123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- """py-motmetrics - metrics for multiple object tracker (MOT) benchmarking.
- Christoph Heindl, 2017
- https://github.com/cheind/py-motmetrics
- Modified by Rufeng Zhang
- """
-
- import argparse
- import glob
- import os
- import logging
- import motmetrics as mm
- import pandas as pd
- from collections import OrderedDict
- from pathlib import Path
-
-
- def parse_args():
- parser = argparse.ArgumentParser(description="""
- Compute metrics for trackers using MOTChallenge ground-truth data.
- Files
- -----
- All file content, ground truth and test files, have to comply with the
- format described in
- Milan, Anton, et al.
- "Mot16: A benchmark for multi-object tracking."
- arXiv preprint arXiv:1603.00831 (2016).
- https://motchallenge.net/
- Structure
- ---------
- Layout for ground truth data
- <GT_ROOT>/<SEQUENCE_1>/gt/gt.txt
- <GT_ROOT>/<SEQUENCE_2>/gt/gt.txt
- ...
- Layout for test data
- <TEST_ROOT>/<SEQUENCE_1>.txt
- <TEST_ROOT>/<SEQUENCE_2>.txt
- ...
- Sequences of ground truth and test will be matched according to the `<SEQUENCE_X>`
- string.""", formatter_class=argparse.RawTextHelpFormatter)
-
- parser.add_argument('--groundtruths', type=str, help='Directory containing ground truth files.')
- parser.add_argument('--tests', type=str, help='Directory containing tracker result files')
- parser.add_argument('--score_threshold', type=float, help='Score threshold',default=0.5)
- parser.add_argument('--gt_type', type=str, default='')
- parser.add_argument('--eval_official', action='store_true')
- parser.add_argument('--loglevel', type=str, help='Log level', default='info')
- parser.add_argument('--fmt', type=str, help='Data format', default='mot15-2D')
- parser.add_argument('--solver', type=str, help='LAP solver to use')
- return parser.parse_args()
-
-
- def compare_dataframes(gts, ts):
- accs = []
- names = []
- for k, tsacc in ts.items():
- if k in gts:
- logging.info('Comparing {}...'.format(k))
- accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
- names.append(k)
- else:
- logging.warning('No ground truth for {}, skipping.'.format(k))
-
- return accs, names
-
-
- if __name__ == '__main__':
-
- args = parse_args()
-
- loglevel = getattr(logging, args.loglevel.upper(), None)
- if not isinstance(loglevel, int):
- raise ValueError('Invalid log level: {} '.format(args.loglevel))
- logging.basicConfig(level=loglevel, format='%(asctime)s %(levelname)s - %(message)s', datefmt='%I:%M:%S')
-
- if args.solver:
- mm.lap.default_solver = args.solver
-
- gt_type = args.gt_type
- print('gt_type', gt_type)
- gtfiles = glob.glob(
- os.path.join(args.groundtruths, '*/gt/gt_{}.txt'.format(gt_type)))
- print('gt_files', gtfiles)
- tsfiles = [f for f in glob.glob(os.path.join(args.tests, '*.txt')) if not os.path.basename(f).startswith('eval')]
-
- logging.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
- logging.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
- logging.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
- logging.info('Loading files.')
-
- gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt=args.fmt, min_confidence=1)) for f in gtfiles])
- ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt=args.fmt, min_confidence=args.score_threshold)) for f in tsfiles])
- # ts = gt
-
- mh = mm.metrics.create()
- accs, names = compare_dataframes(gt, ts)
-
- logging.info('Running metrics')
- metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked',
- 'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses',
- 'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects']
- summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
- # summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
- # print(mm.io.render_summary(
- # summary, formatters=mh.formatters,
- # namemap=mm.io.motchallenge_metric_names))
- div_dict = {
- 'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'],
- 'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']}
- for divisor in div_dict:
- for divided in div_dict[divisor]:
- summary[divided] = (summary[divided] / summary[divisor])
- fmt = mh.formatters
- change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked',
- 'partially_tracked', 'mostly_lost']
- for k in change_fmt_list:
- fmt[k] = fmt['mota']
- print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names))
- if args.eval_official:
- metrics = mm.metrics.motchallenge_metrics + ['num_objects']
- summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
- print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
- logging.info('Completed')
|