|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- # ------------------------------------------------------------------------
- # Copyright (c) 2021 megvii-model. All Rights Reserved.
- # ------------------------------------------------------------------------
- # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
- # Copyright (c) 2020 SenseTime. All Rights Reserved.
- # ------------------------------------------------------------------------
- # Modified from DETR (https://github.com/facebookresearch/detr)
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
- # ------------------------------------------------------------------------
-
- """
- DETR model and criterion classes.
- """
- import copy
- import math
- import numpy as np
- import torch
- import torch.nn.functional as F
- from torch import nn, Tensor
- from typing import List
-
- from util import box_ops
- from util.misc import (NestedTensor, nested_tensor_from_tensor_list,
- accuracy, get_world_size, interpolate, get_rank,
- is_dist_avail_and_initialized, inverse_sigmoid)
-
- from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou
-
- from .backbone import build_backbone
- from .matcher import build_matcher
- from .deformable_transformer_plus import build_deforamble_transformer
- from .qim import build as build_query_interaction_layer
- from .memory_bank import build_memory_bank
- from .deformable_detr import SetCriterion, MLP
- from .segmentation import sigmoid_focal_loss
-
-
- class ClipMatcher(SetCriterion):
- def __init__(self, num_classes,
- matcher,
- weight_dict,
- losses):
- """ Create the criterion.
- Parameters:
- num_classes: number of object categories, omitting the special no-object category
- matcher: module able to compute a matching between targets and proposals
- weight_dict: dict containing as key the names of the losses and as values their relative weight.
- eos_coef: relative classification weight applied to the no-object category
- losses: list of all the losses to be applied. See get_loss for list of available losses.
- """
- super().__init__(num_classes, matcher, weight_dict, losses)
- self.num_classes = num_classes
- self.matcher = matcher
- self.weight_dict = weight_dict
- self.losses = losses
- self.focal_loss = True
- self.losses_dict = {}
- self._current_frame_idx = 0
-
- def initialize_for_single_clip(self, gt_instances: List[Instances]):
- self.gt_instances = gt_instances
- self.num_samples = 0
- self.sample_device = None
- self._current_frame_idx = 0
- self.losses_dict = {}
-
- def _step(self):
- self._current_frame_idx += 1
-
- def calc_loss_for_track_scores(self, track_instances: Instances):
- frame_id = self._current_frame_idx - 1
- gt_instances = self.gt_instances[frame_id]
- outputs = {
- 'pred_logits': track_instances.track_scores[None],
- }
- device = track_instances.track_scores.device
-
- num_tracks = len(track_instances)
- src_idx = torch.arange(num_tracks, dtype=torch.long, device=device)
- tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks
-
- track_losses = self.get_loss('labels',
- outputs=outputs,
- gt_instances=[gt_instances],
- indices=[(src_idx, tgt_idx)],
- num_boxes=1)
- self.losses_dict.update(
- {'frame_{}_track_{}'.format(frame_id, key): value for key, value in
- track_losses.items()})
-
- def get_num_boxes(self, num_samples):
- num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device)
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_boxes)
- num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
- return num_boxes
-
- def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs):
- loss_map = {
- 'labels': self.loss_labels,
- 'cardinality': self.loss_cardinality,
- 'boxes': self.loss_boxes,
- }
- assert loss in loss_map, f'do you really want to compute {loss} loss?'
- return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs)
-
- def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes):
- """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
- targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
- The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
- """
- # We ignore the regression loss of the track-disappear slots.
- #TODO: Make this filter process more elegant.
- filtered_idx = []
- for src_per_img, tgt_per_img in indices:
- keep = tgt_per_img != -1
- filtered_idx.append((src_per_img[keep], tgt_per_img[keep]))
- indices = filtered_idx
- idx = self._get_src_permutation_idx(indices)
- src_boxes = outputs['pred_boxes'][idx]
- target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0)
-
- # for pad target, don't calculate regression loss, judged by whether obj_id=-1
- target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16)
- mask = (target_obj_ids != -1)
-
- loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none')
- loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
- box_ops.box_cxcywh_to_xyxy(src_boxes[mask]),
- box_ops.box_cxcywh_to_xyxy(target_boxes[mask])))
-
- losses = {}
- losses['loss_bbox'] = loss_bbox.sum() / num_boxes
- losses['loss_giou'] = loss_giou.sum() / num_boxes
-
- return losses
-
- def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False):
- """Classification loss (NLL)
- targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
- """
- src_logits = outputs['pred_logits']
- idx = self._get_src_permutation_idx(indices)
- target_classes = torch.full(src_logits.shape[:2], self.num_classes,
- dtype=torch.int64, device=src_logits.device)
- # The matched gt for disappear track query is set -1.
