import cv2 import numpy as np from pycocotools.coco import COCO import os from ..dataloading import get_yolox_datadir from .datasets_wrapper import Dataset import sys class MOTDataset(Dataset): """ COCO dataset class. """ def __init__( self, data_dir=None, json_file="train_half.json", name="train", img_size=(608, 1088), preproc=None, load_weak=False, ): """ COCO dataset initialization. Annotation data are read into memory by COCO API. Args: data_dir (str): dataset root directory json_file (str): COCO json file name name (str): COCO data name (e.g. 'train2017' or 'val2017') img_size (int): target image size after pre-processing preproc: data augmentation strategy """ super().__init__(img_size) if data_dir is None: data_dir = os.path.join(get_yolox_datadir(), "mot") self.data_dir = data_dir self.json_file = json_file self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file)) self.ids = self.coco.getImgIds() self.class_ids = sorted(self.coco.getCatIds()) cats = self.coco.loadCats(self.coco.getCatIds()) self._classes = tuple([c["name"] for c in cats]) self.annotations = self._load_coco_annotations() self.name = name self.img_size = img_size self.preproc = preproc self.load_weak = load_weak def __len__(self): return len(self.ids) def _load_coco_annotations(self): return [self.load_anno_from_ids(_ids) for _ids in self.ids] def load_anno_from_ids(self, id_): im_ann = self.coco.loadImgs(id_)[0] width = im_ann["width"] height = im_ann["height"] frame_id = im_ann["frame_id"] video_id = im_ann["video_id"] anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False) annotations = self.coco.loadAnns(anno_ids) objs = [] for obj in annotations: x1 = obj["bbox"][0] y1 = obj["bbox"][1] x2 = x1 + obj["bbox"][2] y2 = y1 + obj["bbox"][3] if obj["area"] > 0 and x2 >= x1 and y2 >= y1: obj["clean_bbox"] = [x1, y1, x2, y2] objs.append(obj) num_objs = len(objs) res = np.zeros((num_objs, 6)) for ix, obj in enumerate(objs): cls = self.class_ids.index(obj["category_id"]) res[ix, 0:4] = obj["clean_bbox"] res[ix, 4] = cls res[ix, 5] = obj["track_id"] file_name = im_ann["file_name"] if "file_name" in im_ann else "{:012}".format(id_) + ".jpg" img_info = (height, width, frame_id, video_id, file_name) del im_ann, annotations return (res, img_info, file_name) def load_anno(self, index): return self.annotations[index][0] def pull_item(self, index): id_ = self.ids[index] res, img_info, file_name = self.annotations[index] # load image and preprocess img_file = os.path.join( self.data_dir, self.name, file_name ) head_tail = os.path.split(img_file) # label_path = os.path.join(head_tail[0], head_tail[1].replace('.jpg','.txt')) # sys.stderr.write('original shape' + str(res.shape) + '\n values \n' + str(res)) if self.load_weak: weak_label_path = os.path.join(head_tail[0], head_tail[1] + '_weak_yolox-x.txt') # load weak labels from weak_label_path width = img_info[1] height = img_info[0] labels = np.loadtxt(weak_label_path) # print('weak loaded', labels[:3, 2:]) labels[:, 2] = labels[:, 2] * width labels[:, 4] = labels[:, 4] * width labels[:, 3] = labels[:, 3] * height labels[:, 5] = labels[:, 5] * height labels[:, 4] += labels[:, 2] labels[:, 5] += labels[:, 3] # print('weak', labels[:3, 2:]) res = np.zeros_like(labels) res[:, 0:4] = labels[:, -4:] res[:, 5] = labels[:, 1] # sys.stderr.write('weak shape ' + str(res.shape) + '\n values \n' + str(res)) # all are from class one # res[:, 4] = labels[:, 0] img = cv2.imread(img_file) if img is None: print('img_file is None', img_file) assert img is not None return img, res.copy(), img_info, np.array([id_]) @Dataset.resize_getitem def __getitem__(self, index): """ One image / label pair for the given index is picked up and pre-processed. Args: index (int): data index Returns: img (numpy.ndarray): pre-processed image padded_labels (torch.Tensor): pre-processed label data. The shape is :math:`[max_labels, 5]`. each label consists of [class, xc, yc, w, h]: class (float): class index. xc, yc (float) : center of bbox whose values range from 0 to 1. w, h (float) : size of bbox whose values range from 0 to 1. info_img : tuple of h, w, nh, nw, dx, dy. h, w (int): original shape of the image nh, nw (int): shape of the resized image without padding dx, dy (int): pad size img_id (int): same as the input index. Used for evaluation. """ img, target, img_info, img_id = self.pull_item(index) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) return img, target, img_info, img_id