123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import argparse
- import os
- import sys
- import json
-
- class opts(object):
- def __init__(self):
- self.parser = argparse.ArgumentParser()
- # basic experiment setting
- self.parser.add_argument('task', default='',
- help='ctdet | ddd | multi_pose '
- '| tracking or combined with ,')
- self.parser.add_argument('--dataset', default='coco',
- help='see lib/dataset/dataset_facotry for ' +
- 'available datasets')
- self.parser.add_argument('--test_dataset', default='',
- help='coco | kitti | coco_hp | pascal')
- self.parser.add_argument('--exp_id', default='default')
- self.parser.add_argument('--test', action='store_true')
- self.parser.add_argument('--debug', type=int, default=0,
- help='level of visualization.'
- '1: only show the final detection results'
- '2: show the network output features'
- '3: use matplot to display' # useful when lunching training with ipython notebook
- '4: save all visualizations to disk')
- self.parser.add_argument('--no_pause', action='store_true')
- self.parser.add_argument('--demo', default='',
- help='path to image/ image folders/ video. '
- 'or "webcam"')
- self.parser.add_argument('--load_model', default='',
- help='path to pretrained model')
- self.parser.add_argument('--resume', action='store_true',
- help='resume an experiment. '
- 'Reloaded the optimizer parameter and '
- 'set load_model to model_last.pth '
- 'in the exp dir if load_model is empty.')
-
- # system
- self.parser.add_argument('--gpus', default='0',
- help='-1 for CPU, use comma for multiple gpus')
- self.parser.add_argument('--num_workers', type=int, default=4,
- help='dataloader threads. 0 for single-thread.')
- self.parser.add_argument('--not_cuda_benchmark', action='store_true',
- help='disable when the input size is not fixed.')
- self.parser.add_argument('--seed', type=int, default=317,
- help='random seed') # from CornerNet
- self.parser.add_argument('--not_set_cuda_env', action='store_true',
- help='used when training in slurm clusters.')
-
- # log
- self.parser.add_argument('--print_iter', type=int, default=0,
- help='disable progress bar and print to screen.')
- self.parser.add_argument('--save_all', action='store_true',
- help='save model to disk every 5 epochs.')
- self.parser.add_argument('--vis_thresh', type=float, default=0.3,
- help='visualization threshold.')
- self.parser.add_argument('--debugger_theme', default='white',
- choices=['white', 'black'])
- self.parser.add_argument('--eval_val', action='store_true')
- self.parser.add_argument('--save_imgs', default='', help='')
- self.parser.add_argument('--save_img_suffix', default='', help='')
- self.parser.add_argument('--skip_first', type=int, default=-1, help='')
- self.parser.add_argument('--save_video', action='store_true')
- self.parser.add_argument('--save_framerate', type=int, default=30)
- self.parser.add_argument('--resize_video', action='store_true')
- self.parser.add_argument('--video_h', type=int, default=512, help='')
- self.parser.add_argument('--video_w', type=int, default=512, help='')
- self.parser.add_argument('--transpose_video', action='store_true')
- self.parser.add_argument('--show_track_color', action='store_true')
- self.parser.add_argument('--not_show_bbox', action='store_true')
- self.parser.add_argument('--not_show_number', action='store_true')
- self.parser.add_argument('--qualitative', action='store_true')
- self.parser.add_argument('--tango_color', action='store_true')
-
- # model
- self.parser.add_argument('--arch', default='dla_34',
- help='model architecture. Currently tested'
- 'res_18 | res_101 | resdcn_18 | resdcn_101 |'
- 'dlav0_34 | dla_34 | hourglass')
- self.parser.add_argument('--dla_node', default='dcn')
- self.parser.add_argument('--head_conv', type=int, default=-1,
- help='conv layer channels for output head'
- '0 for no conv layer'
- '-1 for default setting: '
- '64 for resnets and 256 for dla.')
- self.parser.add_argument('--num_head_conv', type=int, default=1)
- self.parser.add_argument('--head_kernel', type=int, default=3, help='')
- self.parser.add_argument('--down_ratio', type=int, default=4,
- help='output stride. Currently only supports 4.')