- labels = []
- for gt_per_img, (_, J) in zip(gt_instances, indices):
- labels_per_img = torch.ones_like(J)
- # set labels of track-appear slots to 0.
- if len(gt_per_img) > 0:
- labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]]
- labels.append(labels_per_img)
- target_classes_o = torch.cat(labels)
- target_classes[idx] = target_classes_o
- if self.focal_loss:
- gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class
- gt_labels_target = gt_labels_target.to(src_logits)
- loss_ce = sigmoid_focal_loss(src_logits.flatten(1),
- gt_labels_target.flatten(1),
- alpha=0.25,
- gamma=2,
- num_boxes=num_boxes, mean_in_dim1=False)
- loss_ce = loss_ce.sum()
- else:
- loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
- losses = {'loss_ce': loss_ce}
-
- if log:
- # TODO this should probably be a separate loss, not hacked in this one here
- losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
-
- return losses
-
- def match_for_single_frame(self, outputs: dict):
- outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}
-
- gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image.
- track_instances: Instances = outputs_without_aux['track_instances']
- pred_logits_i = track_instances.pred_logits # predicted logits of i-th image.
- pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image.
-
- obj_idxes = gt_instances_i.obj_ids
- obj_idxes_list = obj_idxes.detach().cpu().numpy().tolist()
- obj_idx_to_gt_idx = {obj_idx: gt_idx for gt_idx, obj_idx in enumerate(obj_idxes_list)}
- outputs_i = {
- 'pred_logits': pred_logits_i.unsqueeze(0),
- 'pred_boxes': pred_boxes_i.unsqueeze(0),
- }
-
- # step1. inherit and update the previous tracks.
- num_disappear_track = 0
- for j in range(len(track_instances)):
- obj_id = track_instances.obj_idxes[j].item()
- # set new target idx.
- if obj_id >= 0:
- if obj_id in obj_idx_to_gt_idx:
- track_instances.matched_gt_idxes[j] = obj_idx_to_gt_idx[obj_id]
- else:
- num_disappear_track += 1
- track_instances.matched_gt_idxes[j] = -1 # track-disappear case.
- else:
- track_instances.matched_gt_idxes[j] = -1
-
- full_track_idxes = torch.arange(len(track_instances), dtype=torch.long).to(pred_logits_i.device)
- matched_track_idxes = (track_instances.obj_idxes >= 0) # occu
- prev_matched_indices = torch.stack(
- [full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1).to(
- pred_logits_i.device)
-
- # step2. select the unmatched slots.
- # note that the FP tracks whose obj_idxes are -2 will not be selected here.
- unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1]
-
- # step3. select the untracked gt instances (new tracks).
- tgt_indexes = track_instances.matched_gt_idxes
- tgt_indexes = tgt_indexes[tgt_indexes != -1]
-
- tgt_state = torch.zeros(len(gt_instances_i)).to(pred_logits_i.device)
- tgt_state[tgt_indexes] = 1
- untracked_tgt_indexes = torch.arange(len(gt_instances_i)).to(pred_logits_i.device)[tgt_state == 0]
- # untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i))
- untracked_gt_instances = gt_instances_i[untracked_tgt_indexes]
-
- def match_for_single_decoder_layer(unmatched_outputs, matcher):
- new_track_indices = matcher(unmatched_outputs,
- [untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)]
-
- src_idx = new_track_indices[0][0]
- tgt_idx = new_track_indices[0][1]
- # concat src and tgt.
- new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]],
- dim=1).to(pred_logits_i.device)
- return new_matched_indices
-
- # step4. do matching between the unmatched slots and GTs.
- unmatched_outputs = {
- 'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0),
- 'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0),
- }
- new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher)
-
- # step5. update obj_idxes according to the new matching result.
- track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long()
- track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1]
-
- # step6. calculate iou.
- active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0)
- active_track_boxes = track_instances.pred_boxes[active_idxes]
- if len(active_track_boxes) > 0:
- gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]]
- active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes)
- gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes)
- track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes))
-
- # step7. merge the unmatched pairs and the matched pairs.
- matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0)
-
- # step8. calculate losses.
- self.num_samples += len(gt_instances_i) + num_disappear_track
- self.sample_device = pred_logits_i.device
- for loss in self.losses:
- new_track_loss = self.get_loss(loss,
- outputs=outputs_i,
- gt_instances=[gt_instances_i],
- indices=[(matched_indices[:, 0], matched_indices[:, 1])],
- num_boxes=1)
- self.losses_dict.update(
- {'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()})
-
- if 'aux_outputs' in outputs:
- for i, aux_outputs in enumerate(outputs['aux_outputs']):
- unmatched_outputs_layer = {
- 'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0),
- 'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0),
- }
- new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher)
- matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0)
- for loss in self.losses:
- if loss == 'masks':
- # Intermediate masks losses are too costly to compute, we ignore them.
