123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465 |
- import numpy as np
- from collections import deque
- import itertools
- import os
- import os.path as osp
- import time
- import torch
- import cv2
- import torch.nn.functional as F
-
- from models.model import create_model, load_model
- from models.decode import mot_decode
- from tracking_utils.utils import *
- from tracking_utils.log import logger
- from tracking_utils.kalman_filter import KalmanFilter
- from models import *
- from tracker import matching
- from .basetrack import BaseTrack, TrackState
- from utils.post_process import ctdet_post_process
- from utils.image import get_affine_transform
- from models.utils import _tranpose_and_gather_feat
-
- class STrack(BaseTrack):
- shared_kalman = KalmanFilter()
- def __init__(self, tlwh, score, temp_feat, buffer_size=30):
-
- # wait activate
- self._tlwh = np.asarray(tlwh, dtype=np.float)
- self.kalman_filter = None
- self.mean, self.covariance = None, None
- self.is_activated = False
-
- self.score = score
- self.score_list = []
- self.tracklet_len = 0
-
- self.smooth_feat = None
- self.update_features(temp_feat)
- self.features = deque([], maxlen=buffer_size)
- self.alpha = 0.9
-
- def update_features(self, feat):
- feat /= np.linalg.norm(feat)
- self.curr_feat = feat
- if self.smooth_feat is None:
- self.smooth_feat = feat
- else:
- self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
- self.features.append(feat)
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
-
- def predict(self):
- mean_state = self.mean.copy()
- if self.state != TrackState.Tracked:
- mean_state[7] = 0
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
-
- @staticmethod
- def multi_predict(stracks):
- if len(stracks) > 0:
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
- multi_covariance = np.asarray([st.covariance for st in stracks])
- for i, st in enumerate(stracks):
- if st.state != TrackState.Tracked:
- multi_mean[i][7] = 0
- multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
- stracks[i].mean = mean
- stracks[i].covariance = cov
-
- def activate(self, kalman_filter, frame_id):
- """Start a new tracklet"""
- self.kalman_filter = kalman_filter
- self.track_id = self.next_id()
- self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
-
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- if frame_id == 1:
- self.is_activated = True
- #self.is_activated = True
- self.frame_id = frame_id
- self.start_frame = frame_id
- self.score_list.append(self.score)
-
- def re_activate(self, new_track, frame_id, new_id=False):
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
- )
-
- self.update_features(new_track.curr_feat)
- self.tracklet_len = 0
- self.state = TrackState.Tracked
- self.is_activated = True
- self.frame_id = frame_id
- if new_id:
- self.track_id = self.next_id()
- self.score = new_track.score
- self.score_list.append(self.score)
-
- def update(self, new_track, frame_id, update_feature=True):
- """
- Update a matched track
- :type new_track: STrack
- :type frame_id: int
- :type update_feature: bool
- :return:
- """
- self.frame_id = frame_id
- self.tracklet_len += 1
-
- new_tlwh = new_track.tlwh
- self.mean, self.covariance = self.kalman_filter.update(
- self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
- self.state = TrackState.Tracked
- self.is_activated = True
-
- self.score = new_track.score
- self.score_list.append(self.score)
- if update_feature:
- self.update_features(new_track.curr_feat)
-
- @property
- # @jit(nopython=True)
- def tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- """
- if self.mean is None:
- return self._tlwh.copy()
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
-
- @property
- # @jit(nopython=True)
- def tlbr(self):
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
- `(top left, bottom right)`.
- """
- ret = self.tlwh.copy()
- ret[2:] += ret[:2]
- return ret
-
- @staticmethod
- # @jit(nopython=True)
- def tlwh_to_xyah(tlwh):
- """Convert bounding box to format `(center x, center y, aspect ratio,
- height)`, where the aspect ratio is `width / height`.
- """
- ret = np.asarray(tlwh).copy()
- ret[:2] += ret[2:] / 2
- ret[2] /= ret[3]
- return ret
-
- def to_xyah(self):
- return self.tlwh_to_xyah(self.tlwh)
-
- @staticmethod
- # @jit(nopython=True)
- def tlbr_to_tlwh(tlbr):
- ret = np.asarray(tlbr).copy()
- ret[2:] -= ret[:2]
- return ret
-
- @staticmethod
- # @jit(nopython=True)
- def tlwh_to_tlbr(tlwh):
- ret = np.asarray(tlwh).copy()
- ret[2:] += ret[:2]
- return ret
-
- def __repr__(self):
- return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
-
-
- class JDETracker(object):
- def __init__(self, opt, frame_rate=30):
- self.opt = opt
- if opt.gpus[0] >= 0:
- opt.device = torch.device('cuda')
- else:
- opt.device = torch.device('cpu')
- print('Creating model...')
