| @@ -139,4 +139,5 @@ docs/api | |||
| events.out.tfevents* | |||
| pretrained | |||
| YOLOX_outputs | |||
| .idea/* | |||
| @@ -21,6 +21,9 @@ class Exp(MyMetaExp): | |||
| self.train_dir = '/media/external_10TB/10TB/vision/ByteTrackData/MOT17/annotations' | |||
| onlyfiles = [f for f in listdir(self.train_dir) if isfile(join(self.train_dir, f))] | |||
| self.train_anns = [file for file in onlyfiles if file.__contains__('train') and file.__contains__('FRCNN')] | |||
| # # TODO: remove | |||
| # self.train_anns = self.train_anns[:1] | |||
| self.val_dir = '/media/external_10TB/10TB/vision/ByteTrackData/MOT20/annotations' | |||
| onlyfiles = [f for f in listdir(self.val_dir) if isfile(join(self.val_dir, f))] | |||
| self.val_anns = [file for file in onlyfiles if file.__contains__('train') and file.__contains__( | |||
| @@ -162,8 +162,10 @@ class MetaTrainer: | |||
| logger.info( | |||
| "Model Summary: {}".format(get_model_info(model, self.exp.test_size)) | |||
| ) | |||
| # exit() | |||
| model.to(self.device) | |||
| # from torchsummary import summary | |||
| # summary(model, input_size=(3, 300, 300), device='cuda') | |||
| # value of epoch will be set in `resume_train` | |||
| model = self.resume_train(model) | |||
| @@ -23,6 +23,7 @@ class MetaExp(BaseMetaExp): | |||
| # ---------------- dataloader config ---------------- # | |||
| # set worker to 4 for shorter dataloader init time | |||
| # TODO: deal with this multi threading | |||
| self.data_num_workers = 4 | |||
| self.input_size = (640, 640) | |||
| self.random_size = (14, 26) | |||