123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
-
- import numpy as np
-
- import os
-
- __all__ = ["mkdir", "nms", "multiclass_nms", "demo_postprocess"]
-
-
- def mkdir(path):
- if not os.path.exists(path):
- os.makedirs(path)
-
-
- def nms(boxes, scores, nms_thr):
- """Single class NMS implemented in Numpy."""
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
-
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
-
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
-
- inds = np.where(ovr <= nms_thr)[0]
- order = order[inds + 1]
-
- return keep
-
-
- def multiclass_nms(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy"""
- final_dets = []
- num_classes = scores.shape[1]
- for cls_ind in range(num_classes):
- cls_scores = scores[:, cls_ind]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- continue
- else:
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if len(keep) > 0:
- cls_inds = np.ones((len(keep), 1)) * cls_ind
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
- )
- final_dets.append(dets)
- if len(final_dets) == 0:
- return None
- return np.concatenate(final_dets, 0)
-
-
- def demo_postprocess(outputs, img_size, p6=False):
-
- grids = []
- expanded_strides = []
-
- if not p6:
- strides = [8, 16, 32]
- else:
- strides = [8, 16, 32, 64]
-
- hsizes = [img_size[0] // stride for stride in strides]
- wsizes = [img_size[1] // stride for stride in strides]
-
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- expanded_strides.append(np.full((*shape, 1), stride))
-
- grids = np.concatenate(grids, 1)
- expanded_strides = np.concatenate(expanded_strides, 1)
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
-
- return outputs
|