Meta Byte Track
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

sort.py 8.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. """
  2. SORT: A Simple, Online and Realtime Tracker
  3. Copyright (C) 2016-2020 Alex Bewley [email protected]
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. """
  15. from __future__ import print_function
  16. import os
  17. import numpy as np
  18. from filterpy.kalman import KalmanFilter
  19. np.random.seed(0)
  20. def linear_assignment(cost_matrix):
  21. try:
  22. import lap
  23. _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
  24. return np.array([[y[i],i] for i in x if i >= 0]) #
  25. except ImportError:
  26. from scipy.optimize import linear_sum_assignment
  27. x, y = linear_sum_assignment(cost_matrix)
  28. return np.array(list(zip(x, y)))
  29. def iou_batch(bb_test, bb_gt):
  30. """
  31. From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
  32. """
  33. bb_gt = np.expand_dims(bb_gt, 0)
  34. bb_test = np.expand_dims(bb_test, 1)
  35. xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
  36. yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
  37. xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
  38. yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
  39. w = np.maximum(0., xx2 - xx1)
  40. h = np.maximum(0., yy2 - yy1)
  41. wh = w * h
  42. o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
  43. + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
  44. return(o)
  45. def convert_bbox_to_z(bbox):
  46. """
  47. Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
  48. [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
  49. the aspect ratio
  50. """
  51. w = bbox[2] - bbox[0]
  52. h = bbox[3] - bbox[1]
  53. x = bbox[0] + w/2.
  54. y = bbox[1] + h/2.
  55. s = w * h #scale is just area
  56. r = w / float(h)
  57. return np.array([x, y, s, r]).reshape((4, 1))
  58. def convert_x_to_bbox(x,score=None):
  59. """
  60. Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
  61. [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
  62. """
  63. w = np.sqrt(x[2] * x[3])
  64. h = x[2] / w
  65. if(score==None):
  66. return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
  67. else:
  68. return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
  69. class KalmanBoxTracker(object):
  70. """
  71. This class represents the internal state of individual tracked objects observed as bbox.
  72. """
  73. count = 0
  74. def __init__(self,bbox):
  75. """
  76. Initialises a tracker using initial bounding box.
  77. """
  78. #define constant velocity model
  79. self.kf = KalmanFilter(dim_x=7, dim_z=4)
  80. self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
  81. self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
  82. self.kf.R[2:,2:] *= 10.
  83. self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
  84. self.kf.P *= 10.
  85. self.kf.Q[-1,-1] *= 0.01
  86. self.kf.Q[4:,4:] *= 0.01
  87. self.kf.x[:4] = convert_bbox_to_z(bbox)
  88. self.time_since_update = 0
  89. self.id = KalmanBoxTracker.count
  90. KalmanBoxTracker.count += 1
  91. self.history = []
  92. self.hits = 0
  93. self.hit_streak = 0
  94. self.age = 0
  95. def update(self,bbox):
  96. """
  97. Updates the state vector with observed bbox.
  98. """
  99. self.time_since_update = 0
  100. self.history = []
  101. self.hits += 1
  102. self.hit_streak += 1
  103. self.kf.update(convert_bbox_to_z(bbox))
  104. def predict(self):
  105. """
  106. Advances the state vector and returns the predicted bounding box estimate.
  107. """
  108. if((self.kf.x[6]+self.kf.x[2])<=0):
  109. self.kf.x[6] *= 0.0
  110. self.kf.predict()
  111. self.age += 1
  112. if(self.time_since_update>0):
  113. self.hit_streak = 0
  114. self.time_since_update += 1
  115. self.history.append(convert_x_to_bbox(self.kf.x))
  116. return self.history[-1]
  117. def get_state(self):
  118. """