- continue
- l_dict = self.get_loss(loss,
- aux_outputs,
- gt_instances=[gt_instances_i],
- indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])],
- num_boxes=1, )
- self.losses_dict.update(
- {'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in
- l_dict.items()})
- self._step()
- return track_instances
-
- def forward(self, outputs, input_data: dict):
- # losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict].
- losses = outputs.pop("losses_dict")
- num_samples = self.get_num_boxes(self.num_samples)
- for loss_name, loss in losses.items():
- losses[loss_name] /= num_samples
- return losses
-
-
- class RuntimeTrackerBase(object):
- def __init__(self, score_thresh=0.8, filter_score_thresh=0.6, miss_tolerance=5):
- self.score_thresh = score_thresh
- self.filter_score_thresh = filter_score_thresh
- self.miss_tolerance = miss_tolerance
- self.max_obj_id = 0
-
- def clear(self):
- self.max_obj_id = 0
-
- def update(self, track_instances: Instances):
- track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0
- for i in range(len(track_instances)):
- if track_instances.obj_idxes[i] == -1 and track_instances.scores[i] >= self.score_thresh:
- # print("track {} has score {}, assign obj_id {}".format(i, track_instances.scores[i], self.max_obj_id))
- track_instances.obj_idxes[i] = self.max_obj_id
- self.max_obj_id += 1
- elif track_instances.obj_idxes[i] >= 0 and track_instances.scores[i] < self.filter_score_thresh:
- track_instances.disappear_time[i] += 1
- if track_instances.disappear_time[i] >= self.miss_tolerance:
- # Set the obj_id to -1.
- # Then this track will be removed by TrackEmbeddingLayer.
- track_instances.obj_idxes[i] = -1
-
-
- class TrackerPostProcess(nn.Module):
- """ This module converts the model's output into the format expected by the coco api"""
- def __init__(self):
- super().__init__()
-
- @torch.no_grad()
- def forward(self, track_instances: Instances, target_size) -> Instances:
- """ Perform the computation
- Parameters:
- outputs: raw outputs of the model
- target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
- For evaluation, this must be the original image size (before any data augmentation)
- For visualization, this should be the image size after data augment, but before padding
- """
- out_logits = track_instances.pred_logits
- out_bbox = track_instances.pred_boxes
-
- prob = out_logits.sigmoid()
- # prob = out_logits[...,:1].sigmoid()
- scores, labels = prob.max(-1)
-
- # convert to [x0, y0, x1, y1] format
- boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
- # and from relative [0, 1] to absolute [0, height] coordinates
- img_h, img_w = target_size
- scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes)
- boxes = boxes * scale_fct[None, :]
-
- track_instances.boxes = boxes
- track_instances.scores = scores
- track_instances.labels = labels
- # track_instances.remove('pred_logits')
- # track_instances.remove('pred_boxes')
- return track_instances
-
-
- def _get_clones(module, N):
- return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
-
-
- class MOTR(nn.Module):
- def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed,
- aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None):
- """ Initializes the model.
- Parameters:
- backbone: torch module of the backbone to be used. See backbone.py
- transformer: torch module of the transformer architecture. See transformer.py
- num_classes: number of object classes
- num_queries: number of object queries, ie detection slot. This is the maximal number of objects
- DETR can detect in a single image. For COCO, we recommend 100 queries.
- aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
- with_box_refine: iterative bounding box refinement
- two_stage: two-stage Deformable DETR
- """
- super().__init__()
- self.num_queries = num_queries
- self.track_embed = track_embed
- self.transformer = transformer
- hidden_dim = transformer.d_model
- self.num_classes = num_classes
- self.class_embed = nn.Linear(hidden_dim, num_classes)
- self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
- self.num_feature_levels = num_feature_levels
- if not two_stage:
- self.query_embed = nn.Embedding(num_queries, hidden_dim * 2)
- if num_feature_levels > 1:
- num_backbone_outs = len(backbone.strides)
- input_proj_list = []
- for _ in range(num_backbone_outs):
- in_channels = backbone.num_channels[_]
- input_proj_list.append(nn.Sequential(
- nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
- nn.GroupNorm(32, hidden_dim),
- ))
- for _ in range(num_feature_levels - num_backbone_outs):
- input_proj_list.append(nn.Sequential(
- nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
- nn.GroupNorm(32, hidden_dim),
- ))
- in_channels = hidden_dim
- self.input_proj = nn.ModuleList(input_proj_list)
- else:
- self.input_proj = nn.ModuleList([
- nn.Sequential(
- nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1),
- nn.GroupNorm(32, hidden_dim),
- )])
- self.backbone = backbone
- self.aux_loss = aux_loss
- self.with_box_refine = with_box_refine
- self.two_stage = two_stage
-
- prior_prob = 0.01
- bias_value = -math.log((1 - prior_prob) / prior_prob)
- self.class_embed.bias.data = torch.ones(num_classes) * bias_value
- nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
- nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
- for proj in self.input_proj:
- nn.init.xavier_uniform_(proj[0].weight, gain=1)
- nn.init.constant_(proj[0].bias, 0)
-
- # if two-stage, the last class_embed and bbox_embed is for region proposal generation
- num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
- if with_box_refine:
- self.class_embed = _get_clones(self.class_embed, num_pred)
- self.bbox_embed = _get_clones(self.bbox_embed, num_pred)
- nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
- # hack implementation for iterative bounding box refinement
- self.transformer.decoder.bbox_embed = self.bbox_embed
- else:
- nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
- self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
- self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
- self.transformer.decoder.bbox_embed = None
- if two_stage:
- # hack implementation for two-stage
- self.transformer.decoder.class_embed = self.class_embed
- for box_embed in self.bbox_embed:
- nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
- self.post_process = TrackerPostProcess()
- self.track_base = RuntimeTrackerBase()
- self.criterion = criterion
- self.memory_bank = memory_bank
- self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length
-
- def _generate_empty_tracks(self):
- track_instances = Instances((1, 1))
- num_queries, dim = self.query_embed.weight.shape # (300, 512)
- device = self.query_embed.weight.device
- track_instances.ref_pts = self.transformer.reference_points(self.query_embed.weight[:, :dim // 2])
- track_instances.query_pos = self.query_embed.weight
- track_instances.output_embedding = torch.zeros((num_queries, dim >> 1), device=device)
- track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
- track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device)
- track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device)
- track_instances.iou = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
- track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
- track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device)
- track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device)
- track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device)
-
- mem_bank_len = self.mem_bank_len
- track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, dim // 2), dtype=torch.float32, device=device)
- track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device)
- track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device)
-
- return track_instances.to(self.query_embed.weight.device)
-
- def clear(self):
- self.track_base.clear()
-
- @torch.jit.unused
- def _set_aux_loss(self, outputs_class, outputs_coord):
- # this is a workaround to make torchscript happy, as torchscript
- # doesn't support dictionary with non-homogeneous values, such
- # as a dict having both a Tensor and a list.
- return [{'pred_logits': a, 'pred_boxes': b, }
- for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
-
- def _forward_single_image(self, samples, track_instances: Instances):
- features, pos = self.backbone(samples)
- src, mask = features[-1].decompose()
- assert mask is not None
-
- srcs = []
- masks = []
- for l, feat in enumerate(features):
- src, mask = feat.decompose()
- srcs.append(self.input_proj[l](src))
- masks.append(mask)
- assert mask is not None
-
- if self.num_feature_levels > len(srcs):
- _len_srcs = len(srcs)
- for l in range(_len_srcs, self.num_feature_levels):
- if l == _len_srcs:
- src = self.input_proj[l](features[-1].tensors)
- else:
- src = self.input_proj[l](srcs[-1])
- m = samples.mask
- mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
- pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
- srcs.append(src)
- masks.append(mask)
- pos.append(pos_l)
-
- hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, track_instances.query_pos, ref_pts=track_instances.ref_pts)
-
- outputs_classes = []
- outputs_coords = []
- for lvl in range(hs.shape[0]):
- if lvl == 0:
- reference = init_reference
- else:
- reference = inter_references[lvl - 1]
- reference = inverse_sigmoid(reference)
- outputs_class = self.class_embed[lvl](hs[lvl])
- tmp = self.bbox_embed[lvl](hs[lvl])
- if reference.shape[-1] == 4:
- tmp += reference
- else:
- assert reference.shape[-1] == 2
- tmp[..., :2] += reference
- outputs_coord = tmp.sigmoid()
- outputs_classes.append(outputs_class)
- outputs_coords.append(outputs_coord)
- outputs_class = torch.stack(outputs_classes)
- outputs_coord = torch.stack(outputs_coords)
-
- ref_pts_all = torch.cat([init_reference[None], inter_references[:, :, :, :2]], dim=0)
- out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], 'ref_pts': ref_pts_all[5]}
- if self.aux_loss:
- out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
-
- with torch.no_grad():
- if self.training:
- track_scores = outputs_class[-1, 0, :].sigmoid().max(dim=-1).values
- else:
- track_scores = outputs_class[-1, 0, :, 0].sigmoid()
-
- track_instances.scores = track_scores
- track_instances.pred_logits = outputs_class[-1, 0]
- track_instances.pred_boxes = outputs_coord[-1, 0]
- track_instances.output_embedding = hs[-1, 0]
- if self.training:
- # the track id will be assigned by the mather.
