123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
-
- from loguru import logger
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- from yolox.utils import bboxes_iou
-
- import math
-
- from .losses import IOUloss
- from .network_blocks import BaseConv, DWConv
-
-
- class YOLOXHead(nn.Module):
- def __init__(
- self,
- num_classes,
- width=1.0,
- strides=[8, 16, 32],
- in_channels=[256, 512, 1024],
- act="silu",
- depthwise=False,
- ):
- """
- Args:
- act (str): activation type of conv. Defalut value: "silu".
- depthwise (bool): wheather apply depthwise conv in conv branch. Defalut value: False.
- """
- super().__init__()
-
- self.n_anchors = 1
- self.num_classes = num_classes
- self.decode_in_inference = True # for deploy, set to False
-
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- self.cls_preds = nn.ModuleList()
- self.reg_preds = nn.ModuleList()
- self.obj_preds = nn.ModuleList()
- self.stems = nn.ModuleList()
- Conv = DWConv if depthwise else BaseConv
-
- for i in range(len(in_channels)):
- self.stems.append(
- BaseConv(
- in_channels=int(in_channels[i] * width),
- out_channels=int(256 * width),
- ksize=1,
- stride=1,
- act=act,
- )
- )
- self.cls_convs.append(
- nn.Sequential(
- *[
- Conv(
- in_channels=int(256 * width),
- out_channels=int(256 * width),
- ksize=3,
- stride=1,
- act=act,
- ),
- Conv(
- in_channels=int(256 * width),
- out_channels=int(256 * width),
- ksize=3,
- stride=1,
- act=act,
- ),
- ]
- )
- )
- self.reg_convs.append(
- nn.Sequential(
- *[
- Conv(
- in_channels=int(256 * width),
- out_channels=int(256 * width),
- ksize=3,
- stride=1,
- act=act,
- ),
- Conv(
- in_channels=int(256 * width),
- out_channels=int(256 * width),
- ksize=3,
- stride=1,
- act=act,
- ),
- ]
- )
- )
- self.cls_preds.append(
- nn.Conv2d(
- in_channels=int(256 * width),
- out_channels=self.n_anchors * self.num_classes,
- kernel_size=1,
- stride=1,
- padding=0,
- )
- )
- self.reg_preds.append(
- nn.Conv2d(
- in_channels=int(256 * width),
- out_channels=4,
- kernel_size=1,
- stride=1,
- padding=0,
- )
- )
- self.obj_preds.append(
- nn.Conv2d(
- in_channels=int(256 * width),
- out_channels=self.n_anchors * 1,
- kernel_size=1,
- stride=1,
- padding=0,
- )
- )
-
- self.use_l1 = False
- self.l1_loss = nn.L1Loss(reduction="none")
- self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
- self.iou_loss = IOUloss(reduction="none")
- self.strides = strides
- self.grids = [torch.zeros(1)] * len(in_channels)
- self.expanded_strides = [None] * len(in_channels)
-
- def initialize_biases(self, prior_prob):
- for conv in self.cls_preds:
- b = conv.bias.view(self.n_anchors, -1)
- b.data.fill_(-math.log((1 - prior_prob) / prior_prob))
- conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
- for conv in self.obj_preds:
- b = conv.bias.view(self.n_anchors, -1)
- b.data.fill_(-math.log((1 - prior_prob) / prior_prob))
- conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
-
- def forward(self, xin, labels=None, imgs=None):
- outputs = []
- origin_preds = []
- x_shifts = []
- y_shifts = []
- expanded_strides = []
-
- for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate(
- zip(self.cls_convs, self.reg_convs, self.strides, xin)
- ):
- x = self.stems[k](x)
- cls_x = x
- reg_x = x
-
- cls_feat = cls_conv(cls_x)
- cls_output = self.cls_preds[k](cls_feat)
-
- reg_feat = reg_conv(reg_x)
- reg_output = self.reg_preds[k](reg_feat)
- obj_output = self.obj_preds[k](reg_feat)
