123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import lap
- import numpy as np
- import scipy
- from cython_bbox import bbox_overlaps as bbox_ious
- from scipy.spatial.distance import cdist
-
- chi2inv95 = {
- 1: 3.8415,
- 2: 5.9915,
- 3: 7.8147,
- 4: 9.4877,
- 5: 11.070,
- 6: 12.592,
- 7: 14.067,
- 8: 15.507,
- 9: 16.919}
-
- def merge_matches(m1, m2, shape):
- O,P,Q = shape
- m1 = np.asarray(m1)
- m2 = np.asarray(m2)
-
- M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
- M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))
-
- mask = M1*M2
- match = mask.nonzero()
- match = list(zip(match[0], match[1]))
- unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
- unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))
-
- return match, unmatched_O, unmatched_Q
-
-
- def _indices_to_matches(cost_matrix, indices, thresh):
- matched_cost = cost_matrix[tuple(zip(*indices))]
- matched_mask = (matched_cost <= thresh)
-
- matches = indices[matched_mask]
- unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
- unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))
-
- return matches, unmatched_a, unmatched_b
-
-
- def linear_assignment(cost_matrix, thresh):
- if cost_matrix.size == 0:
- return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
- matches, unmatched_a, unmatched_b = [], [], []
- cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
- for ix, mx in enumerate(x):
- if mx >= 0:
- matches.append([ix, mx])
- unmatched_a = np.where(x < 0)[0]
- unmatched_b = np.where(y < 0)[0]
- matches = np.asarray(matches)
- return matches, unmatched_a, unmatched_b
-
-
- def ious(atlbrs, btlbrs):
- """
- Compute cost based on IoU
- :type atlbrs: list[tlbr] | np.ndarray
- :type atlbrs: list[tlbr] | np.ndarray
- :rtype ious np.ndarray
- """
- ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
- if ious.size == 0:
- return ious
-
- ious = bbox_ious(
- np.ascontiguousarray(atlbrs, dtype=np.float),
- np.ascontiguousarray(btlbrs, dtype=np.float)
- )
-
- return ious
-
-
- def iou_distance(atracks, btracks):
- """
- Compute cost based on IoU
- :type atracks: list[STrack]
- :type btracks: list[STrack]
- :rtype cost_matrix np.ndarray
- """
-
- if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
- atlbrs = atracks
- btlbrs = btracks
- else:
- atlbrs = [track.tlbr for track in atracks]
- btlbrs = [track.tlbr for track in btracks]
- _ious = ious(atlbrs, btlbrs)
- cost_matrix = 1 - _ious
-
- return cost_matrix
-
- def embedding_distance(tracks, detections, metric='cosine'):
- """
- :param tracks: list[STrack]
- :param detections: list[BaseTrack]
- :param metric:
- :return: cost_matrix np.ndarray
- """
-
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
- #for i, track in enumerate(tracks):
- #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
- return cost_matrix
-
- def embedding_distance2(tracks, detections, metric='cosine'):
- """
- :param tracks: list[STrack]
- :param detections: list[BaseTrack]
- :param metric:
- :return: cost_matrix np.ndarray
- """
-
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
- #for i, track in enumerate(tracks):
- #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
- track_features = np.asarray([track.features[0] for track in tracks], dtype=np.float)
- cost_matrix2 = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
- track_features = np.asarray([track.features[len(track.features)-1] for track in tracks], dtype=np.float)
- cost_matrix3 = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
- for row in range(len(cost_matrix)):
- cost_matrix[row] = (cost_matrix[row]+cost_matrix2[row]+cost_matrix3[row])/3
- return cost_matrix
-
-
- def vis_id_feature_A_distance(tracks, detections, metric='cosine'):
- track_features = []
- det_features = []
- leg1 = len(tracks)
- leg2 = len(detections)
- cost_matrix = np.zeros((leg1, leg2), dtype=np.float)
- cost_matrix_det = np.zeros((leg1, leg2), dtype=np.float)
- cost_matrix_track = np.zeros((leg1, leg2), dtype=np.float)
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
- if leg2 != 0:
- cost_matrix_det = np.maximum(0.0, cdist(det_features, det_features, metric))
- if leg1 != 0:
- cost_matrix_track = np.maximum(0.0, cdist(track_features, track_features, metric))
- if cost_matrix.size == 0:
- return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))
- if leg1 > 10:
- leg1 = 10
- tracks = tracks[:10]
- if leg2 > 10:
- leg2 = 10
- detections = detections[:10]
- det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
- track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
- return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track
-
- def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
- if cost_matrix.size == 0:
- return cost_matrix
- gating_dim = 2 if only_position else 4
- gating_threshold = chi2inv95[gating_dim]
- measurements = np.asarray([det.to_xyah() for det in detections])
- for row, track in enumerate(tracks):
- gating_distance = kf.gating_distance(
- track.mean, track.covariance, measurements, only_position)
- cost_matrix[row, gating_distance > gating_threshold] = np.inf
- return cost_matrix
-
-
- def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98):
- if cost_matrix.size == 0:
- return cost_matrix
- gating_dim = 2 if only_position else 4
- gating_threshold = chi2inv95[gating_dim]
- measurements = np.asarray([det.to_xyah() for det in detections])
- for row, track in enumerate(tracks):
- gating_distance = kf.gating_distance(
- track.mean, track.covariance, measurements, only_position, metric='maha')
- cost_matrix[row, gating_distance > gating_threshold] = np.inf
- cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance
- return cost_matrix
|