Meta Byte Track
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

byte_tracker.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. import numpy as np
  2. from collections import deque
  3. import os
  4. import os.path as osp
  5. import copy
  6. import torch
  7. import torch.nn.functional as F
  8. from mot_online.kalman_filter import KalmanFilter
  9. from mot_online.basetrack import BaseTrack, TrackState
  10. from mot_online import matching
  11. class STrack(BaseTrack):
  12. shared_kalman = KalmanFilter()
  13. def __init__(self, tlwh, score):
  14. # wait activate
  15. self._tlwh = np.asarray(tlwh, dtype=np.float)
  16. self.kalman_filter = None
  17. self.mean, self.covariance = None, None
  18. self.is_activated = False
  19. self.score = score
  20. self.tracklet_len = 0
  21. def predict(self):
  22. mean_state = self.mean.copy()
  23. if self.state != TrackState.Tracked:
  24. mean_state[7] = 0
  25. self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
  26. @staticmethod
  27. def multi_predict(stracks):
  28. if len(stracks) > 0:
  29. multi_mean = np.asarray([st.mean.copy() for st in stracks])
  30. multi_covariance = np.asarray([st.covariance for st in stracks])
  31. for i, st in enumerate(stracks):
  32. if st.state != TrackState.Tracked:
  33. multi_mean[i][7] = 0
  34. multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
  35. for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
  36. stracks[i].mean = mean
  37. stracks[i].covariance = cov
  38. def activate(self, kalman_filter, frame_id):
  39. """Start a new tracklet"""
  40. self.kalman_filter = kalman_filter
  41. self.track_id = self.next_id()
  42. self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
  43. self.tracklet_len = 0
  44. self.state = TrackState.Tracked
  45. if frame_id == 1:
  46. self.is_activated = True
  47. # self.is_activated = True
  48. self.frame_id = frame_id
  49. self.start_frame = frame_id
  50. def re_activate(self, new_track, frame_id, new_id=False):
  51. self.mean, self.covariance = self.kalman_filter.update(
  52. self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
  53. )
  54. self.tracklet_len = 0
  55. self.state = TrackState.Tracked
  56. self.is_activated = True
  57. self.frame_id = frame_id
  58. if new_id:
  59. self.track_id = self.next_id()
  60. self.score = new_track.score
  61. def update(self, new_track, frame_id):
  62. """
  63. Update a matched track
  64. :type new_track: STrack
  65. :type frame_id: int
  66. :type update_feature: bool
  67. :return:
  68. """
  69. self.frame_id = frame_id
  70. self.tracklet_len += 1
  71. new_tlwh = new_track.tlwh
  72. self.mean, self.covariance = self.kalman_filter.update(
  73. self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
  74. self.state = TrackState.Tracked
  75. self.is_activated = True
  76. self.score = new_track.score
  77. @property
  78. # @jit(nopython=True)
  79. def tlwh(self):
  80. """Get current position in bounding box format `(top left x, top left y,
  81. width, height)`.
  82. """
  83. if self.mean is None:
  84. return self._tlwh.copy()
  85. ret = self.mean[:4].copy()
  86. ret[2] *= ret[3]
  87. ret[:2] -= ret[2:] / 2
  88. return ret
  89. @property
  90. # @jit(nopython=True)
  91. def tlbr(self):
  92. """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
  93. `(top left, bottom right)`.
  94. """
  95. ret = self.tlwh.copy()
  96. ret[2:] += ret[:2]
  97. return ret
  98. @staticmethod
  99. # @jit(nopython=True)
  100. def tlwh_to_xyah(tlwh):
  101. """Convert bounding box to format `(center x, center y, aspect ratio,
  102. height)`, where the aspect ratio is `width / height`.
  103. """
  104. ret = np.asarray(tlwh).copy()
  105. ret[:2] += ret[2:] / 2
  106. ret[2] /= ret[3]
  107. return ret
  108. def to_xyah(self):
  109. return self.tlwh_to_xyah(self.tlwh)
  110. @staticmethod
  111. # @jit(nopython=True)
  112. def tlbr_to_tlwh(tlbr):
  113. ret = np.asarray(tlbr).copy()
  114. ret[2:] -= ret[:2]
  115. return ret
  116. @staticmethod
  117. # @jit(nopython=True)
  118. def tlwh_to_tlbr(tlwh):
  119. ret = np.asarray(tlwh).copy()
  120. ret[2:] += ret[:2]
  121. return ret
  122. def __repr__(self):
  123. return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
  124. class BYTETracker(object):
  125. def __init__(self, frame_rate=30):
  126. self.tracked_stracks = [] # type: list[STrack]
  127. self.lost_stracks = [] # type: list[STrack]
  128. self.removed_stracks = [] # type: list[STrack]
  129. self.frame_id = 0
  130. self.low_thresh = 0.2
  131. self.track_thresh = 0.8
  132. self.det_thresh = self.track_thresh + 0.1
  133. self.buffer_size = int(frame_rate / 30.0 * 30)
  134. self.max_time_lost = self.buffer_size
  135. self.kalman_filter = KalmanFilter()
  136. def update(self, output_results):
  137. self.frame_id += 1
  138. activated_starcks = []
  139. refind_stracks = []
  140. lost_stracks = []
  141. removed_stracks = []
  142. scores = output_results[:, 4]
  143. bboxes = output_results[:, :4] # x1y1x2y2
  144. remain_inds = scores > self.track_thresh
  145. dets = bboxes[remain_inds]
  146. scores_keep = scores[remain_inds]
  147. inds_low = scores > self.low_thresh
  148. inds_high = scores < self.track_thresh
  149. inds_second = np.logical_and(inds_low, inds_high)
  150. dets_second = bboxes[inds_second]
  151. scores_second = scores[inds_second]