- self.parser.add_argument('--not_idaup', action='store_true')
- self.parser.add_argument('--num_classes', type=int, default=-1)
- self.parser.add_argument('--num_layers', type=int, default=101)
- self.parser.add_argument('--backbone', default='dla34')
- self.parser.add_argument('--neck', default='dlaup')
- self.parser.add_argument('--msra_outchannel', type=int, default=256)
- self.parser.add_argument('--efficient_level', type=int, default=0)
- self.parser.add_argument('--prior_bias', type=float, default=-4.6) # -2.19
- self.parser.add_argument('--embedding', action='store_true')
- self.parser.add_argument('--box_nms', type=float, default=-1)
- self.parser.add_argument('--inference', action='store_true')
- self.parser.add_argument('--clip_len', type=int, default=1, help='number of images used in trades'
- 'including the current image')
- self.parser.add_argument('--no_repeat', action='store_true', default=True)
- self.parser.add_argument('--seg', action='store_true', default=False)
- self.parser.add_argument('--seg_feat_channel', default=8, type=int, help='.')
- self.parser.add_argument('--deform_kernel_size', type=int, default=3)
- self.parser.add_argument('--trades', action='store_true', help='Track to Detect and Segment:'
- 'An Online Multi Object Tracker')
-
- # input
- self.parser.add_argument('--input_res', type=int, default=-1,
- help='input height and width. -1 for default from '
- 'dataset. Will be overriden by input_h | input_w')
- self.parser.add_argument('--input_h', type=int, default=-1,
- help='input height. -1 for default from dataset.')
- self.parser.add_argument('--input_w', type=int, default=-1,
- help='input width. -1 for default from dataset.')
- self.parser.add_argument('--dataset_version', default='')
-
- # train
- self.parser.add_argument('--optim', default='adam')
- self.parser.add_argument('--lr', type=float, default=1.25e-4,
- help='learning rate for batch size 32.')
- self.parser.add_argument('--lr_step', type=str, default='60',
- help='drop learning rate by 10.')
- self.parser.add_argument('--save_point', type=str, default='90',
- help='when to save the model to disk.')
- self.parser.add_argument('--num_epochs', type=int, default=70,
- help='total training epochs.')
- self.parser.add_argument('--batch_size', type=int, default=32,
- help='batch size')
- self.parser.add_argument('--master_batch_size', type=int, default=-1,
- help='batch size on the master gpu.')
- self.parser.add_argument('--num_iters', type=int, default=-1,
- help='default: #samples / batch_size.')
- self.parser.add_argument('--val_intervals', type=int, default=10000,
- help='number of epochs to run validation.')
- self.parser.add_argument('--trainval', action='store_true',
- help='include validation in training and '
- 'test on test set')
- self.parser.add_argument('--ltrb', action='store_true',
- help='')
- self.parser.add_argument('--ltrb_weight', type=float, default=0.1,
- help='')
- self.parser.add_argument('--reset_hm', action='store_true')
- self.parser.add_argument('--reuse_hm', action='store_true')
- self.parser.add_argument('--use_kpt_center', action='store_true')
- self.parser.add_argument('--add_05', action='store_true')
- self.parser.add_argument('--dense_reg', type=int, default=1, help='')
-
- # test
- self.parser.add_argument('--flip_test', action='store_true',
- help='flip data augmentation.')
- self.parser.add_argument('--test_scales', type=str, default='1',
- help='multi scale test augmentation.')
- self.parser.add_argument('--nms', action='store_true',
- help='run nms in testing.')
- self.parser.add_argument('--K', type=int, default=100,
- help='max number of output objects.')
- self.parser.add_argument('--not_prefetch_test', action='store_true',
- help='not use parallal data pre-processing.')
- self.parser.add_argument('--fix_short', type=int, default=-1)
- self.parser.add_argument('--keep_res', action='store_true',
- help='keep the original resolution'
- ' during validation.')
