#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import torch from torch.utils.data.dataloader import DataLoader as torchDataLoader from torch.utils.data.dataloader import default_collate import os import random from .samplers import YoloBatchSampler def get_yolox_datadir(): """ get dataset dir of YOLOX. If environment variable named `YOLOX_DATADIR` is set, this function will return value of the environment variable. Otherwise, use data """ yolox_datadir = os.getenv("YOLOX_DATADIR", None) if yolox_datadir is None: import yolox yolox_path = os.path.dirname(os.path.dirname(yolox.__file__)) yolox_datadir = os.path.join(yolox_path, "/media/external_10TB/10TB/vision/ByteTrackData") return yolox_datadir class DataLoader(torchDataLoader): """ Lightnet dataloader that enables on the fly resizing of the images. See :class:`torch.utils.data.DataLoader` for more information on the arguments. Check more on the following website: https://gitlab.com/EAVISE/lightnet/-/blob/master/lightnet/data/_dataloading.py Note: This dataloader only works with :class:`lightnet.data.Dataset` based datasets. Example: >>> class CustomSet(ln.data.Dataset): ... def __len__(self): ... return 4 ... @ln.data.Dataset.resize_getitem ... def __getitem__(self, index): ... # Should return (image, anno) but here we return (input_dim,) ... return (self.input_dim,) >>> dl = ln.data.DataLoader( ... CustomSet((200,200)), ... batch_size = 2, ... collate_fn = ln.data.list_collate # We want the data to be grouped as a list ... ) >>> dl.dataset.input_dim # Default input_dim (200, 200) >>> for d in dl: ... d [[(200, 200), (200, 200)]] [[(200, 200), (200, 200)]] >>> dl.change_input_dim(320, random_range=None) (320, 320) >>> for d in dl: ... d [[(320, 320), (320, 320)]] [[(320, 320), (320, 320)]] >>> dl.change_input_dim((480, 320), random_range=None) (480, 320) >>> for d in dl: ... d [[(480, 320), (480, 320)]] [[(480, 320), (480, 320)]] """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__initialized = False shuffle = False batch_sampler = None if len(args) > 5: shuffle = args[2] sampler = args[3] batch_sampler = args[4] elif len(args) > 4: shuffle = args[2] sampler = args[3] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] elif len(args) > 3: shuffle = args[2] if "sampler" in kwargs: sampler = kwargs["sampler"] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] else: if "shuffle" in kwargs: shuffle = kwargs["shuffle"] if "sampler" in kwargs: sampler = kwargs["sampler"] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] # Use custom BatchSampler if batch_sampler is None: if sampler is None: if shuffle: sampler = torch.utils.data.sampler.RandomSampler(self.dataset) # sampler = torch.utils.data.DistributedSampler(self.dataset) else: sampler = torch.utils.data.sampler.SequentialSampler(self.dataset) batch_sampler = YoloBatchSampler( sampler, self.batch_size, self.drop_last, input_dimension=self.dataset.input_dim, ) # batch_sampler = IterationBasedBatchSampler(batch_sampler, num_iterations = self.batch_sampler = batch_sampler self.__initialized = True def close_mosaic(self): self.batch_sampler.mosaic = False def change_input_dim(self, multiple=32, random_range=(10, 19)): """This function will compute a new size and update it on the next mini_batch. Args: multiple (int or tuple, optional): values to multiply the randomly generated range by. Default **32** random_range (tuple, optional): This (min, max) tuple sets the range for the randomisation; Default **(10, 19)** Return: tuple: width, height tuple with new dimension Note: The new size is generated as follows: |br| First we compute a random integer inside ``[random_range]``. We then multiply that number with the ``multiple`` argument, which gives our final new input size. |br| If ``multiple`` is an integer we generate a square size. If you give a tuple of **(width, height)**, the size is computed as :math:`rng * multiple[0], rng * multiple[1]`. Note: You can set the ``random_range`` argument to **None** to set an exact size of multiply. |br| See the example above for how this works. """ if random_range is None: size = 1 else: size = random.randint(*random_range) if isinstance(multiple, int): size = (size * multiple, size * multiple) else: size = (size * multiple[0], size * multiple[1]) self.batch_sampler.new_input_dim = size return size def list_collate(batch): """ Function that collates lists or tuples together into one list (of lists/tuples). Use this as the collate function in a Dataloader, if you want to have a list of items as an output, as opposed to tensors (eg. Brambox.boxes). """ items = list(zip(*batch)) for i in range(len(items)): if isinstance(items[i][0], (list, tuple)): items[i] = list(items[i]) else: items[i] = default_collate(items[i]) return items