-
- if self.training:
- output = torch.cat([reg_output, obj_output, cls_output], 1)
- output, grid = self.get_output_and_grid(
- output, k, stride_this_level, xin[0].type()
- )
- x_shifts.append(grid[:, :, 0])
- y_shifts.append(grid[:, :, 1])
- expanded_strides.append(
- torch.zeros(1, grid.shape[1])
- .fill_(stride_this_level)
- .type_as(xin[0])
- )
- if self.use_l1:
- batch_size = reg_output.shape[0]
- hsize, wsize = reg_output.shape[-2:]
- reg_output = reg_output.view(
- batch_size, self.n_anchors, 4, hsize, wsize
- )
- reg_output = reg_output.permute(0, 1, 3, 4, 2).reshape(
- batch_size, -1, 4
- )
- origin_preds.append(reg_output.clone())
-
- else:
- output = torch.cat(
- [reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1
- )
- # TODO: have to see output shape to know whats going on in head
-
- outputs.append(output)
-
- if self.training:
- return self.get_losses(
- imgs,
- x_shifts,
- y_shifts,
- expanded_strides,
- labels,
- torch.cat(outputs, 1),
- origin_preds,
- dtype=xin[0].dtype,
- )
- else:
- self.hw = [x.shape[-2:] for x in outputs]
- # [batch, n_anchors_all, 85]
- outputs = torch.cat(
- [x.flatten(start_dim=2) for x in outputs], dim=2
- ).permute(0, 2, 1)
- if self.decode_in_inference:
- return self.decode_outputs(outputs, dtype=xin[0].type())
- else:
- return outputs
-
- def get_output_and_grid(self, output, k, stride, dtype):
- grid = self.grids[k]
-
- batch_size = output.shape[0]
- n_ch = 5 + self.num_classes
- hsize, wsize = output.shape[-2:]
- if grid.shape[2:4] != output.shape[2:4]:
- yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
- grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype)
- self.grids[k] = grid
-
- output = output.view(batch_size, self.n_anchors, n_ch, hsize, wsize)
- output = output.permute(0, 1, 3, 4, 2).reshape(
- batch_size, self.n_anchors * hsize * wsize, -1
- )
- grid = grid.view(1, -1, 2)
- output[..., :2] = (output[..., :2] + grid) * stride
- output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
- return output, grid
-
- def decode_outputs(self, outputs, dtype):
- grids = []
- strides = []
- for (hsize, wsize), stride in zip(self.hw, self.strides):
- yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
- grid = torch.stack((xv, yv), 2).view(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- strides.append(torch.full((*shape, 1), stride))
-
- grids = torch.cat(grids, dim=1).type(dtype)
- strides = torch.cat(strides, dim=1).type(dtype)
-
- outputs[..., :2] = (outputs[..., :2] + grids) * strides
- outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
- return outputs
-
- def get_losses(
- self,
- imgs,
- x_shifts,
- y_shifts,
- expanded_strides,
- labels,
- outputs,
- origin_preds,
- dtype,
- ):
- bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4]
- obj_preds = outputs[:, :, 4].unsqueeze(-1) # [batch, n_anchors_all, 1]
- cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls]
-
- # calculate targets
- mixup = labels.shape[2] > 5
- if mixup:
- label_cut = labels[..., :5]
- else:
- label_cut = labels
- nlabel = (label_cut.sum(dim=2) > 0).sum(dim=1) # number of objects
-
- total_num_anchors = outputs.shape[1]
- x_shifts = torch.cat(x_shifts, 1) # [1, n_anchors_all]
- y_shifts = torch.cat(y_shifts, 1) # [1, n_anchors_all]
- expanded_strides = torch.cat(expanded_strides, 1)
- if self.use_l1:
- origin_preds = torch.cat(origin_preds, 1)
-
- cls_targets = []
- reg_targets = []
- l1_targets = []
