|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- import numpy as np
- import os
- import glob
- import motmetrics as mm
-
- from yolox.evaluators.evaluation import Evaluator
-
-
- def mkdir_if_missing(d):
- if not os.path.exists(d):
- os.makedirs(d)
-
-
- def eval_mota(data_root, txt_path):
- accs = []
- seqs = sorted([s for s in os.listdir(data_root) if s.endswith('FRCNN')])
- #seqs = sorted([s for s in os.listdir(data_root)])
- for seq in seqs:
- video_out_path = os.path.join(txt_path, seq + '.txt')
- evaluator = Evaluator(data_root, seq, 'mot')
- accs.append(evaluator.eval_file(video_out_path))
- metrics = mm.metrics.motchallenge_metrics
- mh = mm.metrics.create()
- summary = Evaluator.get_summary(accs, seqs, metrics)
- strsummary = mm.io.render_summary(
- summary,
- formatters=mh.formatters,
- namemap=mm.io.motchallenge_metric_names
- )
- print(strsummary)
-
-
- def get_mota(data_root, txt_path):
- accs = []
- seqs = sorted([s for s in os.listdir(data_root) if s.endswith('FRCNN')])
- #seqs = sorted([s for s in os.listdir(data_root)])
- for seq in seqs:
- video_out_path = os.path.join(txt_path, seq + '.txt')
- evaluator = Evaluator(data_root, seq, 'mot')
- accs.append(evaluator.eval_file(video_out_path))
- metrics = mm.metrics.motchallenge_metrics
- mh = mm.metrics.create()
- summary = Evaluator.get_summary(accs, seqs, metrics)
- strsummary = mm.io.render_summary(
- summary,
- formatters=mh.formatters,
- namemap=mm.io.motchallenge_metric_names
- )
- mota = float(strsummary.split(' ')[-6][:-1])
- return mota
-
-
- def write_results_score(filename, results):
- save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
- with open(filename, 'w') as f:
- for i in range(results.shape[0]):
- frame_data = results[i]
- frame_id = int(frame_data[0])
- track_id = int(frame_data[1])
- x1, y1, w, h = frame_data[2:6]
- score = frame_data[6]
- line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, w=w, h=h, s=-1)
- f.write(line)
-
-
- def dti(txt_path, save_path, n_min=25, n_dti=20):
- seq_txts = sorted(glob.glob(os.path.join(txt_path, '*.txt')))
- for seq_txt in seq_txts:
- seq_name = seq_txt.split('/')[-1]
- seq_data = np.loadtxt(seq_txt, dtype=np.float64, delimiter=',')
- min_id = int(np.min(seq_data[:, 1]))
- max_id = int(np.max(seq_data[:, 1]))
- seq_results = np.zeros((1, 10), dtype=np.float64)
- for track_id in range(min_id, max_id + 1):
- index = (seq_data[:, 1] == track_id)
- tracklet = seq_data[index]
- tracklet_dti = tracklet
- if tracklet.shape[0] == 0:
- continue
- n_frame = tracklet.shape[0]
- n_conf = np.sum(tracklet[:, 6] > 0.5)
- if n_frame > n_min:
- frames = tracklet[:, 0]
- frames_dti = {}
- for i in range(0, n_frame):
- right_frame = frames[i]
- if i > 0:
- left_frame = frames[i - 1]
- else:
- left_frame = frames[i]
- # disconnected track interpolation
- if 1 < right_frame - left_frame < n_dti:
- num_bi = int(right_frame - left_frame - 1)
- right_bbox = tracklet[i, 2:6]
- left_bbox = tracklet[i - 1, 2:6]
- for j in range(1, num_bi + 1):
- curr_frame = j + left_frame
- curr_bbox = (curr_frame - left_frame) * (right_bbox - left_bbox) / \
- (right_frame - left_frame) + left_bbox
- frames_dti[curr_frame] = curr_bbox
- num_dti = len(frames_dti.keys())
- if num_dti > 0:
- data_dti = np.zeros((num_dti, 10), dtype=np.float64)
- for n in range(num_dti):
- data_dti[n, 0] = list(frames_dti.keys())[n]
- data_dti[n, 1] = track_id
- data_dti[n, 2:6] = frames_dti[list(frames_dti.keys())[n]]
- data_dti[n, 6:] = [1, -1, -1, -1]
- tracklet_dti = np.vstack((tracklet, data_dti))
- seq_results = np.vstack((seq_results, tracklet_dti))
- save_seq_txt = os.path.join(save_path, seq_name)
- seq_results = seq_results[1:]
- seq_results = seq_results[seq_results[:, 0].argsort()]
- write_results_score(save_seq_txt, seq_results)
-
-
- if __name__ == '__main__':
- data_root = '/opt/tiger/demo/ByteTrack/datasets/mot/test'
- txt_path = '/opt/tiger/demo/ByteTrack/YOLOX_outputs/yolox_x_mix_det/track_results'
- save_path = '/opt/tiger/demo/ByteTrack/YOLOX_outputs/yolox_x_mix_det/track_results_dti'
-
- mkdir_if_missing(save_path)
- dti(txt_path, save_path, n_min=5, n_dti=20)
- print('Before DTI: ')
- eval_mota(data_root, txt_path)
- print('After DTI:')
- eval_mota(data_root, save_path)
-
- '''
- mota_best = 0.0
- best_n_min = 0
- best_n_dti = 0
- for n_min in range(5, 50, 5):
- for n_dti in range(5, 30, 5):
- dti(txt_path, save_path, n_min, n_dti)
- mota = get_mota(data_root, save_path)
- if mota > mota_best:
- mota_best = mota
- best_n_min = n_min
- best_n_dti = n_dti
- print(mota_best, best_n_min, best_n_dti)
- print(mota_best, best_n_min, best_n_dti)
- '''
|