|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # ByteTrack-TensorRT in C++
-
- ## Installation
-
- Install opencv with ```sudo apt-get install libopencv-dev``` (we don't need a higher version of opencv like v3.3+).
-
- Install eigen-3.3.9 [[google]](https://drive.google.com/file/d/1rqO74CYCNrmRAg8Rra0JP3yZtJ-rfket/view?usp=sharing), [[baidu(code:ueq4)]](https://pan.baidu.com/s/15kEfCxpy-T7tz60msxxExg).
-
- ```shell
- unzip eigen-3.3.9.zip
- cd eigen-3.3.9
- mkdir build
- cd build
- cmake ..
- sudo make install
- ```
-
- ## Prepare serialized engine file
-
- Follow the TensorRT Python demo to convert and save the serialized engine file.
-
- Check the 'model_trt.engine' file, which will be automatically saved at the YOLOX_output dir.
-
- ## Build the demo
-
- You should set the TensorRT path and CUDA path in CMakeLists.txt.
-
- For bytetrack_s model, we set the input frame size 1088 x 608. For bytetrack_m, bytetrack_l, bytetrack_x models, we set the input frame size 1440 x 800. You can modify the INPUT_W and INPUT_H in src/bytetrack.cpp
-
- ```c++
- static const int INPUT_W = 1088;
- static const int INPUT_H = 608;
- ```
-
- You can first build the demo:
-
- ```shell
- cd <ByteTrack_HOME>/demo/TensorRT/cpp
- mkdir build
- cd build
- cmake ..
- make
- ```
-
- Then you can run the demo with **200 FPS**:
-
- ```shell
- ./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4
- ```
-
- (If you find the output video lose some frames, you can convert the input video by running:
-
- ```shell
- cd <ByteTrack_HOME>
- python3 tools/convert_video.py
- ```
- to generate an appropriate input video for TensorRT C++ demo. )
-
|