123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import os
- import numpy as np
- import json
- import cv2
-
-
- # Use the same script for MOT16
- DATA_PATH = '/media/external_10TB/10TB/vision/ByteTrackData/MOT17'
- OUT_PATH = os.path.join(DATA_PATH, 'annotations')
- SPLITS = [ 'train', 'test'] # --> split training data to train_half and val_half.
- HALF_VIDEO = True
- CREATE_SPLITTED_ANN = True
- CREATE_SPLITTED_DET = True
-
-
- if __name__ == '__main__':
-
- if not os.path.exists(OUT_PATH):
- os.makedirs(OUT_PATH)
-
- for split in SPLITS:
- if split == "test":
- data_path = os.path.join(DATA_PATH, 'test')
- else:
- data_path = os.path.join(DATA_PATH, 'train')
- seqs = os.listdir(data_path)
- for seq in sorted(seqs):
- out_path = os.path.join(OUT_PATH, '{}_{}.json'.format(split,seq))
- out = {'images': [], 'annotations': [], 'videos': [],
- 'categories': [{'id': 1, 'name': 'pedestrian'}]}
- image_cnt = 0
- ann_cnt = 0
- video_cnt = 0
- tid_curr = 0
- tid_last = -1
- if '.DS_Store' in seq:
- continue
- if 'mot' in DATA_PATH and (split != 'test' and not ('FRCNN' in seq)):
- continue
- video_cnt += 1 # video sequence number.
- out['videos'].append({'id': video_cnt, 'file_name': seq})
- seq_path = os.path.join(data_path, seq)
- img_path = os.path.join(seq_path, 'img1')
- ann_path = os.path.join(seq_path, 'gt/gt.txt')
- images = os.listdir(img_path)
- num_images = len([image for image in images if 'jpg' in image]) # half and half
-
- if HALF_VIDEO and ('half' in split):
- image_range = [0, num_images // 2] if 'train' in split else \
- [num_images // 2 + 1, num_images - 1]
- else:
- image_range = [0, num_images - 1]
-
- for i in range(num_images):
- if i < image_range[0] or i > image_range[1]:
- continue
- img = cv2.imread(os.path.join(data_path, '{}/img1/{:06d}.jpg'.format(seq, i + 1)))
- height, width = img.shape[:2]
- image_info = {'file_name': '{}/img1/{:06d}.jpg'.format(seq, i + 1), # image name.
- 'id': image_cnt + i + 1, # image number in the entire training set.
- 'frame_id': i + 1 - image_range[0], # image number in the video sequence, starting from 1.
- 'prev_image_id': image_cnt + i if i > 0 else -1, # image number in the entire training set.
- 'next_image_id': image_cnt + i + 2 if i < num_images - 1 else -1,
- 'video_id': video_cnt,
- 'height': height, 'width': width}
- out['images'].append(image_info)
- print('{}: {} images'.format(seq, num_images))
- if split != 'test':
- det_path = os.path.join(seq_path, 'det/det.txt')
- anns = np.loadtxt(ann_path, dtype=np.float32, delimiter=',')
- dets = np.loadtxt(det_path, dtype=np.float32, delimiter=',')
- if CREATE_SPLITTED_ANN and ('half' in split):
- anns_out = np.array([anns[i] for i in range(anns.shape[0])
- if int(anns[i][0]) - 1 >= image_range[0] and
- int(anns[i][0]) - 1 <= image_range[1]], np.float32)
- anns_out[:, 0] -= image_range[0]
- gt_out = os.path.join(seq_path, 'gt/gt_{}.txt'.format(split))
- fout = open(gt_out, 'w')
- for o in anns_out:
- fout.write('{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:.6f}\n'.format(
- int(o[0]), int(o[1]), int(o[2]), int(o[3]), int(o[4]), int(o[5]),
- int(o[6]), int(o[7]), o[8]))
- fout.close()
- if CREATE_SPLITTED_DET and ('half' in split):
- dets_out = np.array([dets[i] for i in range(dets.shape[0])
- if int(dets[i][0]) - 1 >= image_range[0] and
- int(dets[i][0]) - 1 <= image_range[1]], np.float32)
- dets_out[:, 0] -= image_range[0]
- det_out = os.path.join(seq_path, 'det/det_{}.txt'.format(split))
- dout = open(det_out, 'w')
- for o in dets_out:
- dout.write('{:d},{:d},{:.1f},{:.1f},{:.1f},{:.1f},{:.6f}\n'.format(
- int(o[0]), int(o[1]), float(o[2]), float(o[3]), float(o[4]), float(o[5]),
- float(o[6])))
- dout.close()
-
- print('{} ann images'.format(int(anns[:, 0].max())))
- for i in range(anns.shape[0]):
- frame_id = int(anns[i][0])
- if frame_id - 1 < image_range[0] or frame_id - 1 > image_range[1]:
- continue
- track_id = int(anns[i][1])
- cat_id = int(anns[i][7])
- ann_cnt += 1
- if not ('15' in DATA_PATH):
- #if not (float(anns[i][8]) >= 0.25): # visibility.
- #continue
- if not (int(anns[i][6]) == 1): # whether ignore.
- continue
- if int(anns[i][7]) in [3, 4, 5, 6, 9, 10, 11]: # Non-person
- continue
- if int(anns[i][7]) in [2, 7, 8, 12]: # Ignored person
- category_id = -1
- else:
- category_id = 1 # pedestrian(non-static)
- if not track_id == tid_last:
- tid_curr += 1
- tid_last = track_id
- else:
- category_id = 1
- ann = {'id': ann_cnt,
- 'category_id': category_id,
- 'image_id': image_cnt + frame_id,
- 'track_id': tid_curr,
- 'bbox': anns[i][2:6].tolist(),
- 'conf': float(anns[i][6]),
- 'iscrowd': 0,
- 'area': float(anns[i][4] * anns[i][5])}
- out['annotations'].append(ann)
- image_cnt += num_images
- print(tid_curr, tid_last)
- print('loaded {} for {} images and {} samples'.format(split, len(out['images']), len(out['annotations'])))
- json.dump(out, open(out_path, 'w'))
|