- self.parser.add_argument('--map_argoverse_id', action='store_true',
- help='if trained on nuscenes and eval on kitti')
- self.parser.add_argument('--out_thresh', type=float, default=-1,
- help='')
- self.parser.add_argument('--depth_scale', type=float, default=1,
- help='')
- self.parser.add_argument('--save_results', action='store_true')
- self.parser.add_argument('--load_results', default='')
- self.parser.add_argument('--use_loaded_results', action='store_true')
- self.parser.add_argument('--ignore_loaded_cats', default='')
- self.parser.add_argument('--model_output_list', action='store_true',
- help='Used when convert to onnx')
- self.parser.add_argument('--non_block_test', action='store_true')
- self.parser.add_argument('--vis_gt_bev', default='', help='')
- self.parser.add_argument('--kitti_split', default='3dop',
- help='different validation split for kitti: '
- '3dop | subcnn')
- self.parser.add_argument('--test_focal_length', type=int, default=-1)
-
- # dataset
- self.parser.add_argument('--not_rand_crop', action='store_true',
- help='not use the random crop data augmentation'
- 'from CornerNet.')
- self.parser.add_argument('--not_max_crop', action='store_true',
- help='used when the training dataset has'
- 'inbalanced aspect ratios.')
- self.parser.add_argument('--shift', type=float, default=0,
- help='when not using random crop, 0.1'
- 'apply shift augmentation.')
- self.parser.add_argument('--scale', type=float, default=0,
- help='when not using random crop, 0.4'
- 'apply scale augmentation.')
- self.parser.add_argument('--aug_rot', type=float, default=0,
- help='probability of applying '
- 'rotation augmentation.')
- self.parser.add_argument('--rotate', type=float, default=0,
- help='when not using random crop'
- 'apply rotation augmentation.')
- self.parser.add_argument('--flip', type=float, default=0.5,
- help='probability of applying flip augmentation.')
- self.parser.add_argument('--no_color_aug', action='store_true',
- help='not use the color augmenation '
- 'from CornerNet')
-
- # Tracking
- self.parser.add_argument('--tracking', action='store_true')
- self.parser.add_argument('--pre_hm', action='store_true')
- self.parser.add_argument('--same_aug_pre', action='store_true')
- self.parser.add_argument('--zero_pre_hm', action='store_true')
- self.parser.add_argument('--hm_disturb', type=float, default=0)
- self.parser.add_argument('--lost_disturb', type=float, default=0)
- self.parser.add_argument('--fp_disturb', type=float, default=0)
- self.parser.add_argument('--pre_thresh', type=float, default=-1)
- self.parser.add_argument('--track_thresh', type=float, default=0.3)
- self.parser.add_argument('--match_thresh', type=float, default=0.8)
- self.parser.add_argument('--track_buffer', type=int, default=30)
- self.parser.add_argument('--new_thresh', type=float, default=0.0)
- self.parser.add_argument('--max_frame_dist', type=int, default=3)
- self.parser.add_argument('--ltrb_amodal', action='store_true')
- self.parser.add_argument('--ltrb_amodal_weight', type=float, default=0.1)
- self.parser.add_argument('--window_size', type=int, default=20)
- self.parser.add_argument('--public_det', action='store_true')
- self.parser.add_argument('--no_pre_img', action='store_true')
- self.parser.add_argument('--zero_tracking', action='store_true')
- self.parser.add_argument('--hungarian', action='store_true')
- self.parser.add_argument('--max_age', type=int, default=-1)
-
-
- # loss
- self.parser.add_argument('--tracking_weight', type=float, default=1)
- self.parser.add_argument('--reg_loss', default='l1',
- help='regression loss: sl1 | l1 | l2')
- self.parser.add_argument('--hm_weight', type=float, default=1,
- help='loss weight for keypoint heatmaps.')
- self.parser.add_argument('--off_weight', type=float, default=1,
- help='loss weight for keypoint local offsets.')
- self.parser.add_argument('--wh_weight', type=float, default=0.1,
- help='loss weight for bounding box size.')
- self.parser.add_argument('--hp_weight', type=float, default=1,
- help='loss weight for human pose offset.')
- self.parser.add_argument('--hm_hp_weight', type=float, default=1,
- help='loss weight for human keypoint heatmap.')
- self.parser.add_argument('--amodel_offset_weight', type=float, default=1,
- help='Please forgive the typo.')
- self.parser.add_argument('--dep_weight', type=float, default=1,
- help='loss weight for depth.')
- self.parser.add_argument('--dim_weight', type=float, default=1,
- help='loss weight for 3d bounding box size.')
- self.parser.add_argument('--rot_weight', type=float, default=1,
- help='loss weight for orientation.')
