123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- from loguru import logger
-
- import torch
- import torch.backends.cudnn as cudnn
-
- from yolox.core import Trainer, launch, MetaTrainer
- from yolox.exp import get_exp
-
- import argparse
- import random
- import warnings
-
-
- def make_parser():
- parser = argparse.ArgumentParser("YOLOX train parser")
- parser.add_argument("-expn", "--experiment-name", type=str, default=None)
- parser.add_argument("-t", "--task", type=str, default="metamot")
- parser.add_argument("-n", "--name", type=str, default=None, help="model name")
-
- # distributed
- parser.add_argument(
- "--dist-backend", default="nccl", type=str, help="distributed backend"
- )
- parser.add_argument(
- "--dist-url",
- default=None,
- type=str,
- help="url used to set up distributed training",
- )
- parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
- parser.add_argument(
- "-d", "--devices", default=None, type=int, help="device for training"
- )
- parser.add_argument(
- "--local_rank", default=0, type=int, help="local rank for dist training"
- )
- parser.add_argument(
- "--adaptation_period", default=4, type=int, help="if 4, then adapts to one batch in four batches"
- )
- parser.add_argument(
- "-f",
- "--exp_file",
- default=None,
- type=str,
- help="plz input your expriment description file",
- )
- parser.add_argument(
- "--resume", default=False, action="store_true", help="resume training"
- )
- parser.add_argument("-c", "--ckpt", default=None, type=str, help="checkpoint file")
- parser.add_argument(
- "-e",
- "--start_epoch",
- default=None,
- type=int,
- help="resume training start epoch",
- )
- parser.add_argument(
- "--num_machines", default=1, type=int, help="num of node for training"
- )
- parser.add_argument(
- "--machine_rank", default=0, type=int, help="node rank for multi-node training"
- )
- parser.add_argument(
- "--fp16",
- dest="fp16",
- default=True,
- action="store_true",
- help="Adopting mix precision training.",
- )
- parser.add_argument(
- "-o",
- "--occupy",
- dest="occupy",
- default=False,
- action="store_true",
- help="occupy GPU memory first for training.",
- )
- parser.add_argument(
- "opts",
- help="Modify config options using the command-line",
- default=None,
- nargs=argparse.REMAINDER,
- )
- return parser
-
-
- @logger.catch
- def main(exp, args):
- if exp.seed is not None:
- random.seed(exp.seed)
- torch.manual_seed(exp.seed)
- cudnn.deterministic = True
- warnings.warn(
- "You have chosen to seed training. This will turn on the CUDNN deterministic setting, "
- "which can slow down your training considerably! You may see unexpected behavior "
- "when restarting from checkpoints."
- )
-
- # set environment variables for distributed training
- cudnn.benchmark = True
- if args.task == "metamot":
- trainer = MetaTrainer(exp,args)
- else:
- trainer = Trainer(exp, args)
- print('Trainer Created')
-
-
- trainer.train()
-
-
- if __name__ == "__main__":
- args = make_parser().parse_args()
- exp = get_exp(args.exp_file, args.name)
- exp.merge(args.opts)
-
- if not args.experiment_name:
- args.experiment_name = exp.exp_name
-
- num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
- assert num_gpu <= torch.cuda.device_count()
-
- launch(
- main,
- num_gpu,
- args.num_machines,
- args.machine_rank,
- backend=args.dist_backend,
- dist_url=args.dist_url,
- args=(exp, args),
- )
|