|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- import cv2
- import numpy as np
- import torch
- from torch.autograd import Variable
- import torch.nn.functional as F
- import torch.nn as nn
- import pickle
- import os
- from torch.nn.modules import CrossMapLRN2d as SpatialCrossMapLRN
- #from torch.legacy.nn import SpatialCrossMapLRN as SpatialCrossMapLRNOld
- from torch.autograd import Function, Variable
- from torch.nn import Module
-
-
- def clip_boxes(boxes, im_shape):
- """
- Clip boxes to image boundaries.
- """
- boxes = np.asarray(boxes)
- if boxes.shape[0] == 0:
- return boxes
- boxes = np.copy(boxes)
- # x1 >= 0
- boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
- # y1 >= 0
- boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
- # x2 < im_shape[1]
- boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
- # y2 < im_shape[0]
- boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
- return boxes
-
-
- def load_net(fname, net, prefix='', load_state_dict=False):
- import h5py
- with h5py.File(fname, mode='r') as h5f:
- h5f_is_module = True
- for k in h5f.keys():
- if not str(k).startswith('module.'):
- h5f_is_module = False
- break
- if prefix == '' and not isinstance(net, nn.DataParallel) and h5f_is_module:
- prefix = 'module.'
-
- for k, v in net.state_dict().items():
- k = prefix + k
- if k in h5f:
- param = torch.from_numpy(np.asarray(h5f[k]))
- if v.size() != param.size():
- print('Inconsistent shape: {}, {}'.format(v.size(), param.size()))
- else:
- v.copy_(param)
- else:
- print.warning('No layer: {}'.format(k))
-
- epoch = h5f.attrs['epoch'] if 'epoch' in h5f.attrs else -1
-
- if not load_state_dict:
- if 'learning_rates' in h5f.attrs:
- lr = h5f.attrs['learning_rates']
- else:
- lr = h5f.attrs.get('lr', -1)
- lr = np.asarray([lr] if lr > 0 else [], dtype=np.float)
-
- return epoch, lr
-
- state_file = fname + '.optimizer_state.pk'
- if os.path.isfile(state_file):
- with open(state_file, 'rb') as f:
- state_dicts = pickle.load(f)
- if not isinstance(state_dicts, list):
- state_dicts = [state_dicts]
- else:
- state_dicts = None
- return epoch, state_dicts
-
-
- # class SpatialCrossMapLRNFunc(Function):
-
- # def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
- # self.size = size
- # self.alpha = alpha
- # self.beta = beta
- # self.k = k
-
- # def forward(self, input):
- # self.save_for_backward(input)
- # self.lrn = SpatialCrossMapLRNOld(self.size, self.alpha, self.beta, self.k)
- # self.lrn.type(input.type())
- # return self.lrn.forward(input)
-
- # def backward(self, grad_output):
- # input, = self.saved_tensors
- # return self.lrn.backward(input, grad_output)
-
-
- # # use this one instead
- # class SpatialCrossMapLRN(Module):
- # def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
- # super(SpatialCrossMapLRN, self).__init__()
- # self.size = size
- # self.alpha = alpha
- # self.beta = beta
- # self.k = k
-
- # def forward(self, input):
- # return SpatialCrossMapLRNFunc(self.size, self.alpha, self.beta, self.k)(input)
-
-
- class Inception(nn.Module):
- def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
- super(Inception, self).__init__()
- # 1x1 conv branch
- self.b1 = nn.Sequential(
- nn.Conv2d(in_planes, n1x1, kernel_size=1),
- nn.ReLU(True),
- )
-
- # 1x1 conv -> 3x3 conv branch
- self.b2 = nn.Sequential(
- nn.Conv2d(in_planes, n3x3red, kernel_size=1),
- nn.ReLU(True),
- nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
- nn.ReLU(True),
- )
-
- # 1x1 conv -> 5x5 conv branch
- self.b3 = nn.Sequential(
- nn.Conv2d(in_planes, n5x5red, kernel_size=1),
- nn.ReLU(True),
-
- nn.Conv2d(n5x5red, n5x5, kernel_size=5, padding=2),
