123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- # Modified by Peize Sun, Rufeng Zhang
- # ------------------------------------------------------------------------
- # Deformable DETR
- # Copyright (c) 2020 SenseTime. All Rights Reserved.
- # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
- # ------------------------------------------------------------------------
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # ------------------------------------------------------------------------
- import argparse
- import datetime
- import json
- import random
- import time
- from pathlib import Path
-
- import numpy as np
- import torch
- from torch.utils.data import DataLoader
- import datasets
- import util.misc as utils
- import datasets.samplers as samplers
- from datasets import build_dataset, get_coco_api_from_dataset
- from engine_track import evaluate, train_one_epoch, evaluate_track
- from models import build_tracktrain_model, build_tracktest_model, build_model
- from models import Tracker
- from models import save_track
- from mot_online.byte_tracker import BYTETracker
-
- from collections import defaultdict
-
-
- def get_args_parser():
- parser = argparse.ArgumentParser('Deformable DETR Detector', add_help=False)
- parser.add_argument('--lr', default=2e-4, type=float)
- parser.add_argument('--lr_backbone_names', default=["backbone.0"], type=str, nargs='+')
- parser.add_argument('--lr_backbone', default=2e-5, type=float)
- parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
- parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
- parser.add_argument('--batch_size', default=1, type=int)
- parser.add_argument('--weight_decay', default=1e-4, type=float)
- parser.add_argument('--epochs', default=50, type=int)
- parser.add_argument('--lr_drop', default=40, type=int)
- parser.add_argument('--lr_drop_epochs', default=None, type=int, nargs='+')
- parser.add_argument('--clip_max_norm', default=0.1, type=float,
- help='gradient clipping max norm')
-
- parser.add_argument('--sgd', action='store_true')
-
- # Variants of Deformable DETR
- parser.add_argument('--with_box_refine', default=True, action='store_true')
- parser.add_argument('--two_stage', default=False, action='store_true')
-
- # Model parameters
- parser.add_argument('--frozen_weights', type=str, default=None,
- help="Path to the pretrained model. If set, only the mask head will be trained")
-
- # * Backbone
- parser.add_argument('--backbone', default='resnet50', type=str,
- help="Name of the convolutional backbone to use")
- parser.add_argument('--dilation', action='store_true',
- help="If true, we replace stride with dilation in the last convolutional block (DC5)")
- parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
- help="Type of positional embedding to use on top of the image features")
- parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
- help="position / size * scale")
- parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
-
- # * Transformer
- parser.add_argument('--enc_layers', default=6, type=int,
- help="Number of encoding layers in the transformer")
- parser.add_argument('--dec_layers', default=6, type=int,
- help="Number of decoding layers in the transformer")
- parser.add_argument('--dim_feedforward', default=1024, type=int,
- help="Intermediate size of the feedforward layers in the transformer blocks")
- parser.add_argument('--hidden_dim', default=256, type=int,
- help="Size of the embeddings (dimension of the transformer)")
- parser.add_argument('--dropout', default=0.1, type=float,
- help="Dropout applied in the transformer")
- parser.add_argument('--nheads', default=8, type=int,
- help="Number of attention heads inside the transformer's attentions")
- parser.add_argument('--num_queries', default=500, type=int,
- help="Number of query slots")
- parser.add_argument('--dec_n_points', default=4, type=int)
- parser.add_argument('--enc_n_points', default=4, type=int)
-
- # * Segmentation
- parser.add_argument('--masks', action='store_true',
- help="Train segmentation head if the flag is provided")
-
- # Loss
- parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
- help="Disables auxiliary decoding losses (loss at each layer)")
-
- # * Matcher
- parser.add_argument('--set_cost_class', default=2, type=float,
- help="Class coefficient in the matching cost")
- parser.add_argument('--set_cost_bbox', default=5, type=float,
- help="L1 box coefficient in the matching cost")
- parser.add_argument('--set_cost_giou', default=2, type=float,
- help="giou box coefficient in the matching cost")
-
- # * Loss coefficients
- parser.add_argument('--mask_loss_coef', default=1, type=float)
- parser.add_argument('--dice_loss_coef', default=1, type=float)
- parser.add_argument('--cls_loss_coef', default=2, type=float)
- parser.add_argument('--bbox_loss_coef', default=5, type=float)
- parser.add_argument('--giou_loss_coef', default=2, type=float)
- parser.add_argument('--focal_alpha', default=0.25, type=float)
- parser.add_argument('--id_loss_coef', default=1, type=float)
-
- # dataset parameters
- parser.add_argument('--dataset_file', default='coco')
- parser.add_argument('--coco_path', default='./data/coco', type=str)
- parser.add_argument('--coco_panoptic_path', type=str)
- parser.add_argument('--remove_difficult', action='store_true')
-
- parser.add_argument('--output_dir', default='',
- help='path where to save, empty for no saving')
- parser.add_argument('--device', default='cuda',
- help='device to use for training / testing')
- parser.add_argument('--seed', default=42, type=int)
- parser.add_argument('--resume', default='', help='resume from checkpoint')
- parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
- help='start epoch')
- parser.add_argument('--eval', action='store_true')
- parser.add_argument('--num_workers', default=2, type=int)
- parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
-
- # PyTorch checkpointing for saving memory (torch.utils.checkpoint.checkpoint)
- parser.add_argument('--checkpoint_enc_ffn', default=False, action='store_true')
- parser.add_argument('--checkpoint_dec_ffn', default=False, action='store_true')
-
- # appended for track.