- obj_targets = []
- fg_masks = []
-
- num_fg = 0.0
- num_gts = 0.0
-
- for batch_idx in range(outputs.shape[0]):
- num_gt = int(nlabel[batch_idx])
- num_gts += num_gt
- if num_gt == 0:
- cls_target = outputs.new_zeros((0, self.num_classes))
- reg_target = outputs.new_zeros((0, 4))
- l1_target = outputs.new_zeros((0, 4))
- obj_target = outputs.new_zeros((total_num_anchors, 1))
- fg_mask = outputs.new_zeros(total_num_anchors).bool()
- else:
- gt_bboxes_per_image = labels[batch_idx, :num_gt, 1:5]
- gt_classes = labels[batch_idx, :num_gt, 0]
- bboxes_preds_per_image = bbox_preds[batch_idx]
-
- try:
- (
- gt_matched_classes,
- fg_mask,
- pred_ious_this_matching,
- matched_gt_inds,
- num_fg_img,
- ) = self.get_assignments( # noqa
- batch_idx,
- num_gt,
- total_num_anchors,
- gt_bboxes_per_image,
- gt_classes,
- bboxes_preds_per_image,
- expanded_strides,
- x_shifts,
- y_shifts,
- cls_preds,
- bbox_preds,
- obj_preds,
- labels,
- imgs,
- )
- except RuntimeError:
- logger.info(
- "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
- CPU mode is applied in this batch. If you want to avoid this issue, \
- try to reduce the batch size or image size."
- )
- print("OOM RuntimeError is raised due to the huge memory cost during label assignment. \
- CPU mode is applied in this batch. If you want to avoid this issue, \
- try to reduce the batch size or image size.")
- torch.cuda.empty_cache()
- (
- gt_matched_classes,
- fg_mask,
- pred_ious_this_matching,
- matched_gt_inds,
- num_fg_img,
- ) = self.get_assignments( # noqa
- batch_idx,
- num_gt,
- total_num_anchors,
- gt_bboxes_per_image,
- gt_classes,
- bboxes_preds_per_image,
- expanded_strides,
- x_shifts,
- y_shifts,
- cls_preds,
- bbox_preds,
- obj_preds,
- labels,
- imgs,
- "cpu",
- )
-
-
- torch.cuda.empty_cache()
- num_fg += num_fg_img
-
- cls_target = F.one_hot(
- gt_matched_classes.to(torch.int64), self.num_classes
- ) * pred_ious_this_matching.unsqueeze(-1)
- obj_target = fg_mask.unsqueeze(-1)
- reg_target = gt_bboxes_per_image[matched_gt_inds]
-
- if self.use_l1:
- l1_target = self.get_l1_target(
- outputs.new_zeros((num_fg_img, 4)),
- gt_bboxes_per_image[matched_gt_inds],
- expanded_strides[0][fg_mask],
- x_shifts=x_shifts[0][fg_mask],
- y_shifts=y_shifts[0][fg_mask],
- )
-
- cls_targets.append(cls_target)
- reg_targets.append(reg_target)
- obj_targets.append(obj_target.to(dtype))
- fg_masks.append(fg_mask)
- if self.use_l1:
- l1_targets.append(l1_target)
-
- cls_targets = torch.cat(cls_targets, 0)
- reg_targets = torch.cat(reg_targets, 0)
- obj_targets = torch.cat(obj_targets, 0)
- fg_masks = torch.cat(fg_masks, 0)
- if self.use_l1:
- l1_targets = torch.cat(l1_targets, 0)
-
- num_fg = max(num_fg, 1)
- loss_iou = (
- self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets)
- ).sum() / num_fg
- loss_obj = (
- self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets)
- ).sum() / num_fg
- loss_cls = (
- self.bcewithlog_loss(
- cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets
- )
- ).sum() / num_fg
- if self.use_l1:
- loss_l1 = (
- self.l1_loss(origin_preds.view(-1, 4)[fg_masks], l1_targets)
- ).sum() / num_fg
- else:
- loss_l1 = 0.0
-
- reg_weight = 5.0
- loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1
-
- return (
- loss,
- reg_weight * loss_iou,
- loss_obj,
- loss_cls,
- loss_l1,
- num_fg / max(num_gts, 1),
- )
-
- def get_l1_target(self, l1_target, gt, stride, x_shifts, y_shifts, eps=1e-8):