- self.parser.add_argument('--nuscenes_att', action='store_true')
- self.parser.add_argument('--nuscenes_att_weight', type=float, default=1)
- self.parser.add_argument('--velocity', action='store_true')
- self.parser.add_argument('--velocity_weight', type=float, default=1)
- self.parser.add_argument('--nID', type=int, default=-1)
-
- # custom dataset
- self.parser.add_argument('--custom_dataset_img_path', default='')
- self.parser.add_argument('--custom_dataset_ann_path', default='')
-
- def parse(self, args=''):
- if args == '':
- opt = self.parser.parse_args()
- else:
- opt = self.parser.parse_args(args)
-
- if opt.test_dataset == '':
- opt.test_dataset = opt.dataset
-
- opt.gpus_str = opt.gpus
- opt.gpus = [int(gpu) for gpu in opt.gpus.split(',')]
- opt.gpus = [i for i in range(len(opt.gpus))] if opt.gpus[0] >=0 else [-1]
- opt.lr_step = [int(i) for i in opt.lr_step.split(',')]
- opt.save_point = [int(i) for i in opt.save_point.split(',')]
- opt.test_scales = [float(i) for i in opt.test_scales.split(',')]
- opt.save_imgs = [i for i in opt.save_imgs.split(',')] \
- if opt.save_imgs != '' else []
- opt.ignore_loaded_cats = \
- [int(i) for i in opt.ignore_loaded_cats.split(',')] \
- if opt.ignore_loaded_cats != '' else []
-
- opt.num_workers = max(opt.num_workers, 2 * len(opt.gpus))
- opt.pre_img = False
- if 'tracking' in opt.task:
- print('Running tracking')
- opt.tracking = True
- # opt.out_thresh = max(opt.track_thresh, opt.out_thresh)
- # opt.pre_thresh = max(opt.track_thresh, opt.pre_thresh)
- # opt.new_thresh = max(opt.track_thresh, opt.new_thresh)
- opt.pre_img = not opt.no_pre_img
- print('Using tracking threshold for out threshold!', opt.track_thresh)
- # if 'ddd' in opt.task:
- opt.show_track_color = True
- if opt.dataset in ['mot', 'mots', 'youtube_vis']:
- opt.overlap_thresh = 0.05
- elif opt.dataset == 'nuscenes':
- opt.window_size = 7
- opt.overlap_thresh = -1
- else:
- opt.overlap_thresh = 0.05
-
- opt.fix_res = not opt.keep_res
- print('Fix size testing.' if opt.fix_res else 'Keep resolution testing.')
-
- if opt.head_conv == -1: # init default head_conv
- opt.head_conv = 256 if 'dla' in opt.arch else 64
-
- opt.pad = 127 if 'hourglass' in opt.arch else 31
- opt.num_stacks = 2 if opt.arch == 'hourglass' else 1
-
- if opt.master_batch_size == -1:
- opt.master_batch_size = opt.batch_size // len(opt.gpus)
- rest_batch_size = (opt.batch_size - opt.master_batch_size)
- opt.chunk_sizes = [opt.master_batch_size]
- for i in range(len(opt.gpus) - 1):
- slave_chunk_size = rest_batch_size // (len(opt.gpus) - 1)
- if i < rest_batch_size % (len(opt.gpus) - 1):
- slave_chunk_size += 1
- opt.chunk_sizes.append(slave_chunk_size)
- print('training chunk_sizes:', opt.chunk_sizes)
-
- if opt.debug > 0:
- opt.num_workers = 0
- opt.batch_size = 1
- opt.gpus = [opt.gpus[0]]
- opt.master_batch_size = -1
-
- # log dirs
- opt.root_dir = os.path.join(os.path.dirname(__file__), '..', '..')
