123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- import numpy as np
- import torch
- import cv2
- import os
-
- from .reid_model import Extractor
- from yolox.deepsort_tracker import kalman_filter, linear_assignment, iou_matching
- from yolox.data.dataloading import get_yolox_datadir
- from .detection import Detection
- from .track import Track
-
-
- def _cosine_distance(a, b, data_is_normalized=False):
- if not data_is_normalized:
- a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
- b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
- return 1. - np.dot(a, b.T)
-
-
- def _nn_cosine_distance(x, y):
- distances = _cosine_distance(x, y)
- return distances.min(axis=0)
-
-
- class Tracker:
- def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
- self.metric = metric
- self.max_iou_distance = max_iou_distance
- self.max_age = max_age
- self.n_init = n_init
-
- self.kf = kalman_filter.KalmanFilter()
- self.tracks = []
- self._next_id = 1
-
- def predict(self):
- """Propagate track state distributions one time step forward.
- This function should be called once every time step, before `update`.
- """
- for track in self.tracks:
- track.predict(self.kf)
-
- def increment_ages(self):
- for track in self.tracks:
- track.increment_age()
- track.mark_missed()
-
- def update(self, detections, classes):
- """Perform measurement update and track management.
- Parameters
- ----------
- detections : List[deep_sort.detection.Detection]
- A list of detections at the current time step.
- """
- # Run matching cascade.
- matches, unmatched_tracks, unmatched_detections = \
- self._match(detections)
-
- # Update track set.
- for track_idx, detection_idx in matches:
- self.tracks[track_idx].update(
- self.kf, detections[detection_idx])
- for track_idx in unmatched_tracks:
- self.tracks[track_idx].mark_missed()
- for detection_idx in unmatched_detections:
- self._initiate_track(detections[detection_idx], classes[detection_idx].item())
- self.tracks = [t for t in self.tracks if not t.is_deleted()]
-
- # Update distance metric.
- active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
- features, targets = [], []
- for track in self.tracks:
- if not track.is_confirmed():
- continue
- features += track.features
- targets += [track.track_id for _ in track.features]
- track.features = []
- self.metric.partial_fit(
- np.asarray(features), np.asarray(targets), active_targets)
-
- def _match(self, detections):
-
- def gated_metric(tracks, dets, track_indices, detection_indices):
- features = np.array([dets[i].feature for i in detection_indices])
- targets = np.array([tracks[i].track_id for i in track_indices])
- cost_matrix = self.metric.distance(features, targets)
- cost_matrix = linear_assignment.gate_cost_matrix(
- self.kf, cost_matrix, tracks, dets, track_indices,
- detection_indices)
-
- return cost_matrix
-
- # Split track set into confirmed and unconfirmed tracks.
- confirmed_tracks = [
- i for i, t in enumerate(self.tracks) if t.is_confirmed()]
- unconfirmed_tracks = [
- i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
-
- # Associate confirmed tracks using appearance features.
- matches_a, unmatched_tracks_a, unmatched_detections = \
- linear_assignment.matching_cascade(
- gated_metric, self.metric.matching_threshold, self.max_age,
- self.tracks, detections, confirmed_tracks)
-
- # Associate remaining tracks together with unconfirmed tracks using IOU.
- iou_track_candidates = unconfirmed_tracks + [
- k for k in unmatched_tracks_a if
- self.tracks[k].time_since_update == 1]
- unmatched_tracks_a = [
- k for k in unmatched_tracks_a if
- self.tracks[k].time_since_update != 1]
- matches_b, unmatched_tracks_b, unmatched_detections = \
- linear_assignment.min_cost_matching(
- iou_matching.iou_cost, self.max_iou_distance, self.tracks,
- detections, iou_track_candidates, unmatched_detections)
-
- matches = matches_a + matches_b
- unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
- return matches, unmatched_tracks, unmatched_detections
-
- def _initiate_track(self, detection, class_id):
- mean, covariance = self.kf.initiate(detection.to_xyah())
- self.tracks.append(Track(
- mean, covariance, self._next_id, class_id, self.n_init, self.max_age,
- detection.feature))
- self._next_id += 1
-
-
- class NearestNeighborDistanceMetric(object):
- def __init__(self, metric, matching_threshold, budget=None):
-
- if metric == "cosine":
- self._metric = _nn_cosine_distance
- else:
- raise ValueError(
- "Invalid metric; must be either 'euclidean' or 'cosine'")
- self.matching_threshold = matching_threshold
- self.budget = budget
- self.samples = {}
-
- def partial_fit(self, features, targets, active_targets):