- l1_target[:, 0] = gt[:, 0] / stride - x_shifts
- l1_target[:, 1] = gt[:, 1] / stride - y_shifts
- l1_target[:, 2] = torch.log(gt[:, 2] / stride + eps)
- l1_target[:, 3] = torch.log(gt[:, 3] / stride + eps)
- return l1_target
-
- @torch.no_grad()
- def get_assignments(
- self,
- batch_idx,
- num_gt,
- total_num_anchors,
- gt_bboxes_per_image,
- gt_classes,
- bboxes_preds_per_image,
- expanded_strides,
- x_shifts,
- y_shifts,
- cls_preds,
- bbox_preds,
- obj_preds,
- labels,
- imgs,
- mode="gpu",
- ):
-
- if mode == "cpu":
- print("------------CPU Mode for This Batch-------------")
- gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
- bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
- gt_classes = gt_classes.cpu().float()
- expanded_strides = expanded_strides.cpu().float()
- x_shifts = x_shifts.cpu()
- y_shifts = y_shifts.cpu()
-
- img_size = imgs.shape[2:]
- fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
- gt_bboxes_per_image,
- expanded_strides,
- x_shifts,
- y_shifts,
- total_num_anchors,
- num_gt,
- img_size
- )
-
- bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
- cls_preds_ = cls_preds[batch_idx][fg_mask]
- obj_preds_ = obj_preds[batch_idx][fg_mask]
- num_in_boxes_anchor = bboxes_preds_per_image.shape[0]
-
- if mode == "cpu":
- gt_bboxes_per_image = gt_bboxes_per_image.cpu()
- bboxes_preds_per_image = bboxes_preds_per_image.cpu()
-
- pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)
-
- gt_cls_per_image = (
- F.one_hot(gt_classes.to(torch.int64), self.num_classes)
- .float()
- .unsqueeze(1)
- .repeat(1, num_in_boxes_anchor, 1)
- )
- pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
-
- if mode == "cpu":
- cls_preds_, obj_preds_ = cls_preds_.cpu(), obj_preds_.cpu()
-
- with torch.cuda.amp.autocast(enabled=False):
- cls_preds_ = (
- cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * obj_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- )
- pair_wise_cls_loss = F.binary_cross_entropy(
- cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
- ).sum(-1)
- del cls_preds_
-
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_ious_loss
- + 100000.0 * (~is_in_boxes_and_center)
- )
-
- (
- num_fg,
- gt_matched_classes,
- pred_ious_this_matching,
- matched_gt_inds,
- ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
- del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
-
- if mode == "cpu":
- gt_matched_classes = gt_matched_classes.cuda()
- fg_mask = fg_mask.cuda()
- pred_ious_this_matching = pred_ious_this_matching.cuda()
- matched_gt_inds = matched_gt_inds.cuda()
-
- return (
- gt_matched_classes,
- fg_mask,
- pred_ious_this_matching,
- matched_gt_inds,
- num_fg,
- )
-
- def get_in_boxes_info(
- self,
- gt_bboxes_per_image,
- expanded_strides,
- x_shifts,
- y_shifts,
- total_num_anchors,
- num_gt,
- img_size
- ):
- expanded_strides_per_image = expanded_strides[0]
- x_shifts_per_image = x_shifts[0] * expanded_strides_per_image
- y_shifts_per_image = y_shifts[0] * expanded_strides_per_image
- x_centers_per_image = (
- (x_shifts_per_image + 0.5 * expanded_strides_per_image)
- .unsqueeze(0)
- .repeat(num_gt, 1)
- ) # [n_anchor] -> [n_gt, n_anchor]
- y_centers_per_image = (
- (y_shifts_per_image + 0.5 * expanded_strides_per_image)
- .unsqueeze(0)
- .repeat(num_gt, 1)
- )
-
- gt_bboxes_per_image_l = (
- (gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2])
- .unsqueeze(1)
- .repeat(1, total_num_anchors)
- )
- gt_bboxes_per_image_r = (
