 3
-
- # stem
- self.stem = Focus(3, base_channels, ksize=3, act=act)
-
- # dark2
- self.dark2 = nn.Sequential(
- Conv(base_channels, base_channels * 2, 3, 2, act=act),
- CSPLayer(
- base_channels * 2,
- base_channels * 2,
- n=base_depth,
- depthwise=depthwise,
- act=act,
- ),
- )
-
- # dark3
- self.dark3 = nn.Sequential(
- Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
- CSPLayer(
- base_channels * 4,
- base_channels * 4,
- n=base_depth * 3,
- depthwise=depthwise,
- act=act,
- ),
- )
-
- # dark4
- self.dark4 = nn.Sequential(
- Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
- CSPLayer(
- base_channels * 8,
- base_channels * 8,
- n=base_depth * 3,
- depthwise=depthwise,
- act=act,
- ),
- )
-
- # dark5
- self.dark5 = nn.Sequential(
- Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
- SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),
- CSPLayer(
- base_channels * 16,
- base_channels * 16,
- n=base_depth,
- shortcut=False,
- depthwise=depthwise,
- act=act,
- ),
- )
-
- def forward(self, x):
- outputs = {}
- x = self.stem(x)
- outputs["stem"] = x
- x = self.dark2(x)
- outputs["dark2"] = x
- x = self.dark3(x)
- outputs["dark3"] = x
- x = self.dark4(x)
- outputs["dark4"] = x
- x = self.dark5(x)
- outputs["dark5"] = x
- return {k: v for k, v in outputs.items() if k in self.out_features}
|