- self.model = create_model(opt.arch, opt.heads, opt.head_conv)
- self.model = load_model(self.model, opt.load_model)
- self.model = self.model.to(opt.device)
- self.model.eval()
-
- self.tracked_stracks = [] # type: list[STrack]
- self.lost_stracks = [] # type: list[STrack]
- self.removed_stracks = [] # type: list[STrack]
-
- self.frame_id = 0
- #self.det_thresh = opt.conf_thres
- self.det_thresh = opt.conf_thres + 0.1
- self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
- self.max_time_lost = self.buffer_size
- self.max_per_image = opt.K
- self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3)
- self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3)
-
- self.kalman_filter = KalmanFilter()
-
- def post_process(self, dets, meta):
- dets = dets.detach().cpu().numpy()
- dets = dets.reshape(1, -1, dets.shape[2])
- dets = ctdet_post_process(
- dets.copy(), [meta['c']], [meta['s']],
- meta['out_height'], meta['out_width'], self.opt.num_classes)
- for j in range(1, self.opt.num_classes + 1):
- dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5)
- return dets[0]
-
- def merge_outputs(self, detections):
- results = {}
- for j in range(1, self.opt.num_classes + 1):
- results[j] = np.concatenate(
- [detection[j] for detection in detections], axis=0).astype(np.float32)
-
- scores = np.hstack(
- [results[j][:, 4] for j in range(1, self.opt.num_classes + 1)])
- if len(scores) > self.max_per_image:
- kth = len(scores) - self.max_per_image
- thresh = np.partition(scores, kth)[kth]
- for j in range(1, self.opt.num_classes + 1):
- keep_inds = (results[j][:, 4] >= thresh)
- results[j] = results[j][keep_inds]
- return results
-
- def update(self, im_blob, img0):
- self.frame_id += 1
- activated_starcks = []
- refind_stracks = []
- lost_stracks = []
- removed_stracks = []
-
- width = img0.shape[1]
- height = img0.shape[0]
- inp_height = im_blob.shape[2]
- inp_width = im_blob.shape[3]
- c = np.array([width / 2., height / 2.], dtype=np.float32)
- s = max(float(inp_width) / float(inp_height) * height, width) * 1.0
- meta = {'c': c, 's': s,
- 'out_height': inp_height // self.opt.down_ratio,
- 'out_width': inp_width // self.opt.down_ratio}
-
- ''' Step 1: Network forward, get detections & embeddings'''
- with torch.no_grad():
- output = self.model(im_blob)[-1]
- hm = output['hm'].sigmoid_()
- wh = output['wh']
- id_feature = output['id']
- id_feature = F.normalize(id_feature, dim=1)
-
- reg = output['reg'] if self.opt.reg_offset else None
- dets, inds = mot_decode(hm, wh, reg=reg, ltrb=self.opt.ltrb, K=self.opt.K)
- id_feature = _tranpose_and_gather_feat(id_feature, inds)
- id_feature = id_feature.squeeze(0)
- id_feature = id_feature.cpu().numpy()
-
- dets = self.post_process(dets, meta)
- dets = self.merge_outputs([dets])[1]
-
- remain_inds = dets[:, 4] > self.opt.conf_thres
- inds_low = dets[:, 4] > 0.2
- #inds_low = dets[:, 4] > self.opt.conf_thres
- inds_high = dets[:, 4] < self.opt.conf_thres
- inds_second = np.logical_and(inds_low, inds_high)
- dets_second = dets[inds_second]
- id_feature_second = id_feature[inds_second]
- dets = dets[remain_inds]
- id_feature = id_feature[remain_inds]
-
- # vis
- '''
- for i in range(0, dets.shape[0]):
- bbox = dets[i][0:4]
- cv2.rectangle(img0, (bbox[0], bbox[1]),
- (bbox[2], bbox[3]),
- (0, 255, 0), 2)
- cv2.imshow('dets', img0)
- cv2.waitKey(0)
- id0 = id0-1
- '''
-
- if len(dets) > 0:
- '''Detections'''
- detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets[:, :5], id_feature)]
- else:
- detections = []
-
- ''' Add newly detected tracklets to tracked_stracks'''
- unconfirmed = []
- tracked_stracks = [] # type: list[STrack]
- for track in self.tracked_stracks:
- if not track.is_activated:
- unconfirmed.append(track)
- else:
- tracked_stracks.append(track)
-
- ''' Step 2: First association, with embedding'''
- strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
- # Predict the current location with KF
- STrack.multi_predict(strack_pool)
- dists = matching.embedding_distance(strack_pool, detections)
- #dists = matching.fuse_iou(dists, strack_pool, detections)
- #dists = matching.iou_distance(strack_pool, detections)
- dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.opt.match_thres)
-
- for itracked, idet in matches:
- track = strack_pool[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(detections[idet], self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
-
- ''' Step 3: Second association, with IOU'''