- parser.add_argument('--track_train_split', default='train', type=str)
- parser.add_argument('--track_eval_split', default='val', type=str)
- parser.add_argument('--track_thresh', default=0.4, type=float)
- parser.add_argument('--reid_shared', default=False, type=bool)
- parser.add_argument('--reid_dim', default=128, type=int)
- parser.add_argument('--num_ids', default=360, type=int)
-
-
- # detector for track.
- parser.add_argument('--det_val', default=False, action='store_true')
-
-
- return parser
-
-
- def main(args):
- utils.init_distributed_mode(args)
- print("git:\n {}\n".format(utils.get_sha()))
-
- if args.frozen_weights is not None:
- assert args.masks, "Frozen training is meant for segmentation only"
- print(args)
-
- device = torch.device(args.device)
-
- # fix the seed for reproducibility
- seed = args.seed + utils.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- random.seed(seed)
-
- if args.det_val:
- assert args.eval, 'only support eval mode of detector for track'
- model, criterion, postprocessors = build_model(args)
- elif args.eval:
- model, criterion, postprocessors = build_tracktest_model(args)
- else:
- model, criterion, postprocessors = build_tracktrain_model(args)
-
- model.to(device)
-
- model_without_ddp = model
- n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
- print('number of params:', n_parameters)
-
- dataset_train = build_dataset(image_set=args.track_train_split, args=args)
- dataset_val = build_dataset(image_set=args.track_eval_split, args=args)
-
- if args.distributed:
- if args.cache_mode:
- sampler_train = samplers.NodeDistributedSampler(dataset_train)
- sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False)
- else:
- sampler_train = samplers.DistributedSampler(dataset_train)
- sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False)
- else:
- sampler_train = torch.utils.data.RandomSampler(dataset_train)
- sampler_val = torch.utils.data.SequentialSampler(dataset_val)
-
- batch_sampler_train = torch.utils.data.BatchSampler(
- sampler_train, args.batch_size, drop_last=True)
-
- data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
- collate_fn=utils.collate_fn, num_workers=args.num_workers,
- pin_memory=True)
- data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
- drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers,
- pin_memory=True)
-
- # lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"]
- def match_name_keywords(n, name_keywords):
- out = False
- for b in name_keywords:
- if b in n:
- out = True
- break
- return out
-
- for n, p in model_without_ddp.named_parameters():
- print(n)
-
- param_dicts = [
- {
- "params":
- [p for n, p in model_without_ddp.named_parameters()
- if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
- "lr": args.lr,
- },
- {
- "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
- "lr": args.lr_backbone,
- },
- {
- "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
- "lr": args.lr * args.lr_linear_proj_mult,
- }
- ]
- if args.sgd:
- optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9,
- weight_decay=args.weight_decay)
- else:
- optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
- weight_decay=args.weight_decay)
- lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
-
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
- model_without_ddp = model.module
-
- if args.dataset_file == "coco_panoptic":
- # We also evaluate AP during panoptic training, on original coco DS
- coco_val = datasets.coco.build("val", args)
- base_ds = get_coco_api_from_dataset(coco_val)
- else:
- base_ds = get_coco_api_from_dataset(dataset_val)
-
- if args.frozen_weights is not None:
- checkpoint = torch.load(args.frozen_weights, map_location='cpu')
- model_without_ddp.detr.load_state_dict(checkpoint['model'])
-
- output_dir = Path(args.output_dir)
- if args.resume:
- if args.resume.startswith('https'):
- checkpoint = torch.hub.load_state_dict_from_url(
- args.resume, map_location='cpu', check_hash=True)
- else:
- checkpoint = torch.load(args.resume, map_location='cpu')
- missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
- unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
- if len(missing_keys) > 0:
- print('Missing Keys: {}'.format(missing_keys))
- if len(unexpected_keys) > 0:
- print('Unexpected Keys: {}'.format(unexpected_keys))
- if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
- import copy
- p_groups = copy.deepcopy(optimizer.param_groups)
- optimizer.load_state_dict(checkpoint['optimizer'])
- for pg, pg_old in zip(optimizer.param_groups, p_groups):
- pg['lr'] = pg_old['lr']
- pg['initial_lr'] = pg_old['initial_lr']
- print(optimizer.param_groups)
- lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
- # todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance).