- (gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2])
- .unsqueeze(1)
- .repeat(1, total_num_anchors)
- )
- gt_bboxes_per_image_t = (
- (gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3])
- .unsqueeze(1)
- .repeat(1, total_num_anchors)
- )
- gt_bboxes_per_image_b = (
- (gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3])
- .unsqueeze(1)
- .repeat(1, total_num_anchors)
- )
-
- b_l = x_centers_per_image - gt_bboxes_per_image_l
- b_r = gt_bboxes_per_image_r - x_centers_per_image
- b_t = y_centers_per_image - gt_bboxes_per_image_t
- b_b = gt_bboxes_per_image_b - y_centers_per_image
- bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
-
- is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
- is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
- # in fixed center
-
- center_radius = 2.5
- # clip center inside image
- gt_bboxes_per_image_clip = gt_bboxes_per_image[:, 0:2].clone()
- gt_bboxes_per_image_clip[:, 0] = torch.clamp(gt_bboxes_per_image_clip[:, 0], min=0, max=img_size[1])
- gt_bboxes_per_image_clip[:, 1] = torch.clamp(gt_bboxes_per_image_clip[:, 1], min=0, max=img_size[0])
-
- gt_bboxes_per_image_l = (gt_bboxes_per_image_clip[:, 0]).unsqueeze(1).repeat(
- 1, total_num_anchors
- ) - center_radius * expanded_strides_per_image.unsqueeze(0)
- gt_bboxes_per_image_r = (gt_bboxes_per_image_clip[:, 0]).unsqueeze(1).repeat(
- 1, total_num_anchors
- ) + center_radius * expanded_strides_per_image.unsqueeze(0)
- gt_bboxes_per_image_t = (gt_bboxes_per_image_clip[:, 1]).unsqueeze(1).repeat(
- 1, total_num_anchors
- ) - center_radius * expanded_strides_per_image.unsqueeze(0)
- gt_bboxes_per_image_b = (gt_bboxes_per_image_clip[:, 1]).unsqueeze(1).repeat(
- 1, total_num_anchors
- ) + center_radius * expanded_strides_per_image.unsqueeze(0)
-
- c_l = x_centers_per_image - gt_bboxes_per_image_l
- c_r = gt_bboxes_per_image_r - x_centers_per_image
- c_t = y_centers_per_image - gt_bboxes_per_image_t
- c_b = gt_bboxes_per_image_b - y_centers_per_image
- center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
- is_in_centers = center_deltas.min(dim=-1).values > 0.0
- is_in_centers_all = is_in_centers.sum(dim=0) > 0
-
- # in boxes and in centers
- is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
-
- is_in_boxes_and_center = (
- is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
- )
- del gt_bboxes_per_image_clip
- return is_in_boxes_anchor, is_in_boxes_and_center
-
- def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
- # Dynamic K
- # ---------------------------------------------------------------
- matching_matrix = torch.zeros_like(cost)
-
- ious_in_boxes_matrix = pair_wise_ious
- n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
- topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
- dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1.0
-
- del topk_ious, dynamic_ks, pos_idx
-
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- cost_min, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0.0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
- fg_mask_inboxes = matching_matrix.sum(0) > 0.0
- num_fg = fg_mask_inboxes.sum().item()
-
- fg_mask[fg_mask.clone()] = fg_mask_inboxes
-
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
- gt_matched_classes = gt_classes[matched_gt_inds]
-
- pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
- fg_mask_inboxes
- ]
- return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
|