- opt.data_dir = os.path.join(opt.root_dir, 'data')
- opt.exp_dir = os.path.join(opt.root_dir, 'exp', opt.task)
- opt.save_dir = os.path.join(opt.exp_dir, opt.exp_id)
- opt.debug_dir = os.path.join(opt.save_dir, 'debug')
-
- if opt.resume and opt.load_model == '':
- opt.load_model = os.path.join(opt.save_dir, 'model_last.pth')
- return opt
-
-
- def update_dataset_info_and_set_heads(self, opt, dataset):
- opt.num_classes = dataset.num_categories \
- if opt.num_classes < 0 else opt.num_classes
- # input_h(w): opt.input_h overrides opt.input_res overrides dataset default
- input_h, input_w = dataset.default_resolution
- input_h = opt.input_res if opt.input_res > 0 else input_h
- input_w = opt.input_res if opt.input_res > 0 else input_w
- opt.input_h = opt.input_h if opt.input_h > 0 else input_h
- opt.input_w = opt.input_w if opt.input_w > 0 else input_w
- opt.output_h = opt.input_h // opt.down_ratio
- opt.output_w = opt.input_w // opt.down_ratio
- opt.input_res = max(opt.input_h, opt.input_w)
- opt.output_res = max(opt.output_h, opt.output_w)
-
- opt.heads = {'hm': opt.num_classes, 'reg': 2, 'wh': 2}
-
- if not opt.trades:
- if 'tracking' in opt.task:
- opt.heads.update({'tracking': 2})
-
- if 'ddd' in opt.task:
- opt.heads.update({'dep': 1, 'rot': 8, 'dim': 3, 'amodel_offset': 2})
-
- if 'multi_pose' in opt.task:
- opt.heads.update({
- 'hps': dataset.num_joints * 2, 'hm_hp': dataset.num_joints,
- 'hp_offset': 2})
-
- if opt.ltrb:
- opt.heads.update({'ltrb': 4})
- if opt.ltrb_amodal:
- opt.heads.update({'ltrb_amodal': 4})
- if opt.nuscenes_att:
- opt.heads.update({'nuscenes_att': 8})
- if opt.velocity:
- opt.heads.update({'velocity': 3})
-
- if opt.embedding:
- opt.heads.update({'embedding': 128})
- if opt.seg:
- opt.heads.update({'conv_weight': 2*opt.seg_feat_channel**2 + 5*opt.seg_feat_channel + 1})
- opt.heads.update({'seg_feat': opt.seg_feat_channel})
- weight_dict = {'hm': opt.hm_weight, 'wh': opt.wh_weight,
- 'reg': opt.off_weight, 'hps': opt.hp_weight,
- 'hm_hp': opt.hm_hp_weight, 'hp_offset': opt.off_weight,
- 'dep': opt.dep_weight, 'rot': opt.rot_weight,
- 'dim': opt.dim_weight,
- 'amodel_offset': opt.amodel_offset_weight,
- 'ltrb': opt.ltrb_weight,
- 'tracking': opt.tracking_weight,
- 'ltrb_amodal': opt.ltrb_amodal_weight,
- 'nuscenes_att': opt.nuscenes_att_weight,
- 'velocity': opt.velocity_weight,
- 'embedding': 1.0,
- 'conv_weight': 1.0,
- 'seg_feat':1.0}
- opt.weights = {head: weight_dict[head] for head in opt.heads}
- if opt.trades:
- opt.weights['cost_volume'] = 1.0
- if opt.seg:
- opt.weights['mask_loss'] = 1.0
- for head in opt.weights:
- if opt.weights[head] == 0:
- del opt.heads[head]
- opt.head_conv = {head: [opt.head_conv \
- for i in range(opt.num_head_conv if head != 'reg' else 1)] for head in opt.heads}
-
- print('input h w:', opt.input_h, opt.input_w)
- print('heads', opt.heads)
- print('weights', opt.weights)
- print('head conv', opt.head_conv)
-
- return opt
-
- def init(self, args=''):
- # only used in demo
- default_dataset_info = {
- 'ctdet': 'coco', 'multi_pose': 'coco_hp', 'ddd': 'nuscenes',
- 'tracking,ctdet': 'coco', 'tracking,multi_pose': 'coco_hp',
- 'tracking,ddd': 'nuscenes'
- }
- opt = self.parse()
- from dataset.dataset_factory import dataset_factory
- train_dataset = default_dataset_info[opt.task] \
- if opt.task in default_dataset_info else 'coco'
- if opt.dataset != 'coco':
- dataset = dataset_factory[opt.dataset]
- else:
- dataset = dataset_factory[train_dataset]
- opt = self.update_dataset_info_and_set_heads(opt, dataset)
- return opt
|