  119. Returns the current bounding box estimate.
  120. """
  121. return convert_x_to_bbox(self.kf.x)
  122. def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
  123. """
  124. Assigns detections to tracked object (both represented as bounding boxes)
  125. Returns 3 lists of matches, unmatched_detections and unmatched_trackers
  126. """
  127. if(len(trackers)==0):
  128. return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
  129. iou_matrix = iou_batch(detections, trackers)
  130. if min(iou_matrix.shape) > 0:
  131. a = (iou_matrix > iou_threshold).astype(np.int32)
  132. if a.sum(1).max() == 1 and a.sum(0).max() == 1:
  133. matched_indices = np.stack(np.where(a), axis=1)
  134. else:
  135. matched_indices = linear_assignment(-iou_matrix)
  136. else:
  137. matched_indices = np.empty(shape=(0,2))
  138. unmatched_detections = []
  139. for d, det in enumerate(detections):
  140. if(d not in matched_indices[:,0]):
  141. unmatched_detections.append(d)
  142. unmatched_trackers = []
  143. for t, trk in enumerate(trackers):
  144. if(t not in matched_indices[:,1]):
  145. unmatched_trackers.append(t)
  146. #filter out matched with low IOU
  147. matches = []
  148. for m in matched_indices:
  149. if(iou_matrix[m[0], m[1]]<iou_threshold):
  150. unmatched_detections.append(m[0])
  151. unmatched_trackers.append(m[1])
  152. else:
  153. matches.append(m.reshape(1,2))
  154. if(len(matches)==0):
  155. matches = np.empty((0,2),dtype=int)
  156. else:
  157. matches = np.concatenate(matches,axis=0)
  158. return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
  159. class Sort(object):
  160. def __init__(self, det_thresh, max_age=30, min_hits=3, iou_threshold=0.3):
  161. """
  162. Sets key parameters for SORT
  163. """
  164. self.max_age = max_age
  165. self.min_hits = min_hits
  166. self.iou_threshold = iou_threshold
  167. self.trackers = []
  168. self.frame_count = 0
  169. self.det_thresh = det_thresh
  170. def update(self, output_results, img_info, img_size):
  171. """
  172. Params:
  173. dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
  174. Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
  175. Returns the a similar array, where the last column is the object ID.
  176. NOTE: The number of objects returned may differ from the number of detections provided.
  177. """
  178. self.frame_count += 1
  179. # post_process detections
  180. output_results = output_results.cpu().numpy()
  181. scores = output_results[:, 4] * output_results[:, 5]
  182. bboxes = output_results[:, :4] # x1y1x2y2
  183. img_h, img_w = img_info[0], img_info[1]
  184. scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
  185. bboxes /= scale
  186. dets = np.concatenate((bboxes, np.expand_dims(scores, axis=-1)), axis=1)
  187. remain_inds = scores > self.det_thresh
  188. dets = dets[remain_inds]
  189. # get predicted locations from existing trackers.
  190. trks = np.zeros((len(self.trackers), 5))
  191. to_del = []
  192. ret = []
  193. for t, trk in enumerate(trks):
  194. pos = self.trackers[t].predict()[0]
  195. trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
  196. if np.any(np.isnan(pos)):
  197. to_del.append(t)
  198. trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
  199. for t in reversed(to_del):
  200. self.trackers.pop(t)
  201. matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
  202. # update matched trackers with assigned detections
  203. for m in matched:
  204. self.trackers[m[1]].update(dets[m[0], :])
  205. # create and initialise new trackers for unmatched detections
  206. for i in unmatched_dets:
  207. trk = KalmanBoxTracker(dets[i,:])
  208. self.trackers.append(trk)
  209. i = len(self.trackers)
  210. for trk in reversed(self.trackers):
  211. d = trk.get_state()[0]
  212. if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
  213. ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
  214. i -= 1
  215. # remove dead tracklet
  216. if(trk.time_since_update > self.max_age):
  217. self.trackers.pop(i)
  218. if(len(ret)>0):
  219. return np.concatenate(ret)
  220. return np.empty((0,5))