- out['track_instances'] = track_instances
- track_instances = self.criterion.match_for_single_frame(out)
- else:
- # each track will be assigned an unique global id by the track base.
- self.track_base.update(track_instances)
- if self.memory_bank is not None:
- track_instances = self.memory_bank(track_instances)
- # track_instances.track_scores = track_instances.track_scores[..., 0]
- # track_instances.scores = track_instances.track_scores.sigmoid()
- if self.training:
- self.criterion.calc_loss_for_track_scores(track_instances)
- tmp = {}
- tmp['init_track_instances'] = self._generate_empty_tracks()
- tmp['track_instances'] = track_instances
- out_track_instances = self.track_embed(tmp)
- out['track_instances'] = out_track_instances
- return out
-
- @torch.no_grad()
- def inference_single_image(self, img, ori_img_size, track_instances=None):
- if not isinstance(img, NestedTensor):
- img = nested_tensor_from_tensor_list(img)
- if track_instances is None:
- track_instances = self._generate_empty_tracks()
-
- res = self._forward_single_image(img, track_instances=track_instances)
-
- track_instances = res['track_instances']
- track_instances = self.post_process(track_instances, ori_img_size)
- ret = {'track_instances': track_instances}
- if 'ref_pts' in res:
- ref_pts = res['ref_pts']
- img_h, img_w = ori_img_size
- scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts)
- ref_pts = ref_pts * scale_fct[None]
- ret['ref_pts'] = ref_pts
- return ret
-
- def forward(self, data: dict):
- if self.training:
- self.criterion.initialize_for_single_clip(data['gt_instances'])
- frames = data['imgs'] # list of Tensor.
- outputs = {
- 'pred_logits': [],
- 'pred_boxes': [],
- }
-
- track_instances = self._generate_empty_tracks()
- for frame in frames:
- if not isinstance(frame, NestedTensor):
- frame = nested_tensor_from_tensor_list([frame])
- frame_res = self._forward_single_image(frame, track_instances)
- track_instances = frame_res['track_instances']
- outputs['pred_logits'].append(frame_res['pred_logits'])
- outputs['pred_boxes'].append(frame_res['pred_boxes'])
-
- if not self.training:
- outputs['track_instances'] = track_instances
- else:
- outputs['losses_dict'] = self.criterion.losses_dict
- return outputs
-
-
- def build(args):
- dataset_to_num_classes = {
- 'coco': 91,
- 'coco_panoptic': 250,
- 'e2e_mot': 1,
- 'e2e_joint': 1,
- 'e2e_static_mot': 1
- }
- assert args.dataset_file in dataset_to_num_classes
- num_classes = dataset_to_num_classes[args.dataset_file]
- device = torch.device(args.device)
-
- backbone = build_backbone(args)
-
- transformer = build_deforamble_transformer(args)
- d_model = transformer.d_model
- hidden_dim = args.dim_feedforward
- query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2)
-
- img_matcher = build_matcher(args)
- num_frames_per_batch = max(args.sampler_lengths)
- weight_dict = {}
- for i in range(num_frames_per_batch):
- weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef,
- 'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef,
- 'frame_{}_loss_giou'.format(i): args.giou_loss_coef,
- })
-
- # TODO this is a hack
- if args.aux_loss:
- for i in range(num_frames_per_batch):
- for j in range(args.dec_layers - 1):
- weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef,
- 'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef,
- 'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef,
- })
- if args.memory_bank_type is not None and len(args.memory_bank_type) > 0:
- memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2)
- for i in range(num_frames_per_batch):
- weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef})
- else:
- memory_bank = None
- losses = ['labels', 'boxes']
- criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses)
- criterion.to(device)
- postprocessors = {}
- model = MOTR(
- backbone,
- transformer,
- track_embed=query_interaction_layer,
- num_feature_levels=args.num_feature_levels,
- num_classes=num_classes,
- num_queries=args.num_queries,
- aux_loss=args.aux_loss,
- criterion=criterion,
- with_box_refine=args.with_box_refine,
- two_stage=args.two_stage,
- memory_bank=memory_bank,
- )
- return model, criterion, postprocessors
|