123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # vim: expandtab:ts=4:sw=4
-
-
- class TrackState:
- """
- Enumeration type for the single target track state. Newly created tracks are
- classified as `tentative` until enough evidence has been collected. Then,
- the track state is changed to `confirmed`. Tracks that are no longer alive
- are classified as `deleted` to mark them for removal from the set of active
- tracks.
- """
-
- Tentative = 1
- Confirmed = 2
- Deleted = 3
-
-
- class Track:
- """
- A single target track with state space `(x, y, a, h)` and associated
- velocities, where `(x, y)` is the center of the bounding box, `a` is the
- aspect ratio and `h` is the height.
- Parameters
- ----------
- mean : ndarray
- Mean vector of the initial state distribution.
- covariance : ndarray
- Covariance matrix of the initial state distribution.
- track_id : int
- A unique track identifier.
- n_init : int
- Number of consecutive detections before the track is confirmed. The
- track state is set to `Deleted` if a miss occurs within the first
- `n_init` frames.
- max_age : int
- The maximum number of consecutive misses before the track state is
- set to `Deleted`.
- feature : Optional[ndarray]
- Feature vector of the detection this track originates from. If not None,
- this feature is added to the `features` cache.
- Attributes
- ----------
- mean : ndarray
- Mean vector of the initial state distribution.
- covariance : ndarray
- Covariance matrix of the initial state distribution.
- track_id : int
- A unique track identifier.
- hits : int
- Total number of measurement updates.
- age : int
- Total number of frames since first occurance.
- time_since_update : int
- Total number of frames since last measurement update.
- state : TrackState
- The current track state.
- features : List[ndarray]
- A cache of features. On each measurement update, the associated feature
- vector is added to this list.
- """
-
- def __init__(self, mean, covariance, track_id, class_id, n_init, max_age,
- feature=None):
- self.mean = mean
- self.covariance = covariance
- self.track_id = track_id
- self.class_id = class_id
- self.hits = 1
- self.age = 1
- self.time_since_update = 0
-
- self.state = TrackState.Tentative
- self.features = []
- if feature is not None:
- self.features.append(feature)
-
- self._n_init = n_init
- self._max_age = max_age
-
- def to_tlwh(self):
- """Get current position in bounding box format `(top left x, top left y,
- width, height)`.
- Returns
- -------
- ndarray
- The bounding box.
- """
- ret = self.mean[:4].copy()
- ret[2] *= ret[3]
- ret[:2] -= ret[2:] / 2
- return ret
-
- def to_tlbr(self):
- """Get current position in bounding box format `(min x, miny, max x,
- max y)`.
- Returns
- -------
- ndarray
- The bounding box.
- """
- ret = self.to_tlwh()
- ret[2:] = ret[:2] + ret[2:]
- return ret
-
- def increment_age(self):
- self.age += 1
- self.time_since_update += 1
-
- def predict(self, kf):
- """Propagate the state distribution to the current time step using a
- Kalman filter prediction step.
- Parameters
- ----------
- kf : kalman_filter.KalmanFilter
- The Kalman filter.
- """
- self.mean, self.covariance = kf.predict(self.mean, self.covariance)
- self.increment_age()
-
- def update(self, kf, detection):
- """Perform Kalman filter measurement update step and update the feature
- cache.
- Parameters
- ----------
- kf : kalman_filter.KalmanFilter
- The Kalman filter.
- detection : Detection
- The associated detection.
- """
- self.mean, self.covariance = kf.update(
- self.mean, self.covariance, detection.to_xyah())
- self.features.append(detection.feature)
-
- self.hits += 1
- self.time_since_update = 0
- if self.state == TrackState.Tentative and self.hits >= self._n_init:
- self.state = TrackState.Confirmed
-
- def mark_missed(self):
- """Mark this track as missed (no association at the current time step).
- """
- if self.state == TrackState.Tentative:
- self.state = TrackState.Deleted
- elif self.time_since_update > self._max_age:
- self.state = TrackState.Deleted
-
- def is_tentative(self):
- """Returns True if this track is tentative (unconfirmed).
- """
- return self.state == TrackState.Tentative
-
- def is_confirmed(self):
- """Returns True if this track is confirmed."""
- return self.state == TrackState.Confirmed
-
- def is_deleted(self):
- """Returns True if this track is dead and should be deleted."""
- return self.state == TrackState.Deleted
|