- for feature, target in zip(features, targets):
- self.samples.setdefault(target, []).append(feature)
- if self.budget is not None:
- self.samples[target] = self.samples[target][-self.budget:]
- self.samples = {k: self.samples[k] for k in active_targets}
-
- def distance(self, features, targets):
- cost_matrix = np.zeros((len(targets), len(features)))
- for i, target in enumerate(targets):
- cost_matrix[i, :] = self._metric(self.samples[target], features)
- return cost_matrix
-
-
- class DeepSort(object):
- def __init__(self, model_path, max_dist=0.1, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=30, n_init=3, nn_budget=100, use_cuda=True):
- self.min_confidence = min_confidence
- self.nms_max_overlap = nms_max_overlap
-
- self.extractor = Extractor(model_path, use_cuda=use_cuda)
-
- max_cosine_distance = max_dist
- metric = NearestNeighborDistanceMetric(
- "cosine", max_cosine_distance, nn_budget)
- self.tracker = Tracker(
- metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
-
- def update(self, output_results, img_info, img_size, img_file_name):
- img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name)
- ori_img = cv2.imread(img_file_name)
- self.height, self.width = ori_img.shape[:2]
- # post process detections
- output_results = output_results.cpu().numpy()
- confidences = output_results[:, 4] * output_results[:, 5]
-
- bboxes = output_results[:, :4] # x1y1x2y2
- img_h, img_w = img_info[0], img_info[1]
- scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
- bboxes /= scale
- bbox_xyxy = bboxes
- bbox_tlwh = self._xyxy_to_tlwh_array(bbox_xyxy)
- remain_inds = confidences > self.min_confidence
- bbox_tlwh = bbox_tlwh[remain_inds]
- confidences = confidences[remain_inds]
-
- # generate detections
- features = self._get_features(bbox_tlwh, ori_img)
- detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
- confidences) if conf > self.min_confidence]
- classes = np.zeros((len(detections), ))
-
- # run on non-maximum supression
- boxes = np.array([d.tlwh for d in detections])
- scores = np.array([d.confidence for d in detections])
-
- # update tracker
- self.tracker.predict()
- self.tracker.update(detections, classes)
-
- # output bbox identities
- outputs = []
- for track in self.tracker.tracks:
- if not track.is_confirmed() or track.time_since_update > 1:
- continue
- box = track.to_tlwh()
- x1, y1, x2, y2 = self._tlwh_to_xyxy_noclip(box)
- track_id = track.track_id
- class_id = track.class_id
- outputs.append(np.array([x1, y1, x2, y2, track_id, class_id], dtype=np.int))
- if len(outputs) > 0:
- outputs = np.stack(outputs, axis=0)
- return outputs
-
- """
- TODO:
- Convert bbox from xc_yc_w_h to xtl_ytl_w_h
- Thanks [email protected] for reporting this bug!
- """
- @staticmethod
- def _xywh_to_tlwh(bbox_xywh):
- if isinstance(bbox_xywh, np.ndarray):
- bbox_tlwh = bbox_xywh.copy()
- elif isinstance(bbox_xywh, torch.Tensor):
- bbox_tlwh = bbox_xywh.clone()
- bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
- bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
- return bbox_tlwh
-
- @staticmethod
- def _xyxy_to_tlwh_array(bbox_xyxy):
- if isinstance(bbox_xyxy, np.ndarray):
- bbox_tlwh = bbox_xyxy.copy()
- elif isinstance(bbox_xyxy, torch.Tensor):
- bbox_tlwh = bbox_xyxy.clone()
- bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0]
- bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1]
- return bbox_tlwh
-
- def _xywh_to_xyxy(self, bbox_xywh):
- x, y, w, h = bbox_xywh
- x1 = max(int(x - w / 2), 0)
- x2 = min(int(x + w / 2), self.width - 1)
- y1 = max(int(y - h / 2), 0)
- y2 = min(int(y + h / 2), self.height - 1)
- return x1, y1, x2, y2
-
- def _tlwh_to_xyxy(self, bbox_tlwh):
- """
- TODO:
- Convert bbox from xtl_ytl_w_h to xc_yc_w_h
- Thanks [email protected] for reporting this bug!
- """
- x, y, w, h = bbox_tlwh
- x1 = max(int(x), 0)
- x2 = min(int(x+w), self.width - 1)
- y1 = max(int(y), 0)
- y2 = min(int(y+h), self.height - 1)
- return x1, y1, x2, y2
-
- def _tlwh_to_xyxy_noclip(self, bbox_tlwh):
- """
- TODO:
- Convert bbox from xtl_ytl_w_h to xc_yc_w_h
- Thanks [email protected] for reporting this bug!
- """
- x, y, w, h = bbox_tlwh
- x1 = x
- x2 = x + w
- y1 = y
- y2 = y + h
- return x1, y1, x2, y2
-
- def increment_ages(self):
- self.tracker.increment_ages()
-
- def _xyxy_to_tlwh(self, bbox_xyxy):
- x1, y1, x2, y2 = bbox_xyxy
-
- t = x1
- l = y1
- w = int(x2 - x1)
- h = int(y2 - y1)
- return t, l, w, h
-
- def _get_features(self, bbox_xywh, ori_img):
- im_crops = []
- for box in bbox_xywh:
- x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
- im = ori_img[y1:y2, x1:x2]
- im_crops.append(im)
- if im_crops:
- features = self.extractor(im_crops)
- else:
- features = np.array([])
- return features
|