- args.override_resumed_lr_drop = True
- if args.override_resumed_lr_drop:
- print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.')
- lr_scheduler.step_size = args.lr_drop
- lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
- lr_scheduler.step(lr_scheduler.last_epoch)
- args.start_epoch = checkpoint['epoch'] + 1
- # check the resumed model
- # if not args.eval:
- # test_stats, coco_evaluator, _ = evaluate(
- # model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
- # )
-
- if args.eval:
- assert args.batch_size == 1, print("Now only support 1.")
- # tracker = MOTXTracker(score_thresh=args.track_thresh)
- # test_stats, coco_evaluator, res_tracks = evaluate(model, criterion, postprocessors, data_loader_val,
- # base_ds, device, args.output_dir, tracker=tracker,
- # phase='eval', det_val=args.det_val)
- tracker = BYTETracker(args)
- test_stats, coco_evaluator, res_tracks = evaluate_track(args, model, criterion, postprocessors, data_loader_val,
- base_ds, device, args.output_dir, tracker=tracker,
- phase='eval', det_val=args.det_val)
- if args.output_dir:
- utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
- if res_tracks is not None:
- print("Creating video index for {}.".format(args.dataset_file))
- video_to_images = defaultdict(list)
- video_names = defaultdict()
- for _, info in dataset_val.coco.imgs.items():
- video_to_images[info["video_id"]].append({"image_id": info["id"],
- "frame_id": info["frame_id"]})
- video_name = info["file_name"].split("/")[0]
- if video_name not in video_names:
- video_names[info["video_id"]] = video_name
- assert len(video_to_images) == len(video_names)
- # save mot results.
- save_track(res_tracks, args.output_dir, video_to_images, video_names, args.track_eval_split)
-
- return
-
- print("Start training")
- start_time = time.time()
- for epoch in range(args.start_epoch, args.epochs):
- if args.distributed:
- sampler_train.set_epoch(epoch)
- train_stats = train_one_epoch(
- model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm)
- lr_scheduler.step()
- if args.output_dir:
- checkpoint_paths = [output_dir / 'checkpoint.pth']
- # extra checkpoint before LR drop and every 5 epochs
- if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 5 == 0:
- checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
- for checkpoint_path in checkpoint_paths:
- utils.save_on_master({
- 'model': model_without_ddp.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'lr_scheduler': lr_scheduler.state_dict(),
- 'epoch': epoch,
- 'args': args,
- }, checkpoint_path)
- if epoch % 10 == 0 or epoch > args.epochs - 5:
- test_stats, coco_evaluator, _ = evaluate(
- model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir,
- )
-
- log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
- **{f'test_{k}': v for k, v in test_stats.items()},
- 'epoch': epoch,
- 'n_parameters': n_parameters}
-
- if args.output_dir and utils.is_main_process():
- with (output_dir / "log.txt").open("a") as f:
- f.write(json.dumps(log_stats) + "\n")
-
- # for evaluation logs
- if coco_evaluator is not None:
- (output_dir / 'eval').mkdir(exist_ok=True)
- if "bbox" in coco_evaluator.coco_eval:
- filenames = ['latest.pth']
- if epoch % 50 == 0:
- filenames.append(f'{epoch:03}.pth')
- for name in filenames:
- torch.save(coco_evaluator.coco_eval["bbox"].eval,
- output_dir / "eval" / name)
-
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print('Training time {}'.format(total_time_str))
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser('Deformable DETR training and evaluation script', parents=[get_args_parser()])
- args = parser.parse_args()
- if args.output_dir:
- Path(args.output_dir).mkdir(parents=True, exist_ok=True)
- main(args)
|