123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- """
- SORT: A Simple, Online and Realtime Tracker
- Copyright (C) 2016-2020 Alex Bewley [email protected]
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- """
- from __future__ import print_function
-
- import os
- import numpy as np
-
- from filterpy.kalman import KalmanFilter
-
- np.random.seed(0)
-
-
- def linear_assignment(cost_matrix):
- try:
- import lap
- _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
- return np.array([[y[i],i] for i in x if i >= 0]) #
- except ImportError:
- from scipy.optimize import linear_sum_assignment
- x, y = linear_sum_assignment(cost_matrix)
- return np.array(list(zip(x, y)))
-
-
- def iou_batch(bb_test, bb_gt):
- """
- From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
- """
- bb_gt = np.expand_dims(bb_gt, 0)
- bb_test = np.expand_dims(bb_test, 1)
-
- xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
- yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
- xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
- yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
- w = np.maximum(0., xx2 - xx1)
- h = np.maximum(0., yy2 - yy1)
- wh = w * h
- o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
- + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
- return(o)
-
-
- def convert_bbox_to_z(bbox):
- """
- Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
- [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
- the aspect ratio
- """
- w = bbox[2] - bbox[0]
- h = bbox[3] - bbox[1]
- x = bbox[0] + w/2.
- y = bbox[1] + h/2.
- s = w * h #scale is just area
- r = w / float(h)
- return np.array([x, y, s, r]).reshape((4, 1))
-
-
- def convert_x_to_bbox(x,score=None):
- """
- Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
- [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
- """
- w = np.sqrt(x[2] * x[3])
- h = x[2] / w
- if(score==None):
- return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
- else:
- return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
-
-
- class KalmanBoxTracker(object):
- """
- This class represents the internal state of individual tracked objects observed as bbox.
- """
- count = 0
- def __init__(self,bbox):
- """
- Initialises a tracker using initial bounding box.
- """
- #define constant velocity model
- self.kf = KalmanFilter(dim_x=7, dim_z=4)
- self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
- self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
-
- self.kf.R[2:,2:] *= 10.
- self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
- self.kf.P *= 10.
- self.kf.Q[-1,-1] *= 0.01
- self.kf.Q[4:,4:] *= 0.01
-
- self.kf.x[:4] = convert_bbox_to_z(bbox)
- self.time_since_update = 0
- self.id = KalmanBoxTracker.count
- KalmanBoxTracker.count += 1
- self.history = []
- self.hits = 0
- self.hit_streak = 0
- self.age = 0
-
- def update(self,bbox):
- """
- Updates the state vector with observed bbox.
- """
- self.time_since_update = 0
- self.history = []
- self.hits += 1
- self.hit_streak += 1
- self.kf.update(convert_bbox_to_z(bbox))
-
- def predict(self):
- """
- Advances the state vector and returns the predicted bounding box estimate.
- """
- if((self.kf.x[6]+self.kf.x[2])<=0):
- self.kf.x[6] *= 0.0
- self.kf.predict()
- self.age += 1
- if(self.time_since_update>0):
- self.hit_streak = 0
- self.time_since_update += 1
- self.history.append(convert_x_to_bbox(self.kf.x))
- return self.history[-1]
-
- def get_state(self):
- """
- Returns the current bounding box estimate.
- """
- return convert_x_to_bbox(self.kf.x)
-
-
- def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
- """
- Assigns detections to tracked object (both represented as bounding boxes)
- Returns 3 lists of matches, unmatched_detections and unmatched_trackers
- """
- if(len(trackers)==0):
- return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
-
- iou_matrix = iou_batch(detections, trackers)
-
- if min(iou_matrix.shape) > 0:
- a = (iou_matrix > iou_threshold).astype(np.int32)
- if a.sum(1).max() == 1 and a.sum(0).max() == 1:
- matched_indices = np.stack(np.where(a), axis=1)
- else:
- matched_indices = linear_assignment(-iou_matrix)
- else:
- matched_indices = np.empty(shape=(0,2))
-
- unmatched_detections = []
- for d, det in enumerate(detections):
- if(d not in matched_indices[:,0]):
- unmatched_detections.append(d)
- unmatched_trackers = []
- for t, trk in enumerate(trackers):
- if(t not in matched_indices[:,1]):
- unmatched_trackers.append(t)
-
- #filter out matched with low IOU
- matches = []
- for m in matched_indices:
- if(iou_matrix[m[0], m[1]]<iou_threshold):
- unmatched_detections.append(m[0])
- unmatched_trackers.append(m[1])
- else:
- matches.append(m.reshape(1,2))
- if(len(matches)==0):
- matches = np.empty((0,2),dtype=int)
- else:
- matches = np.concatenate(matches,axis=0)
-
- return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
-
-
- class Sort(object):
- def __init__(self, det_thresh, max_age=30, min_hits=3, iou_threshold=0.3):
- """
- Sets key parameters for SORT
- """
- self.max_age = max_age
- self.min_hits = min_hits
- self.iou_threshold = iou_threshold
- self.trackers = []
- self.frame_count = 0
- self.det_thresh = det_thresh
-
- def update(self, output_results, img_info, img_size):
- """
- Params:
- dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
- Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
- Returns the a similar array, where the last column is the object ID.
- NOTE: The number of objects returned may differ from the number of detections provided.
- """
- self.frame_count += 1
- # post_process detections
- output_results = output_results.cpu().numpy()
- scores = output_results[:, 4] * output_results[:, 5]
- bboxes = output_results[:, :4] # x1y1x2y2
- img_h, img_w = img_info[0], img_info[1]
- scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
- bboxes /= scale
- dets = np.concatenate((bboxes, np.expand_dims(scores, axis=-1)), axis=1)
- remain_inds = scores > self.det_thresh
- dets = dets[remain_inds]
- # get predicted locations from existing trackers.
- trks = np.zeros((len(self.trackers), 5))
- to_del = []
- ret = []
- for t, trk in enumerate(trks):
- pos = self.trackers[t].predict()[0]
- trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
- if np.any(np.isnan(pos)):
- to_del.append(t)
- trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
- for t in reversed(to_del):
- self.trackers.pop(t)
- matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
-
- # update matched trackers with assigned detections
- for m in matched:
- self.trackers[m[1]].update(dets[m[0], :])
-
- # create and initialise new trackers for unmatched detections
- for i in unmatched_dets:
- trk = KalmanBoxTracker(dets[i,:])
- self.trackers.append(trk)
- i = len(self.trackers)
- for trk in reversed(self.trackers):
- d = trk.get_state()[0]
- if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
- ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
- i -= 1
- # remove dead tracklet
- if(trk.time_since_update > self.max_age):
- self.trackers.pop(i)
- if(len(ret)>0):
- return np.concatenate(ret)
- return np.empty((0,5))
|