  152. if len(dets) > 0:
  153. '''Detections'''
  154. detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
  155. (tlbr, s) in zip(dets, scores_keep)]
  156. else:
  157. detections = []
  158. ''' Add newly detected tracklets to tracked_stracks'''
  159. unconfirmed = []
  160. tracked_stracks = [] # type: list[STrack]
  161. for track in self.tracked_stracks:
  162. if not track.is_activated:
  163. unconfirmed.append(track)
  164. else:
  165. tracked_stracks.append(track)
  166. ''' Step 2: First association, with Kalman and IOU'''
  167. strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
  168. # Predict the current location with KF
  169. STrack.multi_predict(strack_pool)
  170. dists = matching.iou_distance(strack_pool, detections)
  171. matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.8)
  172. for itracked, idet in matches:
  173. track = strack_pool[itracked]
  174. det = detections[idet]
  175. if track.state == TrackState.Tracked:
  176. track.update(detections[idet], self.frame_id)
  177. activated_starcks.append(track)
  178. else:
  179. track.re_activate(det, self.frame_id, new_id=False)
  180. refind_stracks.append(track)
  181. ''' Step 3: Second association, with IOU'''
  182. # association the untrack to the low score detections
  183. if len(dets_second) > 0:
  184. '''Detections'''
  185. detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
  186. (tlbr, s) in zip(dets_second, scores_second)]
  187. else:
  188. detections_second = []
  189. r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
  190. dists = matching.iou_distance(r_tracked_stracks, detections_second)
  191. matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
  192. for itracked, idet in matches:
  193. track = r_tracked_stracks[itracked]
  194. det = detections_second[idet]
  195. if track.state == TrackState.Tracked:
  196. track.update(det, self.frame_id)
  197. activated_starcks.append(track)
  198. else:
  199. track.re_activate(det, self.frame_id, new_id=False)
  200. refind_stracks.append(track)
  201. for it in u_track:
  202. #track = r_tracked_stracks[it]
  203. track = r_tracked_stracks[it]
  204. if not track.state == TrackState.Lost:
  205. track.mark_lost()
  206. lost_stracks.append(track)
  207. '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
  208. detections = [detections[i] for i in u_detection]
  209. dists = matching.iou_distance(unconfirmed, detections)
  210. matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
  211. for itracked, idet in matches:
  212. unconfirmed[itracked].update(detections[idet], self.frame_id)
  213. activated_starcks.append(unconfirmed[itracked])
  214. for it in u_unconfirmed:
  215. track = unconfirmed[it]
  216. track.mark_removed()
  217. removed_stracks.append(track)
  218. """ Step 4: Init new stracks"""
  219. for inew in u_detection:
  220. track = detections[inew]
  221. if track.score < self.det_thresh:
  222. continue
  223. track.activate(self.kalman_filter, self.frame_id)
  224. activated_starcks.append(track)
  225. """ Step 5: Update state"""
  226. for track in self.lost_stracks:
  227. if self.frame_id - track.end_frame > self.max_time_lost:
  228. track.mark_removed()
  229. removed_stracks.append(track)
  230. # print('Ramained match {} s'.format(t4-t3))
  231. self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
  232. self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
  233. self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
  234. self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
  235. self.lost_stracks.extend(lost_stracks)
  236. self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
  237. self.removed_stracks.extend(removed_stracks)
  238. self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
  239. # get scores of lost tracks
  240. output_stracks = [track for track in self.tracked_stracks if track.is_activated]
  241. return output_stracks
  242. def joint_stracks(tlista, tlistb):
  243. exists = {}
  244. res = []
  245. for t in tlista:
  246. exists[t.track_id] = 1
  247. res.append(t)
  248. for t in tlistb:
  249. tid = t.track_id
  250. if not exists.get(tid, 0):
  251. exists[tid] = 1
  252. res.append(t)
  253. return res
  254. def sub_stracks(tlista, tlistb):
  255. stracks = {}
  256. for t in tlista:
  257. stracks[t.track_id] = t
  258. for t in tlistb:
  259. tid = t.track_id
  260. if stracks.get(tid, 0):
  261. del stracks[tid]
  262. return list(stracks.values())
  263. def remove_duplicate_stracks(stracksa, stracksb):
  264. pdist = matching.iou_distance(stracksa, stracksb)
  265. pairs = np.where(pdist < 0.15)
  266. dupa, dupb = list(), list()
  267. for p, q in zip(*pairs):
  268. timep = stracksa[p].frame_id - stracksa[p].start_frame
  269. timeq = stracksb[q].frame_id - stracksb[q].start_frame
  270. if timep > timeq:
  271. dupb.append(q)
  272. else:
  273. dupa.append(p)
  274. resa = [t for i, t in enumerate(stracksa) if not i in dupa]
  275. resb = [t for i, t in enumerate(stracksb) if not i in dupb]
  276. return resa, resb
  277. def remove_fp_stracks(stracksa, n_frame=10):
  278. remain = []
  279. for t in stracksa:
  280. score_5 = t.score_list[-n_frame:]
  281. score_5 = np.array(score_5, dtype=np.float32)
  282. index = score_5 < 0.45
  283. num = np.sum(index)
  284. if num < n_frame:
  285. remain.append(t)
  286. return remain