- detections = [detections[i] for i in u_detection]
- r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
- dists = matching.iou_distance(r_tracked_stracks, detections)
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
-
- for itracked, idet in matches:
- track = r_tracked_stracks[itracked]
- det = detections[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
-
- # association the untrack to the low score detections
- if len(dets_second) > 0:
- '''Detections'''
- detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
- (tlbrs, f) in zip(dets_second[:, :5], id_feature_second)]
- else:
- detections_second = []
- second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
- dists = matching.iou_distance(second_tracked_stracks, detections_second)
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4)
- for itracked, idet in matches:
- track = second_tracked_stracks[itracked]
- det = detections_second[idet]
- if track.state == TrackState.Tracked:
- track.update(det, self.frame_id)
- activated_starcks.append(track)
- else:
- track.re_activate(det, self.frame_id, new_id=False)
- refind_stracks.append(track)
-
- for it in u_track:
- #track = r_tracked_stracks[it]
- track = second_tracked_stracks[it]
- if not track.state == TrackState.Lost:
- track.mark_lost()
- lost_stracks.append(track)
-
- '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
- detections = [detections[i] for i in u_detection]
- dists = matching.iou_distance(unconfirmed, detections)
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
- for itracked, idet in matches:
- unconfirmed[itracked].update(detections[idet], self.frame_id)
- activated_starcks.append(unconfirmed[itracked])
- for it in u_unconfirmed:
- track = unconfirmed[it]
- track.mark_removed()
- removed_stracks.append(track)
-
- """ Step 4: Init new stracks"""
- for inew in u_detection:
- track = detections[inew]
- if track.score < self.det_thresh:
- continue
- track.activate(self.kalman_filter, self.frame_id)
- activated_starcks.append(track)
- """ Step 5: Update state"""
- for track in self.lost_stracks:
- if self.frame_id - track.end_frame > self.max_time_lost:
- track.mark_removed()
- removed_stracks.append(track)
-
- # print('Ramained match {} s'.format(t4-t3))
-
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
- self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
- self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
- self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
- self.lost_stracks.extend(lost_stracks)
- self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
- self.removed_stracks.extend(removed_stracks)
- self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
- #self.tracked_stracks = remove_fp_stracks(self.tracked_stracks)
- # get scores of lost tracks
- output_stracks = [track for track in self.tracked_stracks if track.is_activated]
-
- logger.debug('===========Frame {}=========='.format(self.frame_id))
- logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
- logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
- logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
- logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
-
- return output_stracks
-
-
- def joint_stracks(tlista, tlistb):
- exists = {}
- res = []
- for t in tlista:
- exists[t.track_id] = 1
- res.append(t)
- for t in tlistb:
- tid = t.track_id
- if not exists.get(tid, 0):
- exists[tid] = 1
- res.append(t)
- return res
-
-
- def sub_stracks(tlista, tlistb):
- stracks = {}
- for t in tlista:
- stracks[t.track_id] = t
- for t in tlistb:
- tid = t.track_id
- if stracks.get(tid, 0):
- del stracks[tid]
- return list(stracks.values())
-
-
- def remove_duplicate_stracks(stracksa, stracksb):
- pdist = matching.iou_distance(stracksa, stracksb)
- pairs = np.where(pdist < 0.15)
- dupa, dupb = list(), list()
- for p, q in zip(*pairs):
- timep = stracksa[p].frame_id - stracksa[p].start_frame
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
- if timep > timeq:
- dupb.append(q)
- else:
- dupa.append(p)
- resa = [t for i, t in enumerate(stracksa) if not i in dupa]
- resb = [t for i, t in enumerate(stracksb) if not i in dupb]
- return resa, resb
-
-
- def remove_fp_stracks(stracksa, n_frame=10):
- remain = []
- for t in stracksa:
- score_5 = t.score_list[-n_frame:]
- score_5 = np.array(score_5, dtype=np.float32)
- index = score_5 < 0.45
- num = np.sum(index)
- if num < n_frame:
- remain.append(t)
- return remain
|