- nn.ReLU(True),
- )
-
- # 3x3 pool -> 1x1 conv branch
- self.b4 = nn.Sequential(
- nn.MaxPool2d(3, stride=1, padding=1),
-
- nn.Conv2d(in_planes, pool_planes, kernel_size=1),
- nn.ReLU(True),
- )
-
- def forward(self, x):
- y1 = self.b1(x)
- y2 = self.b2(x)
- y3 = self.b3(x)
- y4 = self.b4(x)
- return torch.cat([y1,y2,y3,y4], 1)
-
-
- class GoogLeNet(nn.Module):
-
- output_channels = 832
-
- def __init__(self):
- super(GoogLeNet, self).__init__()
- self.pre_layers = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
- nn.ReLU(True),
-
- nn.MaxPool2d(3, stride=2, ceil_mode=True),
- SpatialCrossMapLRN(5),
-
- nn.Conv2d(64, 64, 1),
- nn.ReLU(True),
-
- nn.Conv2d(64, 192, 3, padding=1),
- nn.ReLU(True),
-
- SpatialCrossMapLRN(5),
- nn.MaxPool2d(3, stride=2, ceil_mode=True),
- )
-
- self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
- self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
-
- self.maxpool = nn.MaxPool2d(3, stride=2, ceil_mode=True)
-
- self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
- self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
- self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
- self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
- self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
-
- def forward(self, x):
- out = self.pre_layers(x)
- out = self.a3(out)
- out = self.b3(out)
- out = self.maxpool(out)
- out = self.a4(out)
- out = self.b4(out)
- out = self.c4(out)
- out = self.d4(out)
- out = self.e4(out)
-
- return out
-
-
- class Model(nn.Module):
- def __init__(self, n_parts=8):
- super(Model, self).__init__()
- self.n_parts = n_parts
-
- self.feat_conv = GoogLeNet()
- self.conv_input_feat = nn.Conv2d(self.feat_conv.output_channels, 512, 1)
-
- # part net
- self.conv_att = nn.Conv2d(512, self.n_parts, 1)
-
- for i in range(self.n_parts):
- setattr(self, 'linear_feature{}'.format(i+1), nn.Linear(512, 64))
-
- def forward(self, x):
- feature = self.feat_conv(x)
- feature = self.conv_input_feat(feature)
-
- att_weights = torch.sigmoid(self.conv_att(feature))
-
- linear_feautres = []
- for i in range(self.n_parts):
- masked_feature = feature * torch.unsqueeze(att_weights[:, i], 1)
- pooled_feature = F.avg_pool2d(masked_feature, masked_feature.size()[2:4])
- linear_feautres.append(
- getattr(self, 'linear_feature{}'.format(i+1))(pooled_feature.view(pooled_feature.size(0), -1))
- )
-
- concat_features = torch.cat(linear_feautres, 1)
- normed_feature = concat_features / torch.clamp(torch.norm(concat_features, 2, 1, keepdim=True), min=1e-6)
-
- return normed_feature
-
-
- def load_reid_model(ckpt):
- model = Model(n_parts=8)
- model.inp_size = (80, 160)
- load_net(ckpt, model)
- print('Load ReID model from {}'.format(ckpt))
-
- model = model.cuda()
- model.eval()
- return model
-
-
- def im_preprocess(image):
- image = np.asarray(image, np.float32)
- image -= np.array([104, 117, 123], dtype=np.float32).reshape(1, 1, -1)
- image = image.transpose((2, 0, 1))
- return image
-
-
- def extract_image_patches(image, bboxes):
- bboxes = np.round(bboxes).astype(np.int)
- bboxes = clip_boxes(bboxes, image.shape)
- patches = [image[box[1]:box[3], box[0]:box[2]] for box in bboxes]
- return patches
-
-
- def extract_reid_features(reid_model, image, tlbrs):
- if len(tlbrs) == 0:
- return torch.FloatTensor()
-
- patches = extract_image_patches(image, tlbrs)
- patches = np.asarray([im_preprocess(cv2.resize(p, reid_model.inp_size)) for p in patches], dtype=np.float32)
-
- with torch.no_grad():
- im_var = Variable(torch.from_numpy(patches))
- im_var = im_var.cuda()
- features = reid_model(